/* -*- mode: c; c-basic-offset: 8; -*-
 * vim: noexpandtab sw=8 ts=8 sts=0:
 *
 * Copyright (C) 2004, 2005 Oracle.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/jiffies.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/file.h>
#include <linux/kthread.h>
#include <linux/configfs.h>
#include <linux/random.h>
#include <linux/crc32.h>
#include <linux/time.h>
#include <linux/debugfs.h>
#include <linux/slab.h>

#include "heartbeat.h"
#include "tcp.h"
#include "nodemanager.h"
#include "quorum.h"

#include "masklog.h"


/*
 * The first heartbeat pass had one global thread that would serialize all hb
 * callback calls.  This global serializing sem should only be removed once
 * we've made sure that all callees can deal with being called concurrently
 * from multiple hb region threads.
 */
static DECLARE_RWSEM(o2hb_callback_sem);

/*
 * multiple hb threads are watching multiple regions.  A node is live
 * whenever any of the threads sees activity from the node in its region.
 */
static DEFINE_SPINLOCK(o2hb_live_lock);
static struct list_head o2hb_live_slots[O2NM_MAX_NODES];
static unsigned long o2hb_live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)];
static LIST_HEAD(o2hb_node_events);
static DECLARE_WAIT_QUEUE_HEAD(o2hb_steady_queue);

/*
 * In global heartbeat, we maintain a series of region bitmaps.
 * 	- o2hb_region_bitmap allows us to limit the region number to max region.
 * 	- o2hb_live_region_bitmap tracks live regions (seen steady iterations).
 * 	- o2hb_quorum_region_bitmap tracks live regions that have seen all nodes
 * 		heartbeat on it.
 * 	- o2hb_failed_region_bitmap tracks the regions that have seen io timeouts.
 */
static unsigned long o2hb_region_bitmap[BITS_TO_LONGS(O2NM_MAX_REGIONS)];
static unsigned long o2hb_live_region_bitmap[BITS_TO_LONGS(O2NM_MAX_REGIONS)];
static unsigned long o2hb_quorum_region_bitmap[BITS_TO_LONGS(O2NM_MAX_REGIONS)];
static unsigned long o2hb_failed_region_bitmap[BITS_TO_LONGS(O2NM_MAX_REGIONS)];

#define O2HB_DB_TYPE_LIVENODES		0
#define O2HB_DB_TYPE_LIVEREGIONS	1
#define O2HB_DB_TYPE_QUORUMREGIONS	2
#define O2HB_DB_TYPE_FAILEDREGIONS	3
#define O2HB_DB_TYPE_REGION_LIVENODES	4
#define O2HB_DB_TYPE_REGION_NUMBER	5
#define O2HB_DB_TYPE_REGION_ELAPSED_TIME	6
#define O2HB_DB_TYPE_REGION_PINNED	7
struct o2hb_debug_buf {
	int db_type;
	int db_size;
	int db_len;
	void *db_data;
};

static struct o2hb_debug_buf *o2hb_db_livenodes;
static struct o2hb_debug_buf *o2hb_db_liveregions;
static struct o2hb_debug_buf *o2hb_db_quorumregions;
static struct o2hb_debug_buf *o2hb_db_failedregions;

#define O2HB_DEBUG_DIR			"o2hb"
#define O2HB_DEBUG_LIVENODES		"livenodes"
#define O2HB_DEBUG_LIVEREGIONS		"live_regions"
#define O2HB_DEBUG_QUORUMREGIONS	"quorum_regions"
#define O2HB_DEBUG_FAILEDREGIONS	"failed_regions"
#define O2HB_DEBUG_REGION_NUMBER	"num"
#define O2HB_DEBUG_REGION_ELAPSED_TIME	"elapsed_time_in_ms"
#define O2HB_DEBUG_REGION_PINNED	"pinned"

static struct dentry *o2hb_debug_dir;
static struct dentry *o2hb_debug_livenodes;
static struct dentry *o2hb_debug_liveregions;
static struct dentry *o2hb_debug_quorumregions;
static struct dentry *o2hb_debug_failedregions;

static LIST_HEAD(o2hb_all_regions);

static struct o2hb_callback {
	struct list_head list;
} o2hb_callbacks[O2HB_NUM_CB];

static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type);

#define O2HB_DEFAULT_BLOCK_BITS       9

enum o2hb_heartbeat_modes {
	O2HB_HEARTBEAT_LOCAL		= 0,
	O2HB_HEARTBEAT_GLOBAL,
	O2HB_HEARTBEAT_NUM_MODES,
};

char *o2hb_heartbeat_mode_desc[O2HB_HEARTBEAT_NUM_MODES] = {
		"local",	/* O2HB_HEARTBEAT_LOCAL */
		"global",	/* O2HB_HEARTBEAT_GLOBAL */
};

unsigned int o2hb_dead_threshold = O2HB_DEFAULT_DEAD_THRESHOLD;
unsigned int o2hb_heartbeat_mode = O2HB_HEARTBEAT_LOCAL;

/*
 * o2hb_dependent_users tracks the number of registered callbacks that depend
 * on heartbeat. o2net and o2dlm are two entities that register this callback.
 * However only o2dlm depends on the heartbeat. It does not want the heartbeat
 * to stop while a dlm domain is still active.
 */
unsigned int o2hb_dependent_users;

/*
 * In global heartbeat mode, all regions are pinned if there are one or more
 * dependent users and the quorum region count is <= O2HB_PIN_CUT_OFF. All
 * regions are unpinned if the region count exceeds the cut off or the number
 * of dependent users falls to zero.
 */
#define O2HB_PIN_CUT_OFF		3

/*
 * In local heartbeat mode, we assume the dlm domain name to be the same as
 * region uuid. This is true for domains created for the file system but not
 * necessarily true for userdlm domains. This is a known limitation.
 *
 * In global heartbeat mode, we pin/unpin all o2hb regions. This solution
 * works for both file system and userdlm domains.
 */
static int o2hb_region_pin(const char *region_uuid);
static void o2hb_region_unpin(const char *region_uuid);

/* Only sets a new threshold if there are no active regions.
 *
 * No locking or otherwise interesting code is required for reading
 * o2hb_dead_threshold as it can't change once regions are active and
 * it's not interesting to anyone until then anyway. */
static void o2hb_dead_threshold_set(unsigned int threshold)
{
	if (threshold > O2HB_MIN_DEAD_THRESHOLD) {
		spin_lock(&o2hb_live_lock);
		if (list_empty(&o2hb_all_regions))
			o2hb_dead_threshold = threshold;
		spin_unlock(&o2hb_live_lock);
	}
}

static int o2hb_global_hearbeat_mode_set(unsigned int hb_mode)
{
	int ret = -1;

	if (hb_mode < O2HB_HEARTBEAT_NUM_MODES) {
		spin_lock(&o2hb_live_lock);
		if (list_empty(&o2hb_all_regions)) {
			o2hb_heartbeat_mode = hb_mode;
			ret = 0;
		}
		spin_unlock(&o2hb_live_lock);
	}

	return ret;
}

struct o2hb_node_event {
	struct list_head        hn_item;
	enum o2hb_callback_type hn_event_type;
	struct o2nm_node        *hn_node;
	int                     hn_node_num;
};

struct o2hb_disk_slot {
	struct o2hb_disk_heartbeat_block *ds_raw_block;
	u8			ds_node_num;
	u64			ds_last_time;
	u64			ds_last_generation;
	u16			ds_equal_samples;
	u16			ds_changed_samples;
	struct list_head	ds_live_item;
};

