/* * linux/fs/ext4/crypto.c * * Copyright (C) 2015, Google, Inc. * * This contains encryption functions for ext4 * * Written by Michael Halcrow, 2014. * * Filename encryption additions * Uday Savagaonkar, 2014 * Encryption policy handling additions * Ildar Muslukhov, 2014 * * This has not yet undergone a rigorous security audit. * * The usage of AES-XTS should conform to recommendations in NIST * Special Publication 800-38E and IEEE P1619/D16. */ #include <crypto/hash.h> #include <crypto/sha.h> #include <keys/user-type.h> #include <keys/encrypted-type.h> #include <linux/crypto.h> #include <linux/ecryptfs.h> #include <linux/gfp.h> #include <linux/kernel.h> #include <linux/key.h> #include <linux/list.h> #include <linux/mempool.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/random.h> #include <linux/scatterlist.h> #include <linux/spinlock_types.h> #include "ext4_extents.h" #include "xattr.h" /* Encryption added and removed here! (L: */ static unsigned int num_prealloc_crypto_pages = 32; static unsigned int num_prealloc_crypto_ctxs = 128; module_param(num_prealloc_crypto_pages, uint, 0444); MODULE_PARM_DESC(num_prealloc_crypto_pages, "Number of crypto pages to preallocate"); module_param(num_prealloc_crypto_ctxs, uint, 0444); MODULE_PARM_DESC(num_prealloc_crypto_ctxs, "Number of crypto contexts to preallocate"); static mempool_t *ext4_bounce_page_pool; static LIST_HEAD(ext4_free_crypto_ctxs); static DEFINE_SPINLOCK(ext4_crypto_ctx_lock); static struct kmem_cache *ext4_crypto_ctx_cachep; struct kmem_cache *ext4_crypt_info_cachep; /** * ext4_release_crypto_ctx() - Releases an encryption context * @ctx: The encryption context to release. * * If the encryption context was allocated from the pre-allocated pool, returns * it to that pool. Else, frees it. * * If there's a bounce page in the context, this frees that. */ void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx) { unsigned long flags; if (ctx->flags & EXT4_WRITE_PATH_FL && ctx->w.bounce_page) mempool_free(ctx->w.bounce_page, ext4_bounce_page_pool); ctx->w.bounce_page = NULL; ctx->w.control_page = NULL; if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) { kmem_cache_free(ext4_crypto_ctx_cachep, ctx); } else { spin_lock_irqsave(&ext4_crypto_ctx_lock, flags); list_add(&ctx->free_list, &ext4_free_crypto_ctxs); spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags); } } /** * ext4_get_crypto_ctx() - Gets an encryption context * @inode: The inode for which we are doing the crypto * * Allocates and initializes an encryption context. * * Return: An allocated and initialized encryption context on success; error * value or NULL otherwise. */ struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode) { struct ext4_crypto_ctx *ctx = NULL; int res = 0; unsigned long flags; struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info; if (ci == NULL) return ERR_PTR(-ENOKEY); /* * We first try getting the ctx from a free list because in * the common case the ctx will have an allocated and * initialized crypto tfm, so it's probably a worthwhile * optimization. For the bounce page, we first try getting it * from the kernel allocator because that's just about as fast * as getting it from a list and because a cache of free pages * should generally be a "last resort" option for a filesystem * to be able to do its job. */ spin_lock_irqsave(&ext4_crypto_ctx_lock, flags); ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs, struct ext4_crypto_ctx, free_list); if (ctx) list_del(&ctx->free_list); spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags); if (!ctx) { ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS); if (!ctx) { res = -ENOMEM; goto out; } ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL; } else { ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL; } ctx->flags &= ~EXT4_WRITE_PATH_FL; out: if (res) { if (!IS_ERR_OR_NULL(ctx)) ext4_release_crypto_ctx(ctx); ctx = ERR_PTR(res); } return ctx; } struct workqueue_struct *ext4_read_workqueue; static