/* * Device operations for the pnfs nfs4 file layout driver. * * Copyright (c) 2002 * The Regents of the University of Michigan * All Rights Reserved * * Dean Hildebrand <dhildebz@umich.edu> * Garth Goodson <Garth.Goodson@netapp.com> * * Permission is granted to use, copy, create derivative works, and * redistribute this software and such derivative works for any purpose, * so long as the name of the University of Michigan is not used in * any advertising or publicity pertaining to the use or distribution * of this software without specific, written prior authorization. If * the above copyright notice or any other identification of the * University of Michigan is included in any copy of any portion of * this software, then the disclaimer below must also be included. * * This software is provided as is, without representation or warranty * of any kind either express or implied, including without limitation * the implied warranties of merchantability, fitness for a particular * purpose, or noninfringement. The Regents of the University of * Michigan shall not be liable for any damages, including special, * indirect, incidental, or consequential damages, with respect to any * claim arising out of or in connection with the use of the software, * even if it has been or is hereafter advised of the possibility of * such damages. */ #include <linux/nfs_fs.h> #include <linux/vmalloc.h> #include <linux/module.h> #include <linux/sunrpc/addr.h> #include "internal.h" #include "nfs4session.h" #include "nfs4filelayout.h" #define NFSDBG_FACILITY NFSDBG_PNFS_LD static unsigned int dataserver_timeo = NFS4_DEF_DS_TIMEO; static unsigned int dataserver_retrans = NFS4_DEF_DS_RETRANS; /* * Data server cache * * Data servers can be mapped to different device ids. * nfs4_pnfs_ds reference counting * - set to 1 on allocation * - incremented when a device id maps a data server already in the cache. * - decremented when deviceid is removed from the cache. */ static DEFINE_SPINLOCK(nfs4_ds_cache_lock); static LIST_HEAD(nfs4_data_server_cache); /* Debug routines */ void print_ds(struct nfs4_pnfs_ds *ds) { if (ds == NULL) { printk("%s NULL device\n", __func__); return; } printk(" ds %s\n" " ref count %d\n" " client %p\n" " cl_exchange_flags %x\n", ds->ds_remotestr, atomic_read(&ds->ds_count), ds->ds_clp, ds->ds_clp ? ds->ds_clp->cl_exchange_flags : 0); } static bool same_sockaddr(struct sockaddr *addr1, struct sockaddr *addr2) { struct sockaddr_in *a, *b; struct sockaddr_in6 *a6, *b6; if (addr1->sa_family != addr2->sa_family) return false; switch (addr1->sa_family) { case AF_INET: a = (struct sockaddr_in *)addr1; b = (struct sockaddr_in *)addr2; if (a->sin_addr.s_addr == b->sin_addr.s_addr && a->sin_port == b->sin_port) return true; break; case AF_INET6: a6 = (struct sockaddr_in6 *)addr1; b6 = (struct sockaddr_in6 *)addr2; /* LINKLOCAL addresses must have matching scope_id */ if (ipv6_addr_scope(&a6->sin6_addr) == IPV6_ADDR_SCOPE_LINKLOCAL && a6->sin6_scope_id != b6->sin6_scope_id) return false; if (ipv6_addr_equal(&a6->sin6_addr, &b6->sin6_addr) && a6->sin6_port == b6->sin6_port) return true; break; default: dprintk("%s: unhandled address family: %u\n", __func__, addr1->sa_family); return false; } return false; } static bool _same_data_server_addrs_locked(const struct list_head *dsaddrs1, const struct list_head *dsaddrs2) { struct nfs4_pnfs_ds_addr *da1, *da2; /* step through both lists, comparing as we go */ for (da1 = list_first_entry(dsaddrs1, typeof(*da1), da_node), da2 = list_first_entry(dsaddrs2, typeof(*da2), da_node); da1 != NULL && da2 != NULL; da1 = list_entry(da1->da_node.next, typeof(*da1), da_node), da2 = list_entry(da2->da_node.next, typeof(*da2), da_node)) { if (!same_sockaddr((struct sockaddr *)&da1->da_addr, (struct sockaddr *)&da2->da_addr)) return false; } if (da1 == NULL && da2 == NULL) return true; return false; } /* * Lookup DS by addresses. nfs4_ds_cache_lock is held */ static struct nfs4_pnfs_ds * _data_server_lookup_locked(const struct list_head *dsaddrs) { struct nfs4_pnfs_ds *ds; list_for_each_entry(ds, &nfs4_data_server_cache, ds_node) if (_same_data_server_addrs_locked(&ds->ds_addrs, dsaddrs)) return ds; return NULL; } /* * Create an rpc connection to the nfs4_pnfs_ds data server * Currently only supports IPv4 and IPv6 addresses */ static int nfs4_ds_connect(struct nfs_server *mds_srv, struct nfs4_pnfs_ds *ds) { struct nfs_client *clp = ERR_PTR(-EIO); struct nfs4_pnfs_ds_addr *da; int status = 0; dprintk("--> %s DS %s au_flavor %d\n", __func__, ds->ds_remotestr, mds_srv->nfs_client->cl_rpcclient->cl_auth->au_flavor); list_for_each_entry(da, &ds->ds_addrs, da_node) { dprintk("%s: DS %s: trying address %s\n", __func__, ds->ds_remotestr, da->da_remotestr); clp = nfs4_set_ds_client(mds_srv->nfs_client, (struct sockaddr *)&da->da_addr, da->da_addrlen, IPPROTO_TCP, dataserver_timeo, dataserver_retrans); if (!IS_ERR(clp)) break; } if (IS_ERR(clp)) { status = PTR_ERR(clp); goto out; } status = nfs4_init_ds_session(clp, mds_srv->nfs_client->cl_lease_time); if (status) goto out_put; ds->ds_clp = clp; dprintk("%s [new] addr: %s\n", __func__, ds->ds_remotestr); out: return status; out_put: nfs_put_client(clp); goto out; } static void destroy_ds(struct nfs4_pnfs_ds *ds) { struct nfs4_pnfs_ds_addr *da; dprintk("--> %s\n", __func__); ifdebug(FACILITY) print_ds(ds); if (ds->ds_clp) nfs_put_client(ds->ds_clp); while (!list_empty(&ds->ds_addrs)) { da = list_first_entry(&ds->ds_addrs, struct nfs4_pnfs_ds_addr, da_node); list_del_init(&da->da_node); kfree(da->da_remotestr); kfree(da); } kfree(ds->ds_remotestr); kfree(ds); } void nfs4_fl_free_deviceid(struct nfs4_file_layout_dsaddr *dsaddr) { struct nfs4_pnfs_ds *ds; int i; nfs4_print_deviceid(&dsaddr->id_node.deviceid); for (i = 0; i < dsaddr->ds_num; i++) { ds = dsaddr->ds_list[i]; if (ds != NULL) { if (atomic_dec_and_lock(&ds->ds_count, &nfs4_ds_cache_lock)) { list_del_init(&ds->ds_node); spin_unlock(&nfs4_ds_cache_lock); destroy_ds(ds); } } } kfree(dsaddr->stripe_indices); kfree(dsaddr); } /* * Create a string with a human readable address and port to avoid * complicated setup around many dprinks. */ static char * nfs4_pnfs_remotestr(struct list_head *dsaddrs, gfp_t gfp_flags) { struct nfs4_pnfs_ds_addr *da; char *remotestr; size_t len; char *p; len = 3; /* '{', '}' and eol */ list_for_each_entry(da, dsaddrs, da_node) { len += strlen(da->da_remotestr) + 1; /* string plus comma */ } remotestr = kzalloc(len, gfp_flags); if (!remotestr) return NULL; p = remotestr; *(p++) = '{'; len--; list_for_each_entry(da, dsaddrs, da_node) { size_t ll = strlen(da->da_remotestr); if (ll > len) goto