/* each thread owns a region.. when we're asked to tear down the region
 * we ask the thread to stop, who cleans up the region */
struct o2hb_region {
	struct config_item	hr_item;

	struct list_head	hr_all_item;
	unsigned		hr_unclean_stop:1,
				hr_aborted_start:1,
				hr_item_pinned:1,
				hr_item_dropped:1;

	/* protected by the hr_callback_sem */
	struct task_struct 	*hr_task;

	unsigned int		hr_blocks;
	unsigned long long	hr_start_block;

	unsigned int		hr_block_bits;
	unsigned int		hr_block_bytes;

	unsigned int		hr_slots_per_page;
	unsigned int		hr_num_pages;

	struct page             **hr_slot_data;
	struct block_device	*hr_bdev;
	struct o2hb_disk_slot	*hr_slots;

	/* live node map of this region */
	unsigned long		hr_live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)];
	unsigned int		hr_region_num;

	struct dentry		*hr_debug_dir;
	struct dentry		*hr_debug_livenodes;
	struct dentry		*hr_debug_regnum;
	struct dentry		*hr_debug_elapsed_time;
	struct dentry		*hr_debug_pinned;
	struct o2hb_debug_buf	*hr_db_livenodes;
	struct o2hb_debug_buf	*hr_db_regnum;
	struct o2hb_debug_buf	*hr_db_elapsed_time;
	struct o2hb_debug_buf	*hr_db_pinned;

	/* let the person setting up hb wait for it to return until it
	 * has reached a 'steady' state.  This will be fixed when we have
	 * a more complete api that doesn't lead to this sort of fragility. */
	atomic_t		hr_steady_iterations;

	/* terminate o2hb thread if it does not reach steady state
	 * (hr_steady_iterations == 0) within hr_unsteady_iterations */
	atomic_t		hr_unsteady_iterations;

	char			hr_dev_name[BDEVNAME_SIZE];

	unsigned int		hr_timeout_ms;

	/* randomized as the region goes up and down so that a node
	 * recognizes a node going up and down in one iteration */
	u64			hr_generation;

	struct delayed_work	hr_write_timeout_work;
	unsigned long		hr_last_timeout_start;

	/* Used during o2hb_check_slot to hold a copy of the block
	 * being checked because we temporarily have to zero out the
	 * crc field. */
	struct o2hb_disk_heartbeat_block *hr_tmp_block;
};

struct o2hb_bio_wait_ctxt {
	atomic_t          wc_num_reqs;
	struct completion wc_io_complete;
	int               wc_error;
};

static int o2hb_pop_count(void *map, int count)
{
	int i = -1, pop = 0;

	while ((i = find_next_bit(map, count, i + 1)) < count)
		pop++;
	return pop;
}

static void o2hb_write_timeout(struct work_struct *work)
{
	int failed, quorum;
	unsigned long flags;
	struct o2hb_region *reg =
		container_of(work, struct o2hb_region,
			     hr_write_timeout_work.work);

	mlog(ML_ERROR, "Heartbeat write timeout to device %s after %u "
	     "milliseconds\n", reg->hr_dev_name,
	     jiffies_to_msecs(jiffies - reg->hr_last_timeout_start));

	if (o2hb_global_heartbeat_active()) {
		spin_lock_irqsave(&o2hb_live_lock, flags);
		if (test_bit(reg->hr_region_num, o2hb_quorum_region_bitmap))
			set_bit(reg->hr_region_num, o2hb_failed_region_bitmap);
		failed = o2hb_pop_count(&o2hb_failed_region_bitmap,
					O2NM_MAX_REGIONS);
		quorum = o2hb_pop_count(&o2hb_quorum_region_bitmap,
					O2NM_MAX_REGIONS);
		spin_unlock_irqrestore(&o2hb_live_lock, flags);

		mlog(ML_HEARTBEAT, "Number of regions %d, failed regions %d\n",
		     quorum, failed);

		/*
		 * Fence if the number of failed regions >= half the number
		 * of  quorum regions
		 */
		if ((failed << 1) < quorum)
			return;
	}

	o2quo_disk_timeout();
}

static void o2hb_arm_write_timeout(struct o2hb_region *reg)
{
	/* Arm writeout only after thread reaches steady state */
	if (atomic_read(&reg->hr_steady_iterations) != 0)
		return;

	mlog(ML_HEARTBEAT, "Queue write timeout for %u ms\n",
	     O2HB_MAX_WRITE_TIMEOUT_MS);

	if (o2hb_global_heartbeat_active()) {
		spin_lock(&o2hb_live_lock);
		clear_bit(reg->hr_region_num, o2hb_failed_region_bitmap);
		spin_unlock(&o2hb_live_lock);
	}
	cancel_delayed_work(&reg->hr_write_timeout_work);
	reg->hr_last_timeout_start = jiffies;
	schedule_delayed_work(&reg->hr_write_timeout_work,
			      msecs_to_jiffies(O2HB_MAX_WRITE_TIMEOUT_MS));
}

static void o2hb_disarm_write_timeout(struct o2hb_region *reg)
{
	cancel_delayed_work_sync(&reg->hr_write_timeout_work);
}

static inline void o2hb_bio_wait_init(struct o2hb_bio_wait_ctxt *wc)
{
	atomic_set(&wc->wc_num_reqs, 1);
	init_completion(&wc->wc_io_complete);
	wc->wc_error = 0;
}

/* Used in error paths too */
static inline void o2hb_bio_wait_dec(struct o2hb_bio_wait_ctxt *wc,
				     unsigned int num)
{
	/* sadly atomic_sub_and_test() isn't available on all platforms.  The
	 * good news is that the fast path only completes one at a time */
	while(num--) {
		if (atomic_dec_and_test(&wc->wc_num_reqs)) {
			BUG_ON(num > 0);
			complete(&wc->wc_io_complete);
		}
	}
}

static void o2hb_wait_on_io(struct o2hb_region *reg,
			    struct o2hb_bio_wait_ctxt *wc)
{
	o2hb_bio_wait_dec(wc, 1);
	wait_for_completion(&wc->wc_io_complete);
}

static void o2hb_bio_end_io(struct bio *bio,
			   int error)
{
	struct o2hb_bio_wait_ctxt *wc = bio->bi_private;

	if (error) {
		mlog(ML_ERROR, "IO Error %d\n", error);
		wc->wc_error = error;
	}

	o2hb_bio_wait_dec(wc, 1);
	bio_put(bio);
}

/* Setup a Bio to cover I/O against num_slots slots starting at
 * start_slot. */
static struct bio *o2hb_setup_one_bio(struct o2hb_region *reg,
				      struct o2hb_bio_wait_ctxt *wc,
				      unsigned int *current_slot,
				      unsigned int max_slots)
{
	int len, current_page;
	unsigned int vec_len, vec_start;
	unsigned int bits = reg->hr_block_bits;
	unsigned int spp = reg->hr_slots_per_page;
	unsigned int cs = *current_slot;
	struct bio *bio;
	struct page *page;

