/* * linux/drivers/video/mbx/mbxfb.c * * Copyright (C) 2006-2007 8D Technologies inc * Raphael Assenat <raph@8d.com> * - Added video overlay support * - Various improvements * * Copyright (C) 2006 Compulab, Ltd. * Mike Rapoport <mike@compulab.co.il> * - Creation of driver * * Based on pxafb.c * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of this archive for * more details. * * Intel 2700G (Marathon) Graphics Accelerator Frame Buffer Driver * */ #include <linux/delay.h> #include <linux/fb.h> #include <linux/init.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/uaccess.h> #include <linux/io.h> #include <video/mbxfb.h> #include "regs.h" #include "reg_bits.h" static void __iomem *virt_base_2700; #define write_reg(val, reg) do { writel((val), (reg)); } while(0) /* Without this delay, the graphics appears somehow scaled and * there is a lot of jitter in scanlines. This delay is probably * needed only after setting some specific register(s) somewhere, * not all over the place... */ #define write_reg_dly(val, reg) do { writel((val), reg); udelay(1000); } while(0) #define MIN_XRES 16 #define MIN_YRES 16 #define MAX_XRES 2048 #define MAX_YRES 2048 #define MAX_PALETTES 16 /* FIXME: take care of different chip revisions with different sizes of ODFB */ #define MEMORY_OFFSET 0x60000 struct mbxfb_info { struct device *dev; struct resource *fb_res; struct resource *fb_req; struct resource *reg_res; struct resource *reg_req; void __iomem *fb_virt_addr; unsigned long fb_phys_addr; void __iomem *reg_virt_addr; unsigned long reg_phys_addr; int (*platform_probe) (struct fb_info * fb); int (*platform_remove) (struct fb_info * fb); u32 pseudo_palette[MAX_PALETTES]; #ifdef CONFIG_FB_MBX_DEBUG void *debugfs_data; #endif }; static struct fb_var_screeninfo mbxfb_default = { .xres = 640, .yres = 480, .xres_virtual = 640, .yres_virtual = 480, .bits_per_pixel = 16, .red = {11, 5, 0}, .green = {5, 6, 0}, .blue = {0, 5, 0}, .activate = FB_ACTIVATE_TEST, .height = -1, .width = -1, .pixclock = 40000, .left_margin = 48, .right_margin = 16, .upper_margin = 33, .lower_margin = 10, .hsync_len = 96, .vsync_len = 2, .vmode = FB_VMODE_NONINTERLACED, .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT, }; static struct fb_fix_screeninfo mbxfb_fix = { .id = "MBX", .type = FB_TYPE_PACKED_PIXELS, .visual = FB_VISUAL_TRUECOLOR, .xpanstep = 0, .ypanstep = 0, .ywrapstep = 0, .accel = FB_ACCEL_NONE, }; struct pixclock_div { u8 m; u8 n; u8 p; }; static unsigned int mbxfb_get_pixclock(unsigned int pixclock_ps, struct pixclock_div *div) { u8 m, n, p; unsigned int err = 0; unsigned int min_err = ~0x0; unsigned int clk; unsigned int best_clk = 0; unsigned int ref_clk = 13000; /* FIXME: take from platform data */ unsigned int pixclock; /* convert pixclock to KHz */ pixclock = PICOS2KHZ(pixclock_ps); /* PLL output freq = (ref_clk * M) / (N * 2^P) * * M: 1 to 63 * N: 1 to 7 * P: 0 to 7 */ /* RAPH: When N==1, the resulting pixel clock appears to * get divided by 2. Preventing N=1 by starting the following * loop