out_err; memcpy(p, da->da_remotestr, ll); p += ll; len -= ll; if (len < 1) goto out_err; (*p++) = ','; len--; } if (len < 2) goto out_err; *(p++) = '}'; *p = '\0'; return remotestr; out_err: kfree(remotestr); return NULL; } static struct nfs4_pnfs_ds * nfs4_pnfs_ds_add(struct list_head *dsaddrs, gfp_t gfp_flags) { struct nfs4_pnfs_ds *tmp_ds, *ds = NULL; char *remotestr; if (list_empty(dsaddrs)) { dprintk("%s: no addresses defined\n", __func__); goto out; } ds = kzalloc(sizeof(*ds), gfp_flags); if (!ds) goto out; /* this is only used for debugging, so it's ok if its NULL */ remotestr = nfs4_pnfs_remotestr(dsaddrs, gfp_flags); spin_lock(&nfs4_ds_cache_lock); tmp_ds = _data_server_lookup_locked(dsaddrs); if (tmp_ds == NULL) { INIT_LIST_HEAD(&ds->ds_addrs); list_splice_init(dsaddrs, &ds->ds_addrs); ds->ds_remotestr = remotestr; atomic_set(&ds->ds_count, 1); INIT_LIST_HEAD(&ds->ds_node); ds->ds_clp = NULL; list_add(&ds->ds_node, &nfs4_data_server_cache); dprintk("%s add new data server %s\n", __func__, ds->ds_remotestr); } else { kfree(remotestr); kfree(ds); atomic_inc(&tmp_ds->ds_count); dprintk("%s data server %s found, inc'ed ds_count to %d\n", __func__, tmp_ds->ds_remotestr, atomic_read(&tmp_ds->ds_count)); ds = tmp_ds; } spin_unlock(&nfs4_ds_cache_lock); out: return ds; } /* * Currently only supports ipv4, ipv6 and one multi-path address. */ static struct nfs4_pnfs_ds_addr * decode_ds_addr(struct net *net, struct xdr_stream *streamp, gfp_t gfp_flags) { struct nfs4_pnfs_ds_addr *da = NULL; char *buf, *portstr; __be16 port; int nlen, rlen; int tmp[2]; __be32 *p; char *netid, *match_netid; size_t len, match_netid_len; char *startsep = ""; char *endsep = ""; /* r_netid */ p = xdr_inline_decode(streamp, 4); if (unlikely(!p)) goto out_err; nlen = be32_to_cpup(p++); p = xdr_inline_decode(streamp, nlen); if (unlikely(!p)) goto out_err; netid = kmalloc(nlen+1, gfp_flags); if (unlikely(!netid)) goto out_err; netid[nlen] = '\0'; memcpy(netid, p, nlen); /* r_addr: ip/ip6addr with port in dec octets - see RFC 5665 */ p = xdr_inline_decode(streamp, 4); if (unlikely(!p)) goto out_free_netid; rlen = be32_to_cpup(p); p = xdr_inline_decode(streamp, rlen); if (unlikely(!p)) goto out_free_netid; /* port is ".ABC.DEF", 8 chars max */ if (rlen > INET6_ADDRSTRLEN + IPV6_SCOPE_ID_LEN + 8) { dprintk("%s: Invalid address, length %d\n", __func__, rlen); goto out_free_netid; } buf = kmalloc(rlen + 1, gfp_flags); if (!buf) { dprintk("%s: Not enough memory\n", __func__); goto out_free_netid; } buf[rlen] = '\0'; memcpy(buf, p, rlen); /* replace port '.' with '-' */ portstr = strrchr(buf, '.'); if (!portstr) { dprintk("%s: Failed finding expected dot in port\n", __func__); goto out_free_buf; } *portstr = '-'; /* find '.' between address and port */ portstr = strrchr(buf, '.'); if (!portstr) { dprintk("%s: Failed finding expected dot between address and " "port\n", __func__); goto out_free_buf; } *portstr = '\0'; da = kzalloc(sizeof(*da), gfp_flags); if (unlikely(!da)) goto out_free_buf; INIT_LIST_HEAD(&da->da_node); if (!rpc_pton(net, buf, portstr-buf, (struct sockaddr *)&da->da_addr, sizeof(da->da_addr))) { dprintk("%s: error parsing address %s\n", __func__, buf); goto out_free_da; } portstr++; sscanf(portstr, "%d-%d", &tmp[0], &tmp[1]); port = htons((tmp[0] << 8) | (tmp[1])); switch (da->da_addr.ss_family) { case AF_INET: ((struct sockaddr_in *)&da->da_addr)->sin_port = port; da->da_addrlen = sizeof(struct sockaddr_in); match_netid = "tcp"; match_netid_len = 3; break; case AF_INET6: ((struct sockaddr_in6 *)&da->da_addr)->sin6_port = port; da->da_addrlen = sizeof(struct sockaddr_in6); match_netid = "tcp6"; match_netid_len = 4; startsep = "["; endsep = "]"; break; default: dprintk("%s: unsupported address family: %u\n", __func__, da->da_addr.ss_family); goto out_free_da; } if (nlen != match_netid_len || strncmp(netid, match_netid, nlen)) { dprintk("%s: ERROR: r_netid \"%s\" != \"%s\"\n", __func__, netid, match_netid); goto out_free_da; } /* save human readable address */ len = strlen(startsep) + strlen(buf) + strlen(endsep) + 7; da->da_remotestr = kzalloc(len, gfp_flags); /* NULL is ok, only used for dprintk */ if (da->da_remotestr) snprintf(da->da_remotestr, len, "%s%s%s:%u", startsep, buf, endsep, ntohs(port)); dprintk("%s: Parsed DS addr %s\n", __func__, da->da_remotestr); kfree(buf); kfree(netid); return da; out_free_da: kfree(da); out_free_buf: dprintk("%s: Error parsing DS addr: %s\n", __func__, buf); kfree(buf); out_free_netid: kfree(netid); out_err: return NULL; } /* Decode opaque device data and return the result */ static struct nfs4_file_layout_dsaddr* decode_device(struct inode *ino, struct pnfs_device *pdev, gfp_t gfp_flags) { int i; u32 cnt, num; u8 *indexp; __be32 *p; u8 *stripe_indices; u8 max_stripe_index; struct nfs4_file_layout_dsaddr *dsaddr = NULL; struct xdr_stream stream; struct xdr_buf buf; struct page *scratch; struct list_head dsaddrs; struct nfs4_pnfs_ds_addr *da; /* set up xdr stream */ scratch = alloc_page(gfp_flags); if (!scratch) goto out_err; xdr_init_decode_pages(&stream, &buf, pdev->pages, pdev->pglen); xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); /* Get the stripe count (number of stripe index) */ p = xdr_inline_decode(&stream, 4); if (unlikely(!p)) goto out_err_free_scratch; cnt = be32_to_cpup(p); dprintk("%s stripe count %d\n", __func__, cnt); if (cnt > NFS4_PNFS_MAX_STRIPE_CNT) { printk(KERN_WARNING "NFS: %s: stripe count %d greater than " "supported maximum %d\n", __func__, cnt, NFS4_PNFS_MAX_STRIPE_CNT); goto out_err_free_scratch; } /* read stripe indices */ stripe_indices = kcalloc(cnt, sizeof(u8), gfp_flags); if (!stripe_indices) goto out_err_free_scratch; p = xdr_inline_decode(&stream, cnt << 2); if (unlikely(!p)) goto out_err_free_stripe_indices; indexp = &stripe_indices[0]; max_stripe_index = 0; for (i = 0; i < cnt; i++) { *indexp = be32_to_cpup(p++); max_stripe_index = max(max_stripe_index, *indexp); indexp++; } /* Check the multipath list count */ p = xdr_inline_decode(&stream, 4); if (unlikely(!p)) goto out_err_free_stripe_indices; num = be32_to_cpup(p); dprintk("%s ds_num %u\n", __func__, num); if (num > NFS4_PNFS_MAX_MULTI_CNT) { printk(KERN_WARNING "NFS: %s: multipath count %d greater than " "supported maximum %d\n", __func__, num, NFS4_PNFS_MAX_MULTI_CNT); goto out_err_free_stripe_indices; } /* validate stripe indices are all < num */ if (max_stripe_index >= num) { printk(KERN_WARNING "NFS: %s: stripe index %u >= num ds %u\n", __func__, max_stripe_index, num); goto out_err_free_stripe_indices; } dsaddr = kzalloc(sizeof(*dsaddr) + (sizeof(struct nfs4_pnfs_ds *) * (num - 