	/* Testing has shown this allocation to take long enough under
	 * GFP_KERNEL that the local node can get fenced. It would be
	 * nicest if we could pre-allocate these bios and avoid this
	 * all together. */
	bio = bio_alloc(GFP_ATOMIC, 16);
	if (!bio) {
		mlog(ML_ERROR, "Could not alloc slots BIO!\n");
		bio = ERR_PTR(-ENOMEM);
		goto bail;
	}

	/* Must put everything in 512 byte sectors for the bio... */
	bio->bi_sector = (reg->hr_start_block + cs) << (bits - 9);
	bio->bi_bdev = reg->hr_bdev;
	bio->bi_private = wc;
	bio->bi_end_io = o2hb_bio_end_io;

	vec_start = (cs << bits) % PAGE_CACHE_SIZE;
	while(cs < max_slots) {
		current_page = cs / spp;
		page = reg->hr_slot_data[current_page];

		vec_len = min(PAGE_CACHE_SIZE - vec_start,
			      (max_slots-cs) * (PAGE_CACHE_SIZE/spp) );

		mlog(ML_HB_BIO, "page %d, vec_len = %u, vec_start = %u\n",
		     current_page, vec_len, vec_start);

		len = bio_add_page(bio, page, vec_len, vec_start);
		if (len != vec_len) break;

		cs += vec_len / (PAGE_CACHE_SIZE/spp);
		vec_start = 0;
	}

bail:
	*current_slot = cs;
	return bio;
}

static int o2hb_read_slots(struct o2hb_region *reg,
			   unsigned int max_slots)
{
	unsigned int current_slot=0;
	int status;
	struct o2hb_bio_wait_ctxt wc;
	struct bio *bio;

	o2hb_bio_wait_init(&wc);

	while(current_slot < max_slots) {
		bio = o2hb_setup_one_bio(reg, &wc, &current_slot, max_slots);
		if (IS_ERR(bio)) {
			status = PTR_ERR(bio);
			mlog_errno(status);
			goto bail_and_wait;
		}

		atomic_inc(&wc.wc_num_reqs);
		submit_bio(READ, bio);
	}

	status = 0;

bail_and_wait:
	o2hb_wait_on_io(reg, &wc);
	if (wc.wc_error && !status)
		status = wc.wc_error;

	return status;
}

static int o2hb_issue_node_write(struct o2hb_region *reg,
				 struct o2hb_bio_wait_ctxt *write_wc)
{
	int status;
	unsigned int slot;
	struct bio *bio;

	o2hb_bio_wait_init(write_wc);

	slot = o2nm_this_node();

	bio = o2hb_setup_one_bio(reg, write_wc, &slot, slot+1);
	if (IS_ERR(bio)) {
		status = PTR_ERR(bio);
		mlog_errno(status);
		goto bail;
	}

	atomic_inc(&write_wc->wc_num_reqs);
	submit_bio(WRITE, bio);

	status = 0;
bail:
	return status;
}

static u32 o2hb_compute_block_crc_le(struct o2hb_region *reg,
				     struct o2hb_disk_heartbeat_block *hb_block)
{
	__le32 old_cksum;
	u32 ret;

	/* We want to compute the block crc with a 0 value in the
	 * hb_cksum field. Save it off here and replace after the
	 * crc. */
	old_cksum = hb_block->hb_cksum;
	hb_block->hb_cksum = 0;

	ret = crc32_le(0, (unsigned char *) hb_block, reg->hr_block_bytes);

	hb_block->hb_cksum = old_cksum;

	return ret;
}

static void o2hb_dump_slot(struct o2hb_disk_heartbeat_block *hb_block)
{
	mlog(ML_ERROR, "Dump slot information: seq = 0x%llx, node = %u, "
	     "cksum = 0x%x, generation 0x%llx\n",
	     (long long)le64_to_cpu(hb_block->hb_seq),
	     hb_block->hb_node, le32_to_cpu(hb_block->hb_cksum),
	     (long long)le64_to_cpu(hb_block->hb_generation));
}

static int o2hb_verify_crc(struct o2hb_region *reg,
			   struct o2hb_disk_heartbeat_block *hb_block)
{
	u32 read, computed;

	read = le32_to_cpu(hb_block->hb_cksum);
	computed = o2hb_compute_block_crc_le(reg, hb_block);

	return read == computed;
}

/*
 * Compare the slot data with what we wrote in the last iteration.
 * If the match fails, print an appropriate error message. This is to
 * detect errors like... another node hearting on the same slot,
 * flaky device that is losing writes, etc.
 * Returns 1 if check succeeds, 0 otherwise.
 */
static int o2hb_check_own_slot(struct o2hb_region *reg)
{
	struct o2hb_disk_slot *slot;
	struct o2hb_disk_heartbeat_block *hb_block;
	char *errstr;

	slot = &reg->hr_slots[o2nm_this_node()];
	/* Don't check on our 1st timestamp */
	if (!slot->ds_last_time)
		return 0;

	hb_block = slot->ds_raw_block;
	if (le64_to_cpu(hb_block->hb_seq) == slot->ds_last_time &&
	    le64_to_cpu(hb_block->hb_generation) == slot->ds_last_generation &&
	    hb_block->hb_node == slot->ds_node_num)
		return 1;

#define ERRSTR1		"Another node is heartbeating on device"
#define ERRSTR2		"Heartbeat generation mismatch on device"
#define ERRSTR3		"Heartbeat sequence mismatch on device"

	if (hb_block->hb_node != slot->ds_node_num)
		errstr = ERRSTR1;
	else if (le64_to_cpu(hb_block->hb_generation) !=
		 slot->ds_last_generation)
		errstr = ERRSTR2;
	else
		errstr = ERRSTR3;

	mlog(ML_ERROR, "%s (%s): expected(%u:0x%llx, 0x%llx), "
	     "ondisk(%u:0x%llx, 0x%llx)\n", errstr, reg->hr_dev_name,
	     slot->ds_node_num, (unsigned long long)slot->ds_last_generation,
	     (unsigned long long)slot->ds_last_time, hb_block->hb_node,
	     (unsigned long long)le64_to_cpu(hb_block->hb_generation),
	     (unsigned long long)le64_to_cpu(hb_block->hb_seq));

	return 0;
}

static inline void o2hb_prepare_block(struct o2hb_region *reg,
				      u64 generation)
{
	int node_num;
	u64 cputime;
	struct o2hb_disk_slot *slot;
	struct o2hb_disk_heartbeat_block *hb_block;

	node_num = o2nm_this_node();
	slot = &reg->hr_slots[node_num];

	hb_block = (struct o2hb_disk_heartbeat_block *)slot->ds_raw_block;
	memset(hb_block, 0, reg->hr_block_bytes);
	/* TODO: time stuff */
	cputime = CURRENT_TIME.tv_sec;
	if (!cputime)
		cputime = 1;

	hb_block->hb_seq = cpu_to_le64(cputime);
	hb_block->hb_node = node_num;
	hb_block->hb_generation = cpu_to_le64(generation);
	hb_block->hb_dead_ms = cpu_to_le32(o2hb_dead_threshold * O2HB_REGION_TIMEOUT_MS);