at 2 prevents this. Is this a bug with my chip * revision or something I dont understand? */ for (m = 1; m < 64; m++) { for (n = 2; n < 8; n++) { for (p = 0; p < 8; p++) { clk = (ref_clk * m) / (n * (1 << p)); err = (clk > pixclock) ? (clk - pixclock) : (pixclock - clk); if (err < min_err) { min_err = err; best_clk = clk; div->m = m; div->n = n; div->p = p; } } } } return KHZ2PICOS(best_clk); } static int mbxfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, u_int trans, struct fb_info *info) { u32 val, ret = 1; if (regno < MAX_PALETTES) { u32 *pal = info->pseudo_palette; val = (red & 0xf800) | ((green & 0xfc00) >> 5) | ((blue & 0xf800) >> 11); pal[regno] = val; ret = 0; } return ret; } static int mbxfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) { struct pixclock_div div; var->pixclock = mbxfb_get_pixclock(var->pixclock, &div); if (var->xres < MIN_XRES) var->xres = MIN_XRES; if (var->yres < MIN_YRES) var->yres = MIN_YRES; if (var->xres > MAX_XRES) return -EINVAL; if (var->yres > MAX_YRES) return -EINVAL; var->xres_virtual = max(var->xres_virtual, var->xres); var->yres_virtual = max(var->yres_virtual, var->yres); switch (var->bits_per_pixel) { /* 8 bits-per-pixel is not supported yet */ case 8: return -EINVAL; case 16: var->green.length = (var->green.length == 5) ? 5 : 6; var->red.length = 5; var->blue.length = 5; var->transp.length = 6 - var->green.length; var->blue.offset = 0; var->green.offset = 5; var->red.offset = 5 + var->green.length; var->transp.offset = (5 + var->red.offset) & 15; break; case 24: /* RGB 888 */ case 32: /* RGBA 8888 */ var->red.offset = 16; var->red.length = 8; var->green.offset = 8; var->green.length = 8; var->blue.offset = 0; var->blue.length = 8; var->transp.length = var->bits_per_pixel - 24; var->transp.offset = (var->transp.length) ? 24 : 0; break; } var->red.msb_right = 0; var->green.msb_right = 0; var->blue.msb_right = 0; var->transp.msb_right = 0; return 0; } static int mbxfb_set_par(struct fb_info *info) { struct fb_var_screeninfo *var = &info->var; struct pixclock_div div; ushort hbps, ht, hfps, has; ushort vbps, vt, vfps, vas; u32 gsctrl = readl(GSCTRL); u32 gsadr = readl(GSADR); info->fix.line_length = var->xres_virtual * var->bits_per_pixel / 8; /* setup color mode */ gsctrl &= ~(FMsk(GSCTRL_GPIXFMT)); /* FIXME: add *WORKING* support for 8-bits per color */ if (info->var.bits_per_pixel == 8) { return -EINVAL; } else { fb_dealloc_cmap(&info->cmap); gsctrl &= ~GSCTRL_LUT_EN; info->fix.visual = FB_VISUAL_TRUECOLOR; switch (info->var.bits_per_pixel) { case 16: if (info->var.green.length == 5) gsctrl |= GSCTRL_GPIXFMT_ARGB1555; else gsctrl |= GSCTRL_GPIXFMT_RGB565; break; case 24: gsctrl |= GSCTRL_GPIXFMT_RGB888; break; case 32: gsctrl |= GSCTRL_GPIXFMT_ARGB8888; break; } } /* setup resolution */ gsctrl &= ~(FMsk(GSCTRL_GSWIDTH) | FMsk(GSCTRL_GSHEIGHT)); gsctrl |= Gsctrl_Width(info->var.xres) | Gsctrl_Height(info->var.yres); write_reg_dly(gsctrl, GSCTRL); gsadr &= ~(FMsk(GSADR_SRCSTRIDE)); gsadr |= Gsadr_Srcstride(info->var.xres * info->var.bits_per_pixel / (8 * 16) - 1); write_reg_dly(gsadr, GSADR); /* setup timings */ var->pixclock = mbxfb_get_pixclock(info->var.pixclock, &div); write_reg_dly((Disp_Pll_M(div.m) | Disp_Pll_N(div.n) | Disp_Pll_P(div.p) | DISP_PLL_EN), DISPPLL); hbps = var->hsync_len; has = hbps + var->left_margin; hfps = has + var->xres; ht = hfps + var->right_margin; vbps = var->vsync_len; vas = vbps + var->upper_margin; vfps = vas + var->yres; vt = vfps + var->lower_margin; write_reg_dly((Dht01_Hbps(hbps) | Dht01_Ht(ht)), DHT01); write_reg_dly((Dht02_Hlbs(has) | Dht02_Has(has)), DHT02); write_reg_dly((Dht03_Hfps(hfps) | Dht03_Hrbs(hfps)), DHT03); write_reg_dly((Dhdet_Hdes(has) | Dhdet_Hdef(hfps)), DHDET); write_reg_dly((Dvt01_Vbps(vbps) | Dvt01_Vt(vt)), DVT01); write_reg_dly((Dvt02_Vtbs(vas) | Dvt02_Vas(vas)), DVT02); write_reg_dly((Dvt03_Vfps(vfps) | Dvt03_Vbbs(vfps)), DVT03); write_reg_dly((Dvdet_Vdes(vas) | Dvdet_Vdef(vfps)), DVDET); write_reg_dly((Dvectrl_Vevent(vfps) | Dvectrl_Vfetch(vbps)), DVECTRL); write_reg_dly((readl(DSCTRL) | DSCTRL_SYNCGEN_EN), DSCTRL); write_reg_dly(DINTRE_VEVENT0_EN, DINTRE); return 0; } static int mbxfb_blank(int blank, struct fb_info *info) { switch (blank) { case FB_BLANK_POWERDOWN: case FB_BLANK_VSYNC_SUSPEND: case FB_BLANK_HSYNC_SUSPEND: case FB_BLANK_NORMAL: write_reg_dly((readl(DSCTRL) & ~DSCTRL_SYNCGEN_EN), DSCTRL); write_reg_dly((readl(PIXCLK) & ~PIXCLK_EN), PIXCLK); write_reg_dly((readl(VOVRCLK) & ~VOVRCLK_EN), VOVRCLK); break; case FB_BLANK_UNBLANK: write_reg_dly((readl(DSCTRL) | DSCTRL_SYNCGEN_EN), DSCTRL); write_reg_dly((readl(PIXCLK) | PIXCLK_EN), PIXCLK); break; } return 0; } static int mbxfb_setupOverlay(struct mbxfb_overlaySetup *set) { u32 vsctrl, vscadr, vsadr; u32 sssize, spoctrl, shctrl; u32 vubase, vvbase; u32 vovrclk; if (set->scaled_width==0 || set->scaled_height==0) return -EINVAL; /* read registers which have reserved bits * so we can write them back as-is. */ vovrclk = readl(VOVRCLK); vsctrl = readl(VSCTRL); vscadr = readl(VSCADR); vubase = readl(VUBASE); vvbase = readl(VVBASE); shctrl = readl(SHCTRL); spoctrl = readl(SPOCTRL); sssize = readl(SSSIZE); vsctrl &= ~( FMsk(VSCTRL_VSWIDTH) | FMsk(VSCTRL_VSHEIGHT) | FMsk(VSCTRL_VPIXFMT) | VSCTRL_GAMMA_EN | VSCTRL_CSC_EN | VSCTRL_COSITED ); vsctrl |= Vsctrl_Width(set->width) | Vsctrl_Height(set->height) | VSCTRL_CSC_EN; vscadr &= ~(VSCADR_STR_EN | FMsk(VSCADR_VBASE_ADR) ); vubase &= ~(VUBASE_UVHALFSTR | FMsk(VUBASE_UBASE_ADR)); vvbase &= ~(FMsk(VVBASE_VBASE_ADR)); switch (set->fmt) { case MBXFB_FMT_YUV16: vsctrl |= VSCTRL_VPIXFMT_YUV12; set->Y_stride = ((set->width) + 0xf ) & ~0xf; break; case MBXFB_FMT_YUV12: vsctrl |= VSCTRL_VPIXFMT_YUV12; set->Y_stride = ((set->width) + 0xf ) & ~0xf; vubase |= VUBASE_UVHALFSTR; break; case MBXFB_FMT_UY0VY1: vsctrl |= VSCTRL_VPIXFMT_UY0VY1; set->Y_stride = (set->width*2 + 0xf ) & ~0xf; break; case MBXFB_FMT_VY0UY1: vsctrl |= VSCTRL_VPIXFMT_VY0UY1; set->Y_stride = (set->width*2 + 0xf ) & ~0xf; break; case MBXFB_FMT_Y0UY1V: vsctrl |= VSCTRL_VPIXFMT_Y0UY1V; set->Y_stride = (set->width*2 + 0xf ) & ~0xf; break; case MBXFB_FMT_Y0VY1U: vsctrl |= VSCTRL_VPIXFMT_Y0VY1U; set->Y_stride = (set->width*2 + 0xf ) & ~0xf; break; default: return -EINVAL; } /* VSCTRL has the bits which sets the Video Pixel Format. * When passing from a packed to planar format, * if we write VSCTRL first, VVBASE and VUBASE would * be zero if we would not set them here. (And then, * the chips hangs and only a reset seems to fix it). * * If course, the values calculated here have no meaning * for packed formats. */ set->UV_stride = ((set->width/2) + 0x7 ) & ~0x7; set->U_offset = set->height * set->Y_stride; set->V_offset = set->U_offset + set->height * set->UV_stride; vubase |= Vubase_Ubase_Adr( (0x60000 + set->mem_offset + set->U_offset)>>3); vvbase |= Vvbase_Vbase_Adr( (0x60000 + set->mem_offset + set->V_offset)>>3); vscadr |= Vscadr_Vbase_Adr((0x60000 + set->mem_offset)>>4); if (set->enable) vscadr |= VSCADR_STR_EN; vsadr = Vsadr_Srcstride((set->Y_stride)/16-1) | Vsadr_Xstart(set->x) | Vsadr_Ystart(set->y); sssize &= ~(FMsk(SSSIZE_SC_WIDTH) | FMsk(SSSIZE_SC_HEIGHT)); sssize = Sssize_Sc_Width(set->scaled_width-1) | Sssize_Sc_Height(set->scaled_height-1); spoctrl &= ~(SPOCTRL_H_SC_BP | SPOCTRL_V_SC_BP | SPOCTRL_HV_SC_OR | SPOCTRL_VS_UR_C | FMsk(SPOCTRL_VPITCH)); spoctrl |= Spoctrl_Vpitch((set->height<<11)/set->scaled_height); /* Bypass horiz/vert scaler when same size */ if (set->scaled_width == set->width) spoctrl |= SPOCTRL_H_SC_BP; if (set->scaled_height == set->height) spoctrl |= SPOCTRL_V_SC_BP; shctrl &= ~(FMsk(SHCTRL_HPITCH) | SHCTRL_HDECIM); shctrl |= Shctrl_Hpitch((set->width<<11)/set->scaled_width); /* Video plane registers */ write_reg(vsctrl, VSCTRL); write_reg(vscadr, VSCADR); write_reg(vubase, VUBASE); write_reg(vvbase, VVBASE); write_reg(vsadr, VSADR); /* Video scaler registers */ write_reg(sssize, SSSIZE); write_reg(spoctrl, SPOCTRL); write_reg(shctrl, SHCTRL); /* Clock */ if (set->enable) vovrclk |= 1; else vovrclk &= ~1; write_reg(vovrclk, VOVRCLK); return 0; } static int mbxfb_ioctl_planeorder(struct mbxfb_planeorder *porder) { unsigned long gscadr, vscadr; if (porder->bottom == porder->top) return -EINVAL; gscadr = readl(GSCADR); vscadr = readl(VSCADR); gscadr &= ~(FMsk(GSCADR_BLEND_POS)); vscadr &= ~(FMsk(VSCADR_BLEND_POS)); switch (porder->bottom) { case MBXFB_PLANE_GRAPHICS: gscadr |= GSCADR_BLEND_GFX; break; case MBXFB_PLANE_VIDEO: vscadr |= VSCADR_BLEND_GFX; break; default: return -EINVAL; } switch (porder->top) { case MBXFB_PLANE_GRAPHICS: gscadr |= GSCADR_BLEND_VID; break; case MBXFB_PLANE_VIDEO: vscadr |= GSCADR_BLEND_VID; break; default: return -EINVAL; } write_reg_dly(vscadr, VSCADR); write_reg_dly(gscadr, GSCADR); return 0; } static int mbxfb_ioctl_alphactl(struct mbxfb_alphaCtl *alpha) { unsigned long vscadr, vbbase, vcmsk; unsigned long gscadr, gbbase, gdrctrl; vbbase = Vbbase_Glalpha(alpha->overlay_global_alpha) | Vbbase_Colkey(alpha->overlay_colorkey); gbbase = Gbbase_Glalpha(alpha->graphics_global_alpha) | Gbbase_Colkey(alpha->graphics_colorkey); vcmsk = readl(VCMSK); vcmsk &= ~(FMsk(VCMSK_COLKEY_M)); vcmsk |= Vcmsk_colkey_m(alpha->overlay_colorkey_mask); gdrctrl = readl(GDRCTRL); gdrctrl &= ~(FMsk(GDRCTRL_COLKEYM)); gdrctrl |= Gdrctrl_Colkeym(alpha->graphics_colorkey_mask); vscadr = readl(VSCADR); vscadr &= ~(FMsk(VSCADR_BLEND_M) | VSCADR_COLKEYSRC | VSCADR_COLKEY_EN); gscadr = readl(GSCADR); gscadr &= ~(FMsk(GSCADR_BLEND_M) | GSCADR_COLKEY_EN | GSCADR_COLKEYSRC); switch (alpha->overlay_colorkey_mode) { case MBXFB_COLORKEY_DISABLED: break; case MBXFB_COLORKEY_PREVIOUS: vscadr |= VSCADR_COLKEY_EN; break; case MBXFB_COLORKEY_CURRENT: vscadr |= VSCADR_COLKEY_EN | VSCADR_COLKEYSRC; break; default: return -EINVAL; } switch (alpha->overlay_blend_mode) { case MBXFB_ALPHABLEND_NONE: vscadr |= VSCADR_BLEND_NONE; break; case MBXFB_ALPHABLEND_GLOBAL: vscadr |= VSCADR_BLEND_GLOB; break; case MBXFB_ALPHABLEND_PIXEL: vscadr |= VSCADR_BLEND_PIX; break; default: return -EINVAL; } switch (alpha->graphics_colorkey_mode) { case MBXFB_COLORKEY_DISABLED: break; case MBXFB_COLORKEY_PREVIOUS: gscadr |= GSCADR_COLKEY_EN; break; case MBXFB_COLORKEY_CURRENT: gscadr |= GSCADR_COLKEY_EN | GSCADR_COLKEYSRC; break; default: return -EINVAL; } switch (alpha->graphics_blend_mode) { case MBXFB_ALPHABLEND_NONE: gscadr |= GSCADR_BLEND_NONE; break; case MBXFB_ALPHABLEND_GLOBAL: gscadr |= GSCADR_BLEND_GLOB; break; case MBXFB_ALPHABLEND_PIXEL: gscadr |= GSCADR_BLEND_PIX; break; default: return -EINVAL; } write_reg_dly(vbbase, VBBASE); write_reg_dly(gbbase, GBBASE); write_reg_dly(vcmsk, VCMSK); write_reg_dly(gdrctrl, GDRCTRL); write_reg_dly(gscadr, GSCADR); write_reg_dly(vscadr, VSCADR); return 0; } static int mbxfb_ioctl(struct fb_info *info, unsigned int cmd, unsigned long arg) { struct mbxfb_overlaySetup setup; struct mbxfb_planeorder porder; struct mbxfb_alphaCtl alpha; struct mbxfb_reg reg; int res; __u32 tmp; switch (cmd) { case MBXFB_IOCX_OVERLAY: if (copy_from_user(&setup, (void __user*)arg, sizeof(struct mbxfb_overlaySetup))) return -EFAULT; res = mbxfb_setupOverlay(&setup); if (res) return res; if (copy_to_user((void __user*)arg, &setup, sizeof(struct mbxfb_overlaySetup))) return -EFAULT; return 0; case MBXFB_IOCS_PLANEORDER: if (copy_from_user(&porder, (void __user*)arg, sizeof(struct mbxfb_planeorder))) return -EFAULT; return mbxfb_ioctl_planeorder(&porder); case MBXFB_IOCS_ALPHA: if (copy_from_user(&alpha, (void __user*)arg, sizeof(struct mbxfb_alphaCtl))) return -EFAULT; return mbxfb_ioctl_alphactl(&alpha); case MBXFB_IOCS_REG: if (copy_from_user(®, (void __user*)arg, sizeof(struct mbxfb_reg))) return -EFAULT; if (reg.addr >= 0x10000) /* regs are from 0x3fe0000 to 0x3feffff */ return -EINVAL; tmp = readl(virt_base_2700 + reg.addr); tmp &= ~reg.mask; tmp |= reg.val & reg.mask; writel(tmp, virt_base_2700 + reg.addr); return 0; case MBXFB_IOCX_REG: if (copy_from_user(®, (void __user*)arg, sizeof(struct mbxfb_reg))) return -EFAULT; if (reg.addr >= 0x10000) /* regs are from 0x3fe0000 to 0x3feffff */ return -EINVAL; reg.val = readl(virt_base_2700 + reg.addr); if (copy_to_user((void __user*)arg, ®, sizeof(struct mbxfb_reg))) return -EFAULT; return 0; } return -EINVAL; } static struct fb_ops mbxfb_ops = { .owner = THIS_MODULE, .fb_check_var = mbxfb_check_var, .fb_set_par = mbxfb_set_par, .fb_setcolreg = mbxfb_setcolreg, .fb_fillrect = cfb_fillrect, .fb_copyarea = cfb_copyarea, .fb_imageblit = cfb_imageblit, .fb_blank = mbxfb_blank, .fb_ioctl = mbxfb_ioctl, }; /* Enable external SDRAM controller. Assume that all clocks are active by now. */ static void setup_memc(struct fb_info *fbi) { unsigned long tmp; int i; /* FIXME: use platform specific parameters */ /* setup SDRAM controller */ write_reg_dly((LMCFG_LMC_DS | LMCFG_LMC_TS | LMCFG_LMD_TS | LMCFG_LMA_TS), LMCFG); write_reg_dly(LMPWR_MC_PWR_ACT, LMPWR); /* setup SDRAM timings */ write_reg_dly((Lmtim_Tras(7) | Lmtim_Trp(3) | Lmtim_Trcd(3) | Lmtim_Trc(9) | Lmtim_Tdpl(2)), LMTIM); /* setup SDRAM refresh rate */ write_reg_dly(0xc2b, LMREFRESH); /* setup SDRAM type parameters */ write_reg_dly((LMTYPE_CASLAT_3 | LMTYPE_BKSZ_2 | LMTYPE_ROWSZ_11 | LMTYPE_COLSZ_8), LMTYPE); /* enable memory controller */ write_reg_dly(LMPWR_MC_PWR_ACT, LMPWR); /* perform dummy reads */ for ( i = 0; i < 16; i++ ) { tmp = readl(fbi->screen_base); } } static void enable_clocks(struct fb_info *fbi) { /* enable clocks */ write_reg_dly(SYSCLKSRC_PLL_2, SYSCLKSRC); write_reg_dly(PIXCLKSRC_PLL_1, PIXCLKSRC); write_reg_dly(0x00000000, CLKSLEEP); /* PLL output = (Frefclk * M) / (N * 2^P ) * * M: 0x17, N: 0x3, P: 0x0 == 100 Mhz! * M: 0xb, N: 0x1, P: 0x1 == 71 Mhz * */ write_reg_dly((Core_Pll_M(0xb) | Core_Pll_N(0x1) | Core_Pll_P(0x1) | CORE_PLL_EN), COREPLL); write_reg_dly((Disp_Pll_M(0x1b) | Disp_Pll_N(0x7) | Disp_Pll_P(0x1) | DISP_PLL_EN), DISPPLL); write_reg_dly(0x00000000, VOVRCLK); write_reg_dly(PIXCLK_EN, PIXCLK); write_reg_dly(MEMCLK_EN, MEMCLK); write_reg_dly(0x00000001, M24CLK); write_reg_dly(0x00000001, MBXCLK); write_reg_dly(SDCLK_EN, SDCLK); write_reg_dly(0x00000001, PIXCLKDIV); } static void setup_graphics(struct fb_info *fbi) { unsigned long gsctrl; unsigned long vscadr; gsctrl = GSCTRL_GAMMA_EN | Gsctrl_Width(fbi->var.xres) | Gsctrl_Height(fbi->var.yres); switch (fbi->var.bits_per_pixel) { case 16: if (fbi->var.green.length == 5) gsctrl |= GSCTRL_GPIXFMT_ARGB1555; else gsctrl |= GSCTRL_GPIXFMT_RGB565; break; case 24: gsctrl |= GSCTRL_GPIXFMT_RGB888; break; case 32: gsctrl |= GSCTRL_GPIXFMT_ARGB8888; break; } write_reg_dly(gsctrl, GSCTRL); write_reg_dly(0x00000000, GBBASE); write_reg_dly(0x00ffffff, GDRCTRL); write_reg_dly((GSCADR_STR_EN | Gscadr_Gbase_Adr(0x6000)), GSCADR); write_reg_dly(0x00000000, GPLUT); vscadr = readl(VSCADR); vscadr &= ~(FMsk(VSCADR_BLEND_POS) | FMsk(VSCADR_BLEND_M)); vscadr |= VSCADR_BLEND_VID | VSCADR_BLEND_NONE; write_reg_dly(vscadr, VSCADR); } static void setup_display(struct fb_info *fbi) { unsigned long dsctrl = 0; dsctrl = DSCTRL_BLNK_POL; if (fbi->var.sync & FB_SYNC_HOR_HIGH_ACT) dsctrl |= DSCTRL_HS_POL; if (fbi->var.sync & FB_SYNC_VERT_HIGH_ACT) dsctrl |= DSCTRL_VS_POL; write_reg_dly(dsctrl, DSCTRL); write_reg_dly(0xd0303010, DMCTRL); write_reg_dly((readl(DSCTRL) | DSCTRL_SYNCGEN_EN), DSCTRL); } static void enable_controller(struct fb_info *fbi) { u32 svctrl, shctrl; write_reg_dly(SYSRST_RST, SYSRST); /* setup a timeout, raise drive strength */ write_reg_dly(0xffffff0c, SYSCFG); enable_clocks(fbi); setup_memc(fbi); setup_graphics(fbi); setup_display(fbi); shctrl = readl(SHCTRL); shctrl &= ~(FMsk(SHCTRL_HINITIAL)); shctrl |= Shctrl_Hinitial(4<<11); writel(shctrl, SHCTRL); svctrl = Svctrl_Initial1(1<<10) | Svctrl_Initial2(1<<10); writel(svctrl, SVCTRL); writel(SPOCTRL_H_SC_BP | SPOCTRL_V_SC_BP | SPOCTRL_VORDER_4TAP , SPOCTRL); /* Those coefficients are good for scaling up. For scaling * down, the application has to calculate them. */ write_reg(0xff000100, VSCOEFF0); write_reg(0xfdfcfdfe, VSCOEFF1); write_reg(0x170d0500, VSCOEFF2); write_reg(0x3d372d22, VSCOEFF3); write_reg(0x00000040, VSCOEFF4); write_reg(0xff010100, HSCOEFF0); write_reg(0x00000000, HSCOEFF1); write_reg(0x02010000, HSCOEFF2); write_reg(0x01020302, HSCOEFF3); write_reg(0xf9fbfe00, HSCOEFF4); write_reg(0xfbf7f6f7, HSCOEFF5); write_reg(0x1c110700, HSCOEFF6); write_reg(0x3e393127, HSCOEFF7); write_reg(0x00000040, HSCOEFF8); } #ifdef CONFIG_PM /* * Power management hooks. Note that we won't be called from IRQ context, * unlike the blank functions above, so we may sleep. */ static int mbxfb_suspend(struct platform_device *dev, pm_message_t state) { /* make frame buffer memory enter self-refresh mode */ write_reg_dly(LMPWR_MC_PWR_SRM, LMPWR); while (readl(LMPWRSTAT) != LMPWRSTAT_MC_PWR_SRM) ; /* empty statement */ /* reset the device, since it's initial state is 'mostly sleeping' */ write_reg_dly(SYSRST_RST, SYSRST); return 0; } static int mbxfb_resume(struct platform_device *dev) { struct fb_info *fbi = platform_get_drvdata(dev); enable_clocks(fbi); /* setup_graphics(fbi); */ /* setup_display(fbi); */ write_reg_dly((readl(DSCTRL) | DSCTRL_SYNCGEN_EN), DSCTRL); return 0; } #else #define mbxfb_suspend NULL #define mbxfb_resume NULL #endif /* debugfs entries */ #ifndef CONFIG_FB_MBX_DEBUG #define mbxfb_debugfs_init(x) do {} while(0) #define mbxfb_debugfs_remove(x) do {} while(0) #endif #define res_size(_r) (((_r)->end - (_r)->start) + 1) static int mbxfb_probe(struct platform_device *dev) { int ret; struct fb_info *fbi; struct mbxfb_info *mfbi; struct mbxfb_platform_data *pdata; dev_dbg(&dev->dev, "mbxfb_probe\n"); pdata = dev->dev.platform_data; if (!pdata) { dev_err(&dev->dev, "platform data is required\n"); return -EINVAL; } fbi = framebuffer_alloc(sizeof(struct mbxfb_info), &dev->dev); if (fbi == NULL) { dev_err(&dev->dev, "framebuffer_alloc failed\n"); return -ENOMEM; } mfbi = fbi->par; fbi->pseudo_palette = mfbi->pseudo_palette; if (pdata->probe) mfbi->platform_probe = pdata->probe; if (pdata->remove) mfbi->platform_remove = pdata->remove; mfbi->fb_res = platform_get_resource(dev, IORESOURCE_MEM, 0); mfbi->reg_res = platform_get_resource(dev, IORESOURCE_MEM, 1); if (!mfbi->fb_res || !mfbi->reg_res) { dev_err(&dev->dev, "no resources found\n"); ret = -ENODEV; goto err1; } mfbi->fb_req = request_mem_region(mfbi->fb_res->start, res_size(mfbi->fb_res), dev->name); if (mfbi->fb_req == NULL) { dev_err(&dev->dev, "failed to claim framebuffer memory\n"); ret = -EINVAL; goto err1; } mfbi->fb_phys_addr = mfbi->fb_res->start; mfbi->reg_req = request_mem_region(mfbi->reg_res->start, res_size(mfbi->reg_res), dev->name); if (mfbi->reg_req == NULL) { dev_err(&dev->dev, "failed to claim Marathon registers\n"); ret = -EINVAL; goto err2; } mfbi->reg_phys_addr = mfbi->reg_res->start; mfbi->reg_virt_addr = devm_ioremap_nocache(&dev->dev, mfbi->reg_phys_addr, res_size(mfbi->reg_req)); if (!mfbi->reg_virt_addr) { dev_err(&dev->dev, "failed to ioremap Marathon registers\n"); ret = -EINVAL; goto err3; } virt_base_2700 = mfbi->reg_virt_addr; mfbi->fb_virt_addr = devm_ioremap_nocache(&dev->dev, mfbi->fb_phys_addr, res_size(mfbi->fb_req)); if (!mfbi->fb_virt_addr) { dev_err(&dev->dev, "failed to ioremap frame buffer\n"); ret = -EINVAL; goto err3; } fbi->screen_base = (char __iomem *)(mfbi->fb_virt_addr + 0x60000); fbi->screen_size = pdata->memsize; fbi->fbops = &mbxfb_ops; fbi->var = mbxfb_default; fbi->fix = mbxfb_fix; fbi->fix.smem_start = mfbi->fb_phys_addr + 0x60000; fbi->fix.smem_len = pdata->memsize; fbi->fix.line_length = mbxfb_default.xres_virtual * mbxfb_default.bits_per_pixel / 8; ret = fb_alloc_cmap(&fbi->cmap, 256, 0); if (ret < 0) { dev_err(&dev->dev, "fb_alloc_cmap failed\n"); ret = -EINVAL; goto err3; } platform_set_drvdata(dev, fbi); printk(KERN_INFO "fb%d: mbx frame buffer device\n", fbi->node); if (mfbi->platform_probe) mfbi->platform_probe(fbi); enable_controller(fbi); mbxfb_debugfs_init(fbi); ret = register_framebuffer(fbi); if (ret < 0) { dev_err(&dev->dev, "register_framebuffer failed\n"); ret = -EINVAL; goto err6; } return 0; err6: fb_dealloc_cmap(&fbi->cmap); err3: release_mem_region(mfbi->reg_res->start, res_size(mfbi->reg_res)); err2: release_mem_region(mfbi->fb_res->start, res_size(mfbi->fb_res)); err1: framebuffer_release(fbi); return ret; } static int mbxfb_remove(struct platform_device *dev) { struct fb_info *fbi = platform_get_drvdata(dev); write_reg_dly(SYSRST_RST, SYSRST); mbxfb_debugfs_remove(fbi); if (fbi) { struct mbxfb_info *mfbi = fbi->par; unregister_framebuffer(fbi); if (mfbi) { if (mfbi->platform_remove) mfbi->platform_remove(fbi); if (mfbi->reg_req) release_mem_region(mfbi->reg_req->start, res_size(mfbi->reg_req)); if (mfbi->fb_req) release_mem_region(mfbi->fb_req->start, res_size(mfbi->fb_req)); } framebuffer_release(fbi); } return 0; } static struct platform_driver mbxfb_driver = { .probe = mbxfb_probe, .remove = mbxfb_remove, .suspend = mbxfb_suspend, .resume = mbxfb_resume, .driver = { .name = "mbx-fb", }, }; module_platform_driver(mbxfb_driver); MODULE_DESCRIPTION("loadable framebuffer driver for Marathon device"); MODULE_AUTHOR("Mike Rapoport, Compulab"); MODULE_LICENSE("GPL");