1)), gfp_flags); if (!dsaddr) goto out_err_free_stripe_indices; dsaddr->stripe_count = cnt; dsaddr->stripe_indices = stripe_indices; stripe_indices = NULL; dsaddr->ds_num = num; nfs4_init_deviceid_node(&dsaddr->id_node, NFS_SERVER(ino)->pnfs_curr_ld, NFS_SERVER(ino)->nfs_client, &pdev->dev_id); INIT_LIST_HEAD(&dsaddrs); for (i = 0; i < dsaddr->ds_num; i++) { int j; u32 mp_count; p = xdr_inline_decode(&stream, 4); if (unlikely(!p)) goto out_err_free_deviceid; mp_count = be32_to_cpup(p); /* multipath count */ for (j = 0; j < mp_count; j++) { da = decode_ds_addr(NFS_SERVER(ino)->nfs_client->cl_net, &stream, gfp_flags); if (da) list_add_tail(&da->da_node, &dsaddrs); } if (list_empty(&dsaddrs)) { dprintk("%s: no suitable DS addresses found\n", __func__); goto out_err_free_deviceid; } dsaddr->ds_list[i] = nfs4_pnfs_ds_add(&dsaddrs, gfp_flags); if (!dsaddr->ds_list[i]) goto out_err_drain_dsaddrs; /* If DS was already in cache, free ds addrs */ while (!list_empty(&dsaddrs)) { da = list_first_entry(&dsaddrs, struct nfs4_pnfs_ds_addr, da_node); list_del_init(&da->da_node); kfree(da->da_remotestr); kfree(da); } } __free_page(scratch); return dsaddr; out_err_drain_dsaddrs: while (!list_empty(&dsaddrs)) { da = list_first_entry(&dsaddrs, struct nfs4_pnfs_ds_addr, da_node); list_del_init(&da->da_node); kfree(da->da_remotestr); kfree(da); } out_err_free_deviceid: nfs4_fl_free_deviceid(dsaddr); /* stripe_indicies was part of dsaddr */ goto out_err_free_scratch; out_err_free_stripe_indices: kfree(stripe_indices); out_err_free_scratch: __free_page(scratch); out_err: dprintk("%s ERROR: returning NULL\n", __func__); return NULL; } /* * Decode the opaque device specified in 'dev' and add it to the cache of * available devices. */ static struct nfs4_file_layout_dsaddr * decode_and_add_device(struct inode *inode, struct pnfs_device *dev, gfp_t gfp_flags) { struct nfs4_deviceid_node *d; struct nfs4_file_layout_dsaddr *n, *new; new = decode_device(inode, dev, gfp_flags); if (!new) { printk(KERN_WARNING "NFS: %s: Could not decode or add device\n", __func__); return NULL; } d = nfs4_insert_deviceid_node(&new->id_node); n = container_of(d, struct nfs4_file_layout_dsaddr, id_node); if (n != new) { nfs4_fl_free_deviceid(new); return n; } return new; } /* * Retrieve the information for dev_id, add it to the list * of available devices, and return it. */ struct nfs4_file_layout_dsaddr * filelayout_get_device_info(struct inode *inode, struct nfs4_deviceid *dev_id, gfp_t gfp_flags) { struct pnfs_device *pdev = NULL; u32 max_resp_sz; int max_pages; struct page **pages = NULL; struct nfs4_file_layout_dsaddr *dsaddr = NULL; int rc, i; struct nfs_server *server = NFS_SERVER(inode); /* * Use the session max response size as the basis for setting * GETDEVICEINFO's maxcount */ max_resp_sz = server->nfs_client->cl_session->fc_attrs.max_resp_sz; max_pages = nfs_page_array_len(0, max_resp_sz); dprintk("%s inode %p max_resp_sz %u max_pages %d\n", __func__, inode, max_resp_sz, max_pages); pdev = kzalloc(sizeof(struct pnfs_device), gfp_flags); if (pdev == NULL) return NULL; pages = kzalloc(max_pages * sizeof(struct page *), gfp_flags); if (pages == NULL) { kfree(pdev); return NULL; } for (i = 0; i < max_pages; i++) { pages[i] = alloc_page(gfp_flags); if (!pages[i]) goto