	/* This step must always happen last! */
	hb_block->hb_cksum = cpu_to_le32(o2hb_compute_block_crc_le(reg,
								   hb_block));

	mlog(ML_HB_BIO, "our node generation = 0x%llx, cksum = 0x%x\n",
	     (long long)generation,
	     le32_to_cpu(hb_block->hb_cksum));
}

static void o2hb_fire_callbacks(struct o2hb_callback *hbcall,
				struct o2nm_node *node,
				int idx)
{
	struct list_head *iter;
	struct o2hb_callback_func *f;

	list_for_each(iter, &hbcall->list) {
		f = list_entry(iter, struct o2hb_callback_func, hc_item);
		mlog(ML_HEARTBEAT, "calling funcs %p\n", f);
		(f->hc_func)(node, idx, f->hc_data);
	}
}

/* Will run the list in order until we process the passed event */
static void o2hb_run_event_list(struct o2hb_node_event *queued_event)
{
	int empty;
	struct o2hb_callback *hbcall;
	struct o2hb_node_event *event;

	spin_lock(&o2hb_live_lock);
	empty = list_empty(&queued_event->hn_item);
	spin_unlock(&o2hb_live_lock);
	if (empty)
		return;

	/* Holding callback sem assures we don't alter the callback
	 * lists when doing this, and serializes ourselves with other
	 * processes wanting callbacks. */
	down_write(&o2hb_callback_sem);

	spin_lock(&o2hb_live_lock);
	while (!list_empty(&o2hb_node_events)
	       && !list_empty(&queued_event->hn_item)) {
		event = list_entry(o2hb_node_events.next,
				   struct o2hb_node_event,
				   hn_item);
		list_del_init(&event->hn_item);
		spin_unlock(&o2hb_live_lock);

		mlog(ML_HEARTBEAT, "Node %s event for %d\n",
		     event->hn_event_type == O2HB_NODE_UP_CB ? "UP" : "DOWN",
		     event->hn_node_num);

		hbcall = hbcall_from_type(event->hn_event_type);

		/* We should *never* have gotten on to the list with a
		 * bad type... This isn't something that we should try
		 * to recover from. */
		BUG_ON(IS_ERR(hbcall));

		o2hb_fire_callbacks(hbcall, event->hn_node, event->hn_node_num);

		spin_lock(&o2hb_live_lock);
	}
	spin_unlock(&o2hb_live_lock);

	up_write(&o2hb_callback_sem);
}

static void o2hb_queue_node_event(struct o2hb_node_event *event,
				  enum o2hb_callback_type type,
				  struct o2nm_node *node,
				  int node_num)
{
	assert_spin_locked(&o2hb_live_lock);

	BUG_ON((!node) && (type != O2HB_NODE_DOWN_CB));

	event->hn_event_type = type;
	event->hn_node = node;
	event->hn_node_num = node_num;

	mlog(ML_HEARTBEAT, "Queue node %s event for node %d\n",
	     type == O2HB_NODE_UP_CB ? "UP" : "DOWN", node_num);

	list_add_tail(&event->hn_item, &o2hb_node_events);
}

static void o2hb_shutdown_slot(struct o2hb_disk_slot *slot)
{
	struct o2hb_node_event event =
		{ .hn_item = LIST_HEAD_INIT(event.hn_item), };
	struct o2nm_node *node;

	node = o2nm_get_node_by_num(slot->ds_node_num);
	if (!node)
		return;

	spin_lock(&o2hb_live_lock);
	if (!list_empty(&slot->ds_live_item)) {
		mlog(ML_HEARTBEAT, "Shutdown, node %d leaves region\n",
		     slot->ds_node_num);

		list_del_init(&slot->ds_live_item);

		if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
			clear_bit(slot->ds_node_num, o2hb_live_node_bitmap);

			o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node,
					      slot->ds_node_num);
		}
	}
	spin_unlock(&o2hb_live_lock);

	o2hb_run_event_list(&event);

	o2nm_node_put(node);
}

static void o2hb_set_quorum_device(struct o2hb_region *reg)
{
	if (!o2hb_global_heartbeat_active())
		return;

	/* Prevent race with o2hb_heartbeat_group_drop_item() */
	if (kthread_should_stop())
		return;

	/* Tag region as quorum only after thread reaches steady state */
	if (atomic_read(&reg->hr_steady_iterations) != 0)
		return;

	spin_lock(&o2hb_live_lock);

	if (test_bit(reg->hr_region_num, o2hb_quorum_region_bitmap))
		goto unlock;

	/*
	 * A region can be added to the quorum only when it sees all
	 * live nodes heartbeat on it. In other words, the region has been
	 * added to all nodes.
	 */
	if (memcmp(reg->hr_live_node_bitmap, o2hb_live_node_bitmap,
		   sizeof(o2hb_live_node_bitmap)))
		goto unlock;

	printk(KERN_NOTICE "o2hb: Region %s (%s) is now a quorum device\n",
	       config_item_name(&reg->hr_item), reg->hr_dev_name);

	set_bit(reg->hr_region_num, o2hb_quorum_region_bitmap);

	/*
	 * If global heartbeat active, unpin all regions if the
	 * region count > CUT_OFF
	 */
	if (o2hb_pop_count(&o2hb_quorum_region_bitmap,
			   O2NM_MAX_REGIONS) > O2HB_PIN_CUT_OFF)
		o2hb_region_unpin(NULL);
unlock:
	spin_unlock(&o2hb_live_lock);
}

static int o2hb_check_slot(struct o2hb_region *reg,
			   struct o2hb_disk_slot *slot)
{
	int changed = 0, gen_changed = 0;
	struct o2hb_node_event event =
		{ .hn_item = LIST_HEAD_INIT(event.hn_item), };
	struct o2nm_node *node;
	struct o2hb_disk_heartbeat_block *hb_block = reg->hr_tmp_block;
	u64 cputime;
	unsigned int dead_ms = o2hb_dead_threshold * O2HB_REGION_TIMEOUT_MS;
	unsigned int slot_dead_ms;
	int tmp;

	memcpy(hb_block, slot->ds_raw_block, reg->hr_block_bytes);

