/* * fs/f2fs/dir.c * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/fs.h> #include <linux/f2fs_fs.h> #include "f2fs.h" #include "node.h" #include "acl.h" static unsigned long dir_blocks(struct inode *inode) { return ((unsigned long long) (i_size_read(inode) + PAGE_CACHE_SIZE - 1)) >> PAGE_CACHE_SHIFT; } static unsigned int dir_buckets(unsigned int level) { if (level < MAX_DIR_HASH_DEPTH / 2) return 1 << level; else return 1 << ((MAX_DIR_HASH_DEPTH / 2) - 1); } static unsigned int bucket_blocks(unsigned int level) { if (level < MAX_DIR_HASH_DEPTH / 2) return 2; else return 4; } static unsigned char f2fs_filetype_table[F2FS_FT_MAX] = { [F2FS_FT_UNKNOWN] = DT_UNKNOWN, [F2FS_FT_REG_FILE] = DT_REG, [F2FS_FT_DIR] = DT_DIR, [F2FS_FT_CHRDEV] = DT_CHR, [F2FS_FT_BLKDEV] = DT_BLK, [F2FS_FT_FIFO] = DT_FIFO, [F2FS_FT_SOCK] = DT_SOCK, [F2FS_FT_SYMLINK] = DT_LNK, }; #define S_SHIFT 12 static unsigned char f2fs_type_by_mode[S_IFMT >> S_SHIFT] = { [S_IFREG >> S_SHIFT] = F2FS_FT_REG_FILE, [S_IFDIR >> S_SHIFT] = F2FS_FT_DIR, [S_IFCHR >> S_SHIFT] = F2FS_FT_CHRDEV, [S_IFBLK >> S_SHIFT] = F2FS_FT_BLKDEV, [S_IFIFO >> S_SHIFT] = F2FS_FT_FIFO, [S_IFSOCK >> S_SHIFT] = F2FS_FT_SOCK, [S_IFLNK >> S_SHIFT] = F2FS_FT_SYMLINK, }; static void set_de_type(struct f2fs_dir_entry *de, struct inode *inode) { umode_t mode = inode->i_mode; de->file_type = f2fs_type_by_mode[(mode & S_IFMT) >> S_SHIFT]; } static unsigned long dir_block_index(unsigned int level, unsigned int idx) { unsigned long i; unsigned long bidx = 0; for (i = 0; i < level; i++) bidx += dir_buckets(i) * bucket_blocks(i); bidx += idx * bucket_blocks(level); return bidx; } static bool early_match_name(const char *name, size_t namelen, f2fs_hash_t namehash, struct f2fs_dir_entry *de) { if (le16_to_cpu(de->name_len) != namelen) return false; if (de->hash_code != namehash) return false; return true; } static struct f2fs_dir_entry *find_in_block(struct page *dentry_page, const char *name, size_t namelen, int *max_slots, f2fs_hash_t namehash, struct page **res_page) { struct f2fs_dir_entry *de; unsigned long bit_pos, end_pos, next_pos; struct f2fs_dentry_block *dentry_blk = kmap(dentry_page); int slots; bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap, NR_DENTRY_IN_BLOCK, 0); while (bit_pos < NR_DENTRY_IN_BLOCK) { de = &dentry_blk->dentry[bit_pos]; slots = GET_DENTRY_SLOTS(le16_to_cpu(de->name_len)); if (early_match_name(name, namelen, namehash, de)) { if (!memcmp(dentry_blk->filename[bit_pos], name, namelen)) { *res_page = dentry_page; goto found; } } next_pos = bit_pos + slots; bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap, NR_DENTRY_IN_BLOCK, next_pos); if (bit_pos >= NR_DENTRY_IN_BLOCK) end_pos = NR_DENTRY_IN_BLOCK; else end_pos = bit_pos; if (*max_slots < end_pos - next_pos) *max_slots = end_pos - next_pos; } de = NULL; kunmap(dentry_page); found: return de; } static struct f2fs_dir_entry *find_in_level(struct inode *dir, unsigned int level, const char *name, size_t namelen, f2fs_hash_t namehash, struct page **res_page) { int s = GET_DENTRY_SLOTS(namelen); unsigned int nbucket, nblock; unsigned int bidx, end_block; struct page *dentry_page; struct f2fs_dir_entry *de = NULL; bool room = false; int max_slots = 0; BUG_ON(level > MAX_DIR_HASH_DEPTH); nbucket = dir_buckets(level); nblock = bucket_blocks(level); bidx = dir_block_index(level, le32_to_cpu(namehash) % nbucket); end_block = bidx + nblock; for (; bidx < end_block; bidx++) { /* no need to allocate new dentry pages to all the indices */ dentry_page = find_data_page(dir, bidx, true); if (IS_ERR(dentry_page)) { room = true; continue; } de = find_in_block(dentry_page, name, namelen, &max_slots, namehash, res_page); if (de) break; if (max_slots >= s) room = true; f2fs_put_page(dentry_page, 0); } if (!de && room && F2FS_I(dir)->chash != namehash) { F2FS_I(dir)->chash = namehash; F2FS_I(dir)->clevel = level; } return de; } /* * Find an entry in the specified directory with the wanted name. * It returns the page where the entry was found (as a parameter - res_page), * and the entry itself. Page is returned mapped and unlocked. * Entry is guaranteed to be valid. */ struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, struct qstr *child, struct page **res_page) { const char *name = child->name; size_t namelen = child->len; unsigned long npages = dir_blocks(dir); struct f2fs_dir_entry *de = NULL; f2fs_hash_t name_hash; unsigned int max_depth; unsigned int level; if (namelen > F2FS_NAME_LEN) return NULL; if (npages == 0) return NULL; *res_page = NULL; name_hash = f2fs_dentry_hash(name, namelen); max_depth = F2FS_I(dir)->i_current_depth; for (level = 0; level < max_depth; level++) { de = find_in_level(dir, level, name, namelen, name_hash, res_page); if (de) break; } if (!de && F2FS_I(dir)->chash != name_hash) { F2FS_I(dir)->chash = name_hash; F2FS_I(dir)->clevel = level - 1; } return de; } struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p) { struct page *page = NULL; struct f2fs_dir_entry *de = NULL; struct f2fs_dentry_block *dentry_blk = NULL; page = get_lock_data_page(dir, 0); if (IS_ERR(page)) return NULL; dentry_blk = kmap(page); de = &dentry_blk->dentry[1]; *p = page; unlock_page(page); return de; } ino_t f2fs_inode_by_name(struct inode *dir, struct qstr *qstr) { ino_t res = 0; struct f2fs_dir_entry *de; struct page *page; de = f2fs_find_entry(dir, qstr, &page); if (de) { res = le32_to_cpu(de->ino); kunmap(page); f2fs_put_page(page, 0); } return res; } void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, struct page *page, struct inode *inode) { lock_page(page); wait_on_page_writeback(page); de->ino = cpu_to_le32(inode->i_ino); set_de_type(de, inode); kunmap(page); set_page_dirty(page); dir->i_mtime = dir->i_ctime = CURRENT_TIME; mark_inode_dirty(dir); /* update parent inode number before releasing dentry page */ F2FS_I(inode)->i_pino = dir->i_ino; f2fs_put_page(page, 1); } void init_dent_inode(const struct qstr *name, struct page *ipage) { struct f2fs_node *rn; if (IS_ERR(ipage)) return; wait_on_page_writeback(ipage); /* copy name info. to this inode page */ rn = (struct f2fs_node *)page_address(ipage); rn->i.i_namelen = cpu_to_le32(name->len); memcpy(rn->i.i_name, name->name, name->len); set_page_dirty(ipage); } static int make_empty_dir(struct inode *inode, struct inode *parent) { struct page *dentry_page; struct f2fs_dentry_block *dentry_blk; struct f2fs_dir_entry *de; void *kaddr; dentry_page = get_new_data_page(inode, 0, true); if (IS_ERR(dentry_page)) return PTR_ERR(dentry_page); kaddr = kmap_atomic(dentry_page); dentry_blk = (struct f2fs_dentry_block *)kaddr; de = &dentry_blk->dentry[0]; de->name_len = cpu_to_le16(1); de->hash_code = 0; de->ino = cpu_to_le32(inode->i_ino); memcpy(dentry_blk->filename[0], ".", 1); set_de_type(de, inode); de = &dentry_blk->dentry[1]; de->hash_code = 0; de->name_len = cpu_to_le16(2); de->ino = cpu_to_le32(parent->i_ino); memcpy(dentry_blk->filename[1], "..", 2); set_de_type(de, inode); test_and_set_bit_le(0, &dentry_blk->dentry_bitmap); test_and_set_bit_le(1, &dentry_blk->dentry_bitmap); kunmap_atomic(kaddr); set_page_dirty(dentry_page); f2fs_put_page(dentry_page, 1); return 0; } static int init_inode_metadata(struct inode *inode, struct inode *dir, const struct qstr *name) { if (is_inode_flag_set(F2FS_I(inode), FI_NEW_INODE)) { int err; err = new_inode_page(inode, name); if (err) return err; if (S_ISDIR(inode->i_mode)) { err = make_empty_dir(inode, dir); if (err) { remove_inode_page(inode); return err; } } err = f2fs_init_acl(inode, dir); if (err) { remove_inode_page(inode); return err; } } else { struct page *ipage; ipage = get_node_page(F2FS_SB(dir->i_sb), inode->i_ino); if (IS_ERR(ipage)) return PTR_ERR(ipage); set_cold_node(inode, ipage); init_dent_inode(name, ipage); f2fs_put_page(ipage, 1); } if (is_inode_flag_set(F2FS_I(inode), FI_INC_LINK)) { inc_nlink(inode); update_inode_page(inode); } return 0; } static void update_parent_metadata(struct inode *dir, struct inode *inode, unsigned int current_depth) { bool need_dir_update = false; if (is_inode_flag_set(F2FS_I(inode), FI_NEW_INODE)) { if (S_ISDIR(inode->i_mode)) { inc_nlink(dir); need_dir_update = true; } clear_inode_flag(F2FS_I(inode), FI_NEW_INODE); } dir->i_mtime = dir->i_ctime = CURRENT_TIME; if (F2FS_I(dir)->i_current_depth != current_depth) { F2FS_I(dir)->i_current_depth = current_depth; need_dir_update = true; } if (need_dir_update) update_inode_page(dir); else mark_inode_dirty(dir); if (is_inode_flag_set(F2FS_I(inode), FI_INC_LINK)) clear_inode_flag(F2FS_I(inode), FI_INC_LINK); } static int room_for_filename(struct f2fs_dentry_block *dentry_blk, int slots) { int bit_start = 0; int zero_start, zero_end; next: zero_start = find_next_zero_bit_le(&dentry_blk->dentry_bitmap, NR_DENTRY_IN_BLOCK, bit_start); if (zero_start >= NR_DENTRY_IN_BLOCK) return NR_DENTRY_IN_BLOCK; zero_end = find_next_bit_le(&dentry_blk->dentry_bitmap, NR_DENTRY_IN_BLOCK, zero_start); if (zero_end - zero_start >= slots) return zero_start; bit_start = zero_end + 1; if (zero_end + 1 >= NR_DENTRY_IN_BLOCK) return NR_DENTRY_IN_BLOCK; goto next; } /* * Caller should grab and release a mutex by calling mutex_lock_op() and * mutex_unlock_op(). */ int __f2fs_add_link(struct inode *dir, const struct qstr *name, struct inode *inode) { unsigned int bit_pos; unsigned int level; unsigned int current_depth; unsigned long bidx, block; f2fs_hash_t dentry_hash; struct f2fs_dir_entry *de; unsigned int nbucket, nblock; size_t namelen = name->len; struct page *dentry_page = NULL; struct f2fs_dentry_block *dentry_blk = NULL; int slots = GET_DENTRY_SLOTS(namelen); int err = 0; int i; dentry_hash = f2fs_dentry_hash(name->name, name->len); level = 0; current_depth = F2FS_I(dir)->i_current_depth; if (F2FS_I(dir)->chash == dentry_hash) { level = F2FS_I(dir)->clevel; F2FS_I(dir)->chash = 0; } start: if (current_depth == MAX_DIR_HASH_DEPTH) return -ENOSPC; /* Increase the depth, if required */ if (level == current_depth) ++current_depth; nbucket = dir_buckets(level); nblock = bucket_blocks(level); bidx = dir_block_index(level, (le32_to_cpu(dentry_hash) % nbucket)); for (block = bidx; block <= (bidx + nblock - 1); block++) { dentry_page = get_new_data_page(dir, block, true); if (IS_ERR(dentry_page)) return PTR_ERR(dentry_page); dentry_blk = kmap(dentry_page); bit_pos = room_for_filename(dentry_blk, slots); if (bit_pos < NR_DENTRY_IN_BLOCK) goto add_dentry; kunmap(dentry_page); f2fs_put_page(dentry_page, 1); } /* Move to next level to find the empty slot for new dentry */ ++level; goto start; add_dentry: err = init_inode_metadata(inode, dir, name); if (err) goto fail; wait_on_page_writeback(dentry_page); de = &dentry_blk->dentry[bit_pos]; de->hash_code = dentry_hash; de->name_len = cpu_to_le16(namelen); memcpy(dentry_blk->filename[bit_pos], name->name, name->len); de->ino = cpu_to_le32(inode->i_ino); set_de_type(de, inode); for (i = 0; i < slots; i++) test_and_set_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap); set_page_dirty(dentry_page); update_parent_metadata(dir, inode, current_depth); /* update parent inode number before releasing dentry page */ F2FS_I(inode)->i_pino = dir->i_ino; fail: kunmap(dentry_page); f2fs_put_page(dentry_page, 1); return err; } /* * It only removes the dentry from the dentry page,corresponding name * entry in name page does not need to be touched during deletion. */ void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, struct inode *inode) { struct f2fs_dentry_block *dentry_blk; unsigned int bit_pos; struct address_space *mapping = page->mapping; struct inode *dir = mapping->host; struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb); int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len)); void *kaddr = page_address(page); int i; lock_page(page); wait_on_page_writeback(page); dentry_blk = (struct f2fs_dentry_block *)kaddr; bit_pos = dentry - (struct f2fs_dir_entry *)dentry_blk->dentry; for (i = 0; i < slots; i++) test_and_clear_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap); /* Let's check and deallocate this dentry page */ bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap, NR_DENTRY_IN_BLOCK, 0); kunmap(page); /* kunmap - pair of f2fs_find_entry */ set_page_dirty(page); dir->i_ctime = dir->i_mtime = CURRENT_TIME; if (inode && S_ISDIR(inode->i_mode)) { drop_nlink(dir); update_inode_page(dir); } else { mark_inode_dirty(dir); } if (inode) { inode->i_ctime = CURRENT_TIME; drop_nlink(inode); if (S_ISDIR(inode->i_mode)) { drop_nlink(inode); i_size_write(inode, 0); } update_inode_page(inode); if (inode->i_nlink == 0) add_orphan_inode(sbi, inode->i_ino); } if (bit_pos == NR_DENTRY_IN_BLOCK) { truncate_hole(dir, page->index, page->index + 1); clear_page_dirty_for_io(page); ClearPageUptodate(page); dec_page_count(sbi, F2FS_DIRTY_DENTS); inode_dec_dirty_dents(dir); } f2fs_put_page(page, 1); } bool f2fs_empty_dir(struct inode *dir) { unsigned long bidx; struct page *dentry_page; unsigned int bit_pos; struct f2fs_dentry_block *dentry_blk; unsigned long nblock = dir_blocks(dir); for (bidx = 0; bidx < nblock; bidx++) { void *kaddr; dentry_page = get_lock_data_page(dir, bidx); if (IS_ERR(dentry_page)) { if (PTR_ERR(dentry_page) == -ENOENT) continue; else return false; } kaddr = kmap_atomic(dentry_page); dentry_blk = (struct f2fs_dentry_block *)kaddr; if (bidx == 0) bit_pos = 2; else bit_pos = 0; bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap, NR_DENTRY_IN_BLOCK, bit_pos); kunmap_atomic(kaddr); f2fs_put_page(dentry_page, 1); if (bit_pos < NR_DENTRY_IN_BLOCK) return false; } return true; } static int f2fs_readdir(struct file *file, void *dirent, filldir_t filldir) { unsigned long pos = file->f_pos; struct inode *inode = file_inode(file); unsigned long npages = dir_blocks(inode); unsigned char *types = NULL; unsigned int bit_pos = 0, start_bit_pos = 0; int over = 0; struct f2fs_dentry_block *dentry_blk = NULL; struct f2fs_dir_entry *de = NULL; struct page *dentry_page = NULL; unsigned int n = 0; unsigned char d_type = DT_UNKNOWN; int slots; types = f2fs_filetype_table; bit_pos = (pos % NR_DENTRY_IN_BLOCK); n = (pos / NR_DENTRY_IN_BLOCK); for ( ; n < npages; n++) { dentry_page = get_lock_data_page(inode, n); if (IS_ERR(dentry_page)) continue; start_bit_pos = bit_pos; dentry_blk = kmap(dentry_page); while (bit_pos < NR_DENTRY_IN_BLOCK) { d_type = DT_UNKNOWN; bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap, NR_DENTRY_IN_BLOCK, bit_pos); if (bit_pos >= NR_DENTRY_IN_BLOCK) break; de = &dentry_blk->dentry[bit_pos]; if (types && de->file_type < F2FS_FT_MAX) d_type = types[de->file_type]; over = filldir(dirent, dentry_blk->filename[bit_pos], le16_to_cpu(de->name_len), (n * NR_DENTRY_IN_BLOCK) + bit_pos, le32_to_cpu(de->ino), d_type); if (over) { file->f_pos += bit_pos - start_bit_pos; goto success; } slots = GET_DENTRY_SLOTS(le16_to_cpu(de->name_len)); bit_pos += slots; } bit_pos = 0; file->f_pos = (n + 1) * NR_DENTRY_IN_BLOCK; kunmap(dentry_page); f2fs_put_page(dentry_page, 1); dentry_page = NULL; } success: if (dentry_page && !IS_ERR(dentry_page)) { kunmap(dentry_page); f2fs_put_page(dentry_page, 1); } return 0; } const struct file_operations f2fs_dir_operations = { .llseek = generic_file_llseek, .read = generic_read_dir, .readdir = f2fs_readdir, .fsync = f2fs_sync_file, .unlocked_ioctl = f2fs_ioctl, };