out_free; } memcpy(&pdev->dev_id, dev_id, sizeof(*dev_id)); pdev->layout_type = LAYOUT_NFSV4_1_FILES; pdev->pages = pages; pdev->pgbase = 0; pdev->pglen = max_resp_sz; pdev->mincount = 0; rc = nfs4_proc_getdeviceinfo(server, pdev); dprintk("%s getdevice info returns %d\n", __func__, rc); if (rc) goto out_free; /* * Found new device, need to decode it and then add it to the * list of known devices for this mountpoint. */ dsaddr = decode_and_add_device(inode, pdev, gfp_flags); out_free: for (i = 0; i < max_pages; i++) __free_page(pages[i]); kfree(pages); kfree(pdev); dprintk("<-- %s dsaddr %p\n", __func__, dsaddr); return dsaddr; } void nfs4_fl_put_deviceid(struct nfs4_file_layout_dsaddr *dsaddr) { nfs4_put_deviceid_node(&dsaddr->id_node); } /* * Want res = (offset - layout->pattern_offset)/ layout->stripe_unit * Then: ((res + fsi) % dsaddr->stripe_count) */ u32 nfs4_fl_calc_j_index(struct pnfs_layout_segment *lseg, loff_t offset) { struct nfs4_filelayout_segment *flseg = FILELAYOUT_LSEG(lseg); u64 tmp; tmp = offset - flseg->pattern_offset; do_div(tmp, flseg->stripe_unit); tmp += flseg->first_stripe_index; return do_div(tmp, flseg->dsaddr->stripe_count); } u32 nfs4_fl_calc_ds_index(struct pnfs_layout_segment *lseg, u32 j) { return FILELAYOUT_LSEG(lseg)->dsaddr->stripe_indices[j]; } struct nfs_fh * nfs4_fl_select_ds_fh(struct pnfs_layout_segment *lseg, u32 j) { struct nfs4_filelayout_segment *flseg = FILELAYOUT_LSEG(lseg); u32 i; if (flseg->stripe_type == STRIPE_SPARSE) { if (flseg->num_fh == 1) i = 0; else if (flseg->num_fh == 0) /* Use the MDS OPEN fh set in nfs_read_rpcsetup */ return NULL; else i = nfs4_fl_calc_ds_index(lseg, j); } else i = j; return flseg->fh_array[i]; } static void nfs4_wait_ds_connect(struct nfs4_pnfs_ds *ds) { might_sleep(); wait_on_bit(&ds->ds_state, NFS4DS_CONNECTING, nfs_wait_bit_killable, TASK_KILLABLE); } static void nfs4_clear_ds_conn_bit(struct nfs4_pnfs_ds *ds) { smp_mb__before_clear_bit(); clear_bit(NFS4DS_CONNECTING, &ds->ds_state); smp_mb__after_clear_bit(); wake_up_bit(&ds->ds_state, NFS4DS_CONNECTING); } struct nfs4_pnfs_ds * nfs4_fl_prepare_ds(struct pnfs_layout_segment *lseg, u32 ds_idx) { struct nfs4_file_layout_dsaddr *dsaddr = FILELAYOUT_LSEG(lseg)->dsaddr; struct nfs4_pnfs_ds *ds = dsaddr->ds_list[ds_idx]; struct nfs4_deviceid_node *devid = FILELAYOUT_DEVID_NODE(lseg); if (filelayout_test_devid_unavailable(devid)) return NULL; if (ds == NULL) { printk(KERN_ERR "NFS: %s: No data server for offset index %d\n", __func__, ds_idx); filelayout_mark_devid_invalid(devid); return NULL; } if (ds->ds_clp) return ds; if (test_and_set_bit(NFS4DS_CONNECTING, &ds->ds_state) == 0) { struct nfs_server *s = NFS_SERVER(lseg->pls_layout->plh_inode); int err; err = nfs4_ds_connect(s, ds); if (err) { nfs4_mark_deviceid_unavailable(devid); ds = NULL; } nfs4_clear_ds_conn_bit(ds); } else { /* Either ds is connected, or ds is NULL */ nfs4_wait_ds_connect(ds); } return ds; } module_param(dataserver_retrans, uint, 0644); MODULE_PARM_DESC(dataserver_retrans, "The number of times the NFSv4.1 client " "retries a request before it attempts further " " recovery action."); module_param(dataserver_timeo, uint, 0644); MODULE_PARM_DESC(dataserver_timeo, "The time (in tenths of a second) the " "NFSv4.1 client waits for a response from a " " data server before it retries an NFS request.");