	/*
	 * If a node is no longer configured but is still in the livemap, we
	 * may need to clear that bit from the livemap.
	 */
	node = o2nm_get_node_by_num(slot->ds_node_num);
	if (!node) {
		spin_lock(&o2hb_live_lock);
		tmp = test_bit(slot->ds_node_num, o2hb_live_node_bitmap);
		spin_unlock(&o2hb_live_lock);
		if (!tmp)
			return 0;
	}

	if (!o2hb_verify_crc(reg, hb_block)) {
		/* all paths from here will drop o2hb_live_lock for
		 * us. */
		spin_lock(&o2hb_live_lock);

		/* Don't print an error on the console in this case -
		 * a freshly formatted heartbeat area will not have a
		 * crc set on it. */
		if (list_empty(&slot->ds_live_item))
			goto out;

		/* The node is live but pushed out a bad crc. We
		 * consider it a transient miss but don't populate any
		 * other values as they may be junk. */
		mlog(ML_ERROR, "Node %d has written a bad crc to %s\n",
		     slot->ds_node_num, reg->hr_dev_name);
		o2hb_dump_slot(hb_block);

		slot->ds_equal_samples++;
		goto fire_callbacks;
	}

	/* we don't care if these wrap.. the state transitions below
	 * clear at the right places */
	cputime = le64_to_cpu(hb_block->hb_seq);
	if (slot->ds_last_time != cputime)
		slot->ds_changed_samples++;
	else
		slot->ds_equal_samples++;
	slot->ds_last_time = cputime;

	/* The node changed heartbeat generations. We assume this to
	 * mean it dropped off but came back before we timed out. We
	 * want to consider it down for the time being but don't want
	 * to lose any changed_samples state we might build up to
	 * considering it live again. */
	if (slot->ds_last_generation != le64_to_cpu(hb_block->hb_generation)) {
		gen_changed = 1;
		slot->ds_equal_samples = 0;
		mlog(ML_HEARTBEAT, "Node %d changed generation (0x%llx "
		     "to 0x%llx)\n", slot->ds_node_num,
		     (long long)slot->ds_last_generation,
		     (long long)le64_to_cpu(hb_block->hb_generation));
	}

	slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation);

	mlog(ML_HEARTBEAT, "Slot %d gen 0x%llx cksum 0x%x "
	     "seq %llu last %llu changed %u equal %u\n",
	     slot->ds_node_num, (long long)slot->ds_last_generation,
	     le32_to_cpu(hb_block->hb_cksum),
	     (unsigned long long)le64_to_cpu(hb_block->hb_seq),
	     (unsigned long long)slot->ds_last_time, slot->ds_changed_samples,
	     slot->ds_equal_samples);

	spin_lock(&o2hb_live_lock);

fire_callbacks:
	/* dead nodes only come to life after some number of
	 * changes at any time during their dead time */
	if (list_empty(&slot->ds_live_item) &&
	    slot->ds_changed_samples >= O2HB_LIVE_THRESHOLD) {
		mlog(ML_HEARTBEAT, "Node %d (id 0x%llx) joined my region\n",
		     slot->ds_node_num, (long long)slot->ds_last_generation);

		set_bit(slot->ds_node_num, reg->hr_live_node_bitmap);

		/* first on the list generates a callback */
		if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
			mlog(ML_HEARTBEAT, "o2hb: Add node %d to live nodes "
			     "bitmap\n", slot->ds_node_num);
			set_bit(slot->ds_node_num, o2hb_live_node_bitmap);

			o2hb_queue_node_event(&event, O2HB_NODE_UP_CB, node,
					      slot->ds_node_num);

			changed = 1;
		}

		list_add_tail(&slot->ds_live_item,
			      &o2hb_live_slots[slot->ds_node_num]);

		slot->ds_equal_samples = 0;

		/* We want to be sure that all nodes agree on the
		 * number of milliseconds before a node will be
		 * considered dead. The self-fencing timeout is
		 * computed from this value, and a discrepancy might
		 * result in heartbeat calling a node dead when it
		 * hasn't self-fenced yet. */
		slot_dead_ms = le32_to_cpu(hb_block->hb_dead_ms);
		if (slot_dead_ms && slot_dead_ms != dead_ms) {
			/* TODO: Perhaps we can fail the region here. */
			mlog(ML_ERROR, "Node %d on device %s has a dead count "
			     "of %u ms, but our count is %u ms.\n"
			     "Please double check your configuration values "
			     "for 'O2CB_HEARTBEAT_THRESHOLD'\n",
			     slot->ds_node_num, reg->hr_dev_name, slot_dead_ms,
			     dead_ms);
		}
		goto out;
	}

	/* if the list is dead, we're done.. */
	if (list_empty(&slot->ds_live_item))
		goto out;

	/* live nodes only go dead after enough consequtive missed
	 * samples..  reset the missed counter whenever we see
	 * activity */
	if (slot->ds_equal_samples >= o2hb_dead_threshold || gen_changed) {
		mlog(ML_HEARTBEAT, "Node %d left my region\n",
		     slot->ds_node_num);

		clear_bit(slot->ds_node_num, reg->hr_live_node_bitmap);

		/* last off the live_slot generates a callback */
		list_del_init(&slot->ds_live_item);
		if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
			mlog(ML_HEARTBEAT, "o2hb: Remove node %d from live "
			     "nodes bitmap\n", slot->ds_node_num);
			clear_bit(slot->ds_node_num, o2hb_live_node_bitmap);

			/* node can be null */
			o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB,
					      node, slot->ds_node_num);

			changed = 1;
		}

		/* We don't clear this because the node is still
		 * actually writing new blocks. */
		if (!gen_changed)
			slot->ds_changed_samples = 0;
		goto out;
	}
	if (slot->ds_changed_samples) {
		slot->ds_changed_samples = 0;
		slot->ds_equal_samples = 0;
	}
out:
	spin_unlock(&o2hb_live_lock);

	o2hb_run_event_list(&event);

	if (node)
		o2nm_node_put(node);
	return changed;
}

/* This could be faster if we just implmented a find_last_bit, but I
 * don't think the circumstances warrant it. */
static int o2hb_highest_node(unsigned long *nodes,
			     int numbits)
{
	int highest, node;

	highest = numbits;
	node = -1;
	while ((node = find_next_bit(nodes, numbits, node + 1)) != -1) {
		if (node >= numbits)
			break;

		highest = node;
	}

	return highest;
}

static int o2hb_do_disk_heartbeat(struct o2hb_region *reg)
{
	int i, ret, highest_node;
	int membership_change = 0, own_slot_ok = 0;
	unsigned long configured_nodes[BITS_TO_LONGS(O2NM_MAX_NODES)];
	unsigned long live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)];
	struct o2hb_bio_wait_ctxt write_wc;

	ret = o2nm_configured_node_map(configured_nodes,
				       sizeof(configured_nodes));
	if (ret) {
		mlog_errno(ret);
		goto bail;
	}