DEFINE_MUTEX(crypto_init); /** * ext4_exit_crypto() - Shutdown the ext4 encryption system */ void ext4_exit_crypto(void) { struct ext4_crypto_ctx *pos, *n; list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list) kmem_cache_free(ext4_crypto_ctx_cachep, pos); INIT_LIST_HEAD(&ext4_free_crypto_ctxs); if (ext4_bounce_page_pool) mempool_destroy(ext4_bounce_page_pool); ext4_bounce_page_pool = NULL; if (ext4_read_workqueue) destroy_workqueue(ext4_read_workqueue); ext4_read_workqueue = NULL; if (ext4_crypto_ctx_cachep) kmem_cache_destroy(ext4_crypto_ctx_cachep); ext4_crypto_ctx_cachep = NULL; if (ext4_crypt_info_cachep) kmem_cache_destroy(ext4_crypt_info_cachep); ext4_crypt_info_cachep = NULL; } /** * ext4_init_crypto() - Set up for ext4 encryption. * * We only call this when we start accessing encrypted files, since it * results in memory getting allocated that wouldn't otherwise be used. * * Return: Zero on success, non-zero otherwise. */ int ext4_init_crypto(void) { int i, res = -ENOMEM; mutex_lock(&crypto_init); if (ext4_read_workqueue) goto already_initialized; ext4_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0); if (!ext4_read_workqueue) goto fail; ext4_crypto_ctx_cachep = KMEM_CACHE(ext4_crypto_ctx, SLAB_RECLAIM_ACCOUNT); if (!ext4_crypto_ctx_cachep) goto fail; ext4_crypt_info_cachep = KMEM_CACHE(ext4_crypt_info, SLAB_RECLAIM_ACCOUNT); if (!ext4_crypt_info_cachep) goto fail; for (i = 0; i < num_prealloc_crypto_ctxs; i++) { struct ext4_crypto_ctx *ctx; ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS); if (!ctx) { res = -ENOMEM; goto fail; } list_add(&ctx->free_list, &ext4_free_crypto_ctxs); } ext4_bounce_page_pool = mempool_create_page_pool(num_prealloc_crypto_pages, 0); if (!ext4_bounce_page_pool) { res = -ENOMEM; goto fail; } already_initialized: mutex_unlock(&crypto_init); return 0; fail: ext4_exit_crypto(); mutex_unlock(&crypto_init); return res; } void ext4_restore_control_page(struct page *data_page) { struct ext4_crypto_ctx *ctx = (struct ext4_crypto_ctx *)page_private(data_page); set_page_private(data_page, (unsigned long)NULL); ClearPagePrivate(data_page); unlock_page(data_page); ext4_release_crypto_ctx(ctx); } /** * ext4_crypt_complete() - The completion callback for page encryption * @req: The asynchronous encryption request context * @res: The result of the encryption operation */ static void ext4_crypt_complete(struct crypto_async_request *req, int res) { struct ext4_completion_result *ecr = req->data; if (res == -EINPROGRESS) return; ecr->res = res; complete(&ecr->completion); } typedef enum { EXT4_DECRYPT = 0, EXT4_ENCRYPT, } ext4_direction_t; static int ext4_page_crypto(struct ext4_crypto_ctx *ctx, struct inode *inode, ext4_direction_t rw, pgoff_t index, struct page *src_page, struct page *dest_page) { u8 xts_tweak[EXT4_XTS_TWEAK_SIZE]; struct ablkcipher_request *req = NULL; DECLARE_EXT4_COMPLETION_RESULT(ecr); struct scatterlist dst, src; struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info; struct crypto_ablkcipher *tfm = ci->ci_ctfm; int res = 0; req = ablkcipher_request_alloc(tfm, GFP_NOFS); if (!req) { printk_ratelimited(KERN_ERR "%s: crypto_request_alloc() failed\n", __func__); return -ENOMEM; } ablkcipher_request_set_callback( req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, ext4_crypt_complete, &ecr); BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(index)); memcpy(xts_tweak, &index, sizeof(index)); memset(&xts_tweak[sizeof(index)], 0, EXT4_XTS_TWEAK_SIZE - sizeof(index)); sg_init_table(&dst, 1); sg_set_page(&dst, dest_page, PAGE_CACHE_SIZE, 0); sg_init_table(&src, 1); sg_set_page(&src, src_page, PAGE_CACHE_SIZE, 0); ablkcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE, xts_tweak); if (rw == EXT4_DECRYPT) res = crypto_ablkcipher_decrypt(req); else res = crypto_ablkcipher_encrypt(req); if (res == -EINPROGRESS || res == -EBUSY) { BUG_ON(req->base.data != &ecr); wait_for_completion(&ecr.completion); res = ecr.res; } ablkcipher_request_free(req); if (res) { printk_ratelimited( KERN_ERR "%s: crypto_ablkcipher_encrypt() returned %d\n", __func__, res); return res; } return 0; } static struct page *alloc_bounce_page(struct ext4_crypto_ctx *ctx) { ctx->w.bounce_page = mempool_alloc(ext4_bounce_page_pool, GFP_NOWAIT); if (ctx->w.bounce_page == NULL) return ERR_PTR(-ENOMEM); ctx->flags |= EXT4_WRITE_PATH_FL; return ctx->w.bounce_page; } /** * ext4_encrypt() - Encrypts a page * @inode: The inode for which the encryption should take place * @plaintext_page: The page to encrypt. Must be locked. * * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx * encryption context. * * Called on the page write path. The caller must call * ext4_restore_control_page() on the returned ciphertext page to * release the bounce buffer and the encryption context. * * Return: An allocated page with the encrypted content on success. Else, an * error value or NULL. */ struct page *ext4_encrypt(struct inode *inode, struct page *plaintext_page) { struct ext4_crypto_ctx *ctx; struct page *ciphertext_page = NULL; int err; BUG_ON(!PageLocked(plaintext_page)); ctx = ext4_get_crypto_ctx(inode); if (IS_ERR(ctx)) return (struct page *) ctx; /* The encryption operation will require a bounce page. */ ciphertext_page = alloc_bounce_page(ctx); if (IS_ERR(ciphertext_page)) goto errout; ctx->w.control_page = plaintext_page; err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, plaintext_page->index, plaintext_page, ciphertext_page); if (err) { ciphertext_page = ERR_PTR(err); errout: ext4_release_crypto_ctx(ctx); return ciphertext_page; } SetPagePrivate(ciphertext_page); set_page_private(ciphertext_page, (unsigned long)ctx); lock_page(ciphertext_page); return ciphertext_page; } /** * ext4_decrypt() - Decrypts a page in-place * @ctx: The encryption context. * @page: The page to decrypt. Must be locked. * * Decrypts page in-place using the ctx encryption context. * * Called from the read completion callback. * * Return: Zero on success, non-zero otherwise. */ int ext4_decrypt(struct ext4_crypto_ctx *ctx, struct page *page) { BUG_ON(!PageLocked(page)); return ext4_page_crypto(ctx, page->mapping->host, EXT4_DECRYPT, page->index, page, page); } /* * Convenience function which takes care of allocating and * deallocating the encryption context */ int ext4_decrypt_one(struct inode *inode, struct page *page) { int ret; struct ext4_crypto_ctx *ctx = ext4_get_crypto_ctx(inode); if (!ctx) return -ENOMEM; ret = ext4_decrypt(ctx, page); ext4_release_crypto_ctx(ctx); return ret; } int ext4_encrypted_zeroout(struct inode *inode, struct ext4_extent *ex) { struct ext4_crypto_ctx *ctx; struct page *ciphertext_page = NULL; struct bio *bio; ext4_lblk_t lblk = ex->ee_block; ext4_fsblk_t pblk = ext4_ext_pblock(ex); unsigned int len = ext4_ext_get_actual_len(ex); int err = 0; BUG_ON(inode->i_sb->s_blocksize != PAGE_CACHE_SIZE); ctx = ext4_get_crypto_ctx(inode); if (IS_ERR(ctx)) return PTR_ERR(ctx); ciphertext_page = alloc_bounce_page(ctx); if (IS_ERR(ciphertext_page)) { err = PTR_ERR(ciphertext_page); goto errout; } while (len--) { err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, lblk, ZERO_PAGE(0), ciphertext_page); if (err) goto errout; bio = bio_alloc(GFP_KERNEL, 1); if (!bio) { err = -ENOMEM; goto errout; } bio->bi_bdev = inode->i_sb->s_bdev; bio->bi_sector = pblk; err = bio_add_page(bio, ciphertext_page, inode->i_sb->s_blocksize, 0); if (err) { bio_put(bio); goto errout; } err = submit_bio_wait(WRITE, bio); bio_put(bio); if (err) goto errout; } err = 0; errout: ext4_release_crypto_ctx(ctx); return err; } bool ext4_valid_contents_enc_mode(uint32_t mode) { return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS); } /** * ext4_validate_encryption_key_size() - Validate the encryption key size * @mode: The key mode. * @size: The key size to validate. * * Return: The validated key size for @mode. Zero if invalid. */ uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size) { if (size == ext4_encryption_key_size(mode)) return size; return 0; }