	/*
	 * If a node is not configured but is in the livemap, we still need
	 * to read the slot so as to be able to remove it from the livemap.
	 */
	o2hb_fill_node_map(live_node_bitmap, sizeof(live_node_bitmap));
	i = -1;
	while ((i = find_next_bit(live_node_bitmap,
				  O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) {
		set_bit(i, configured_nodes);
	}

	highest_node = o2hb_highest_node(configured_nodes, O2NM_MAX_NODES);
	if (highest_node >= O2NM_MAX_NODES) {
		mlog(ML_NOTICE, "o2hb: No configured nodes found!\n");
		ret = -EINVAL;
		goto bail;
	}

	/* No sense in reading the slots of nodes that don't exist
	 * yet. Of course, if the node definitions have holes in them
	 * then we're reading an empty slot anyway... Consider this
	 * best-effort. */
	ret = o2hb_read_slots(reg, highest_node + 1);
	if (ret < 0) {
		mlog_errno(ret);
		goto bail;
	}

	/* With an up to date view of the slots, we can check that no
	 * other node has been improperly configured to heartbeat in
	 * our slot. */
	own_slot_ok = o2hb_check_own_slot(reg);

	/* fill in the proper info for our next heartbeat */
	o2hb_prepare_block(reg, reg->hr_generation);

	ret = o2hb_issue_node_write(reg, &write_wc);
	if (ret < 0) {
		mlog_errno(ret);
		goto bail;
	}

	i = -1;
	while((i = find_next_bit(configured_nodes,
				 O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) {
		membership_change |= o2hb_check_slot(reg, &reg->hr_slots[i]);
	}

	/*
	 * We have to be sure we've advertised ourselves on disk
	 * before we can go to steady state.  This ensures that
	 * people we find in our steady state have seen us.
	 */
	o2hb_wait_on_io(reg, &write_wc);
	if (write_wc.wc_error) {
		/* Do not re-arm the write timeout on I/O error - we
		 * can't be sure that the new block ever made it to
		 * disk */
		mlog(ML_ERROR, "Write error %d on device \"%s\"\n",
		     write_wc.wc_error, reg->hr_dev_name);
		ret = write_wc.wc_error;
		goto bail;
	}

	/* Skip disarming the timeout if own slot has stale/bad data */
	if (own_slot_ok) {
		o2hb_set_quorum_device(reg);
		o2hb_arm_write_timeout(reg);
	}

bail:
	/* let the person who launched us know when things are steady */
	if (atomic_read(&reg->hr_steady_iterations) != 0) {
		if (!ret && own_slot_ok && !membership_change) {
			if (atomic_dec_and_test(&reg->hr_steady_iterations))
				wake_up(&o2hb_steady_queue);
		}
	}

	if (atomic_read(&reg->hr_steady_iterations) != 0) {
		if (atomic_dec_and_test(&reg->hr_unsteady_iterations)) {
			printk(KERN_NOTICE "o2hb: Unable to stabilize "
			       "heartbeart on region %s (%s)\n",
			       config_item_name(&reg->hr_item),
			       reg->hr_dev_name);
			atomic_set(&reg->hr_steady_iterations, 0);
			reg->hr_aborted_start = 1;
			wake_up(&o2hb_steady_queue);
			ret = -EIO;
		}
	}

	return ret;
}

/* Subtract b from a, storing the result in a. a *must* have a larger
 * value than b. */
static void o2hb_tv_subtract(struct timeval *a,
			     struct timeval *b)
{
	/* just return 0 when a is after b */
	if (a->tv_sec < b->tv_sec ||
	    (a->tv_sec == b->tv_sec && a->tv_usec < b->tv_usec)) {
		a->tv_sec = 0;
		a->tv_usec = 0;
		return;
	}

	a->tv_sec -= b->tv_sec;
	a->tv_usec -= b->tv_usec;
	while ( a->tv_usec < 0 ) {
		a->tv_sec--;
		a->tv_usec += 1000000;
	}
}

static unsigned int o2hb_elapsed_msecs(struct timeval *start,
				       struct timeval *end)
{
	struct timeval res = *end;

	o2hb_tv_subtract(&res, start);

	return res.tv_sec * 1000 + res.tv_usec / 1000;
}

/*
 * we ride the region ref that the region dir holds.  before the region
 * dir is removed and drops it ref it will wait to tear down this
 * thread.
 */
static int o2hb_thread(void *data)
{
	int i, ret;
	struct o2hb_region *reg = data;
	struct o2hb_bio_wait_ctxt write_wc;
	struct timeval before_hb, after_hb;
	unsigned int elapsed_msec;

	mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread running\n");

	set_user_nice(current, -20);

	/* Pin node */
	o2nm_depend_this_node();

	while (!kthread_should_stop() &&
	       !reg->hr_unclean_stop && !reg->hr_aborted_start) {
		/* We track the time spent inside
		 * o2hb_do_disk_heartbeat so that we avoid more than
		 * hr_timeout_ms between disk writes. On busy systems
		 * this should result in a heartbeat which is less
		 * likely to time itself out. */
		do_gettimeofday(&before_hb);

		ret = o2hb_do_disk_heartbeat(reg);

		do_gettimeofday(&after_hb);
		elapsed_msec = o2hb_elapsed_msecs(&before_hb, &after_hb);

		mlog(ML_HEARTBEAT,
		     "start = %lu.%lu, end = %lu.%lu, msec = %u\n",
		     before_hb.tv_sec, (unsigned long) before_hb.tv_usec,
		     after_hb.tv_sec, (unsigned long) after_hb.tv_usec,
		     elapsed_msec);

		if (!kthread_should_stop() &&
		    elapsed_msec < reg->hr_timeout_ms) {
			/* the kthread api has blocked signals for us so no
			 * need to record the return value. */
			msleep_interruptible(reg->hr_timeout_ms - elapsed_msec);
		}
	}

	o2hb_disarm_write_timeout(reg);

	/* unclean stop is only used in very bad situation */
	for(i = 0; !reg->hr_unclean_stop && i < reg->hr_blocks; i++)
		o2hb_shutdown_slot(&reg->hr_slots[i]);

	/* Explicit down notification - avoid forcing the other nodes
	 * to timeout on this region when we could just as easily
	 * write a clear generation - thus indicating to them that
	 * this node has left this region.
	 */
	if (!reg->hr_unclean_stop && !reg->hr_aborted_start) {
		o2hb_prepare_block(reg, 0);
		ret = o2hb_issue_node_write(reg, &write_wc);
		if (ret == 0)
			o2hb_wait_on_io(reg, &write_wc);
		else
			mlog_errno(ret);
	}

	/* Unpin node */
	o2nm_undepend_this_node();

	mlog(ML_HEARTBEAT|ML_KTHREAD, "o2hb thread exiting\n");

	return 0;
}

#ifdef CONFIG_DEBUG_FS
static int o2hb_debug_open(struct inode *inode, struct file *file)
{
	struct o2hb_debug_buf *db = inode->i_private;
	struct o2hb_region *reg;
	unsigned long map[BITS_TO_LONGS(O2NM_MAX_NODES)];
	unsigned long lts;
	char *buf = NULL;
	int i = -1;
	int out = 0;

	/* max_nodes should be the largest bitmap we pass here */
	BUG_ON(sizeof(map) < db->db_size);

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto bail;

	switch (db->db_type) {
	case O2HB_DB_TYPE_LIVENODES:
	case O2HB_DB_TYPE_LIVEREGIONS:
	case O2HB_DB_TYPE_QUORUMREGIONS:
	case O2HB_DB_TYPE_FAILEDREGIONS:
		spin_lock(&o2hb_live_lock);
		memcpy(map, db->db_data, db->db_size);
		spin_unlock(&o2hb_live_lock);
		break;

	case O2HB_DB_TYPE_REGION_LIVENODES:
		spin_lock(&o2hb_live_lock);
		reg = (struct o2hb_region *)db->db_data;
		memcpy(map, reg->hr_live_node_bitmap, db->db_size);
		spin_unlock(&o2hb_live_lock);
		break;

	case O2HB_DB_TYPE_REGION_NUMBER:
		reg = (struct o2hb_region *)db->db_data;
		out += snprintf(buf + out, PAGE_SIZE - out, "%d\n",
				reg->hr_region_num);
		goto done;

	case O2HB_DB_TYPE_REGION_ELAPSED_TIME:
		reg = (struct o2hb_region *)db->db_data;
		lts = reg->hr_last_timeout_start;
		/* If 0, it has never been set before */
		if (lts)
			lts = jiffies_to_msecs(jiffies - lts);
		out += snprintf(buf + out, PAGE_SIZE - out, "%lu\n", lts);
		goto done;

	case O2HB_DB_TYPE_REGION_PINNED:
		reg = (struct o2hb_region *)db->db_data;
		out += snprintf(buf + out, PAGE_SIZE - out, "%u\n",
				!!reg->hr_item_pinned);
		goto done;

	default:
		goto done;
	}

	while ((i = find_next_bit(map, db->db_len, i + 1)) < db->db_len)
		out += snprintf(buf + out, PAGE_SIZE - out, "%d ", i);
	out += snprintf(buf + out, PAGE_SIZE - out, "\n");

done:
	i_size_write(inode, out);

	file->private_data = buf;

	return 0;
bail:
	return -ENOMEM;
}

static int o2hb_debug_release(struct inode *inode, struct file *file)
{
	kfree(file->private_data);
	return 0;
}

static ssize_t o2hb_debug_read(struct file *file, char __user *buf,
				 size_t nbytes, loff_t *ppos)
{
	return simple_read_from_buffer(buf, nbytes, ppos, file->private_data,
				       i_size_read(file->f_mapping->host));
}
#else
static int o2hb_debug_open(struct inode *inode, struct file *file)
{
	return 0;
}
static int o2hb_debug_release(struct inode *inode, struct file *file)
{
	return 0;
}
static ssize_t o2hb_debug_read(struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
{
	return 0;
}
#endif  /* CONFIG_DEBUG_FS */

static const struct file_operations o2hb_debug_fops = {
	.open =		o2hb_debug_open,
	.release =	o2hb_debug_release,
	.read =		o2hb_debug_read,
	.llseek =	generic_file_llseek,
};

void o2hb_exit(void)
{
	kfree(o2hb_db_livenodes);
	kfree(o2hb_db_liveregions);
	kfree(o2hb_db_quorumregions);
	kfree(o2hb_db_failedregions);
	debugfs_remove(o2hb_debug_failedregions);
	debugfs_remove(o2hb_debug_quorumregions);
	debugfs_remove(o2hb_debug_liveregions);
	debugfs_remove(o2hb_debug_livenodes);
	debugfs_remove(o2hb_debug_dir);
}

static struct dentry *o2hb_debug_create(const char *name, struct dentry *dir,
					struct o2hb_debug_buf **db, int db_len,
					int type, int size, int len, void *data)
{
	*db = kmalloc(db_len, GFP_KERNEL);
	if (!*db)
		return NULL;

	(*db)->db_type = type;
	(*db)->db_size = size;
	(*db)->db_len = len;
	(*db)->db_data = data;

	return debugfs_create_file(name, S_IFREG|S_IRUSR, dir, *db,
				   &o2hb_debug_fops);
}

static int o2hb_debug_init(void)
{
	int ret = -ENOMEM;

	o2hb_debug_dir = debugfs_create_dir(O2HB_DEBUG_DIR, NULL);
	if (!o2hb_debug_dir) {
		mlog_errno(ret);
		goto bail;
	}

	o2hb_debug_livenodes = o2hb_debug_create(O2HB_DEBUG_LIVENODES,
						 o2hb_debug_dir,
						 &o2hb_db_livenodes,
						 sizeof(*o2hb_db_livenodes),
						 O2HB_DB_TYPE_LIVENODES,
						 sizeof(o2hb_live_node_bitmap),
						 O2NM_MAX_NODES,
						 o2hb_live_node_bitmap);
	if (!o2hb_debug_livenodes) {
		mlog_errno(ret);
		goto bail;
	}

	o2hb_debug_liveregions = o2hb_debug_create(O2HB_DEBUG_LIVEREGIONS,
						   o2hb_debug_dir,
						   &o2hb_db_liveregions,
						   sizeof(*o2hb_db_liveregions),
						   O2HB_DB_TYPE_LIVEREGIONS,
						   sizeof(o2hb_live_region_bitmap),
						   O2NM_MAX_REGIONS,
						   o2hb_live_region_bitmap);
	if (!o2hb_debug_liveregions) {
		mlog_errno(ret);
		goto bail;
	}

	o2hb_debug_quorumregions =
			o2hb_debug_create(O2HB_DEBUG_QUORUMREGIONS,
					  o2hb_debug_dir,
					  &o2hb_db_quorumregions,
					  sizeof(*o2hb_db_quorumregions),
					  O2HB_DB_TYPE_QUORUMREGIONS,
					  sizeof(o2hb_quorum_region_bitmap),
					  O2NM_MAX_REGIONS,
					  o2hb_quorum_region_bitmap);
	if (!o2hb_debug_quorumregions) {
		mlog_errno(ret);
		goto bail;
	}

	o2hb_debug_failedregions =
			o2hb_debug_create(O2HB_DEBUG_FAILEDREGIONS,
					  o2hb_debug_dir,
					  &o2hb_db_failedregions,
					  sizeof(*o2hb_db_failedregions),
					  O2HB_DB_TYPE_FAILEDREGIONS,
					  sizeof(o2hb_failed_region_bitmap),
					  O2NM_MAX_REGIONS,
					  o2hb_failed_region_bitmap);
	if (!o2hb_debug_failedregions) {
		mlog_errno(ret);
		goto bail;
	}

	ret = 0;
bail:
	if (ret)
		o2hb_exit();

	return ret;
}

int o2hb_init(void)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(o2hb_callbacks); i++)
		INIT_LIST_HEAD(&o2hb_callbacks[i].list);

	for (i = 0; i < ARRAY_SIZE(o2hb_live_slots); i++)
		INIT_LIST_HEAD(&o2hb_live_slots[i]);

	INIT_LIST_HEAD(&o2hb_node_events);

	memset(o2hb_live_node_bitmap, 0, sizeof(o2hb_live_node_bitmap));
	memset(o2hb_region_bitmap, 0, sizeof(o2hb_region_bitmap));
	memset(o2hb_live_region_bitmap, 0, sizeof(o2hb_live_region_bitmap));
	memset(o2hb_quorum_region_bitmap, 0, sizeof(o2hb_quorum_region_bitmap));
	memset(o2hb_failed_region_bitmap, 0, sizeof(o2hb_failed_region_bitmap));

	o2hb_dependent_users = 0;

	return o2hb_debug_init();
}

/* if we're already in a callback then we're already serialized by the sem */
static void o2hb_fill_node_map_from_callback(unsigned long *map,
					     unsigned bytes)
{
	BUG_ON(bytes < (BITS_TO_LONGS(O2NM_MAX_NODES) * sizeof(unsigned long)));

	memcpy(map, &o2hb_live_node_bitmap, bytes);
}

/*
 * get a map of all nodes that are heartbeating in any regions
 */
void o2hb_fill_node_map(unsigned long *map, unsigned bytes)
{
	/* callers want to serialize this map and callbacks so that they
	 * can trust that they don't miss nodes coming to the party */
	down_read(&o2hb_callback_sem);
	spin_lock(&o2hb_live_lock);
	o2hb_fill_node_map_from_callback(map, bytes);
	spin_unlock(&o2hb_live_lock);
	up_read(&o2hb_callback_sem);
}
EXPORT_SYMBOL_GPL(o2hb_fill_node_map);

/*
 * heartbeat configfs bits.  The heartbeat set is a default set under
 * the cluster set in nodemanager.c.
 */

static struct o2hb_region *to_o2hb_region(struct config_item *item)
{
	return item ? container_of(item, struct o2hb_region, hr_item) : NULL;
}

/* drop_item only drops its ref after killing the thread, nothing should
 * be using the region anymore.  this has to clean up any state that
 * attributes might have built up. */
static void o2hb_region_release(struct config_item *item)
{
	int i;
	struct page *page;
	struct o2hb_region *reg = to_o2hb_region(item);

	mlog(ML_HEARTBEAT, "hb region release (%s)\n", reg->hr_dev_name);

	kfree(reg->hr_tmp_block);

	if (reg->hr_slot_data) {
		for (i = 0; i < reg->hr_num_pages; i++) {
			page = reg->hr_slot_data[i];
			if (page)
				__free_page(page);
		}
		kfree(reg->hr_slot_data);
	}

	if (reg->hr_bdev)
		blkdev_put(reg->hr_bdev, FMODE_READ|FMODE_WRITE);

	kfree(reg->hr_slots);

	kfree(reg->hr_db_regnum);
	kfree(reg->hr_db_livenodes);
	debugfs_remove(reg->hr_debug_livenodes);
	debugfs_remove(reg->hr_debug_regnum);
	debugfs_remove(reg->hr_debug_elapsed_time);
	debugfs_remove(reg->hr_debug_pinned);
	debugfs_remove(reg->hr_debug_dir);

	spin_lock(&o2hb_live_lock);
	list_del(&reg->hr_all_item);
	spin_unlock(&o2hb_live_lock);

	kfree(reg);
}

static int o2hb_read_block_input(struct o2hb_region *reg,
				 const char *page,
				 size_t count,
				 unsigned long *ret_bytes,
				 unsigned int *ret_bits)
{
	unsigned long bytes;
	char *p = (char *)page;

	bytes = simple_strtoul(p, &p, 0);
	if (!p || (*p && (*p != '\n')))
		return -EINVAL;

	/* Heartbeat and fs min / max block sizes are the same. */
	if (bytes > 4096 || bytes < 512)
		return -ERANGE;
	if (hweight16(bytes) != 1)
		return -EINVAL;

	if (ret_bytes)
		*ret_bytes = bytes;
	if (ret_bits)
		*ret_bits = ffs(bytes) - 1;

	return 0;
}

static ssize_t o2hb_region_block_bytes_read(struct o2hb_region *reg,
					    char *page)
{
	return sprintf(page, "%u\n", reg->hr_block_bytes);
}

static ssize_t o2hb_region_block_bytes_write(struct o2hb_region *reg,
					     const char *page,
					     size_t count)
{
	int status;
	unsigned long block_bytes;
	unsigned int block_bits;

	if (reg->hr_bdev)
		return -EINVAL;

	status = o2hb_read_block_input(reg, page, count,
				       &block_bytes, &block_bits);
	if (status)
		return status;

	reg->hr_block_bytes = (unsigned int)block_bytes;
	reg->hr_block_bits = block_bits;

	return count;
}

static ssize_t o2hb_region_start_block_read(struct o2hb_region *reg,
					    char *page)
{
	return sprintf(page, "%llu\n", reg->hr_start_block);
}

static ssize_t o2hb_region_start_block_write(struct o2hb_region *reg,
					     const char *page,
					     size_t count)
{
	unsigned long long tmp;
	char *p = (char *)page;

	if (reg->hr_bdev)
		return -EINVAL;

	tmp = simple_strtoull(p, &p, 0);
	if (!p || (*p && (*p != '\n')))
		return -EINVAL;

	reg->hr_start_block = tmp;

	return count;
}

static ssize_t o2hb_region_blocks_read(struct o2hb_region *reg,
				       char *page)
{
	return sprintf(page, "%d\n", reg->hr_blocks);
}

static ssize_t o2hb_region_blocks_write(struct o2hb_region *reg,
					const char *page,
					size_t count)
{
	unsigned long tmp;
	char *p = (char *)page;

	if (reg->hr_bdev)
		return -EINVAL;

	tmp = simple_strtoul(p, &p, 0);
	if (!p || (*p && (*p != '\n')))
		return -EINVAL;

	if (tmp > O2NM_MAX_NODES || tmp == 0)
		return -ERANGE;

	reg->hr_blocks = (unsigned int)tmp;

	return count;
}

static ssize_t o2hb_region_dev_read(struct o2hb_region *reg,
				    char *page)
{
	unsigned int ret = 0;

	if (reg->hr_bdev)
		ret = sprintf(page, "%s\n", reg->hr_dev_name);

	return ret;
}

static void o2hb_init_region_params(struct o2hb_region *reg)
{
	reg->hr_slots_per_page = PAGE_CACHE_SIZE >> reg->hr_block_bits;
	reg->hr_timeout_ms = O2HB_REGION_TIMEOUT_MS;

	mlog(ML_HEARTBEAT, "hr_start_block = %llu, hr_blocks = %u\n",
	     reg->hr_start_block, reg->hr_blocks);
	mlog(ML_HEARTBEAT, "hr_block_bytes = %u, hr_block_bits = %u\n",
	     reg->hr_block_bytes, reg->hr_block_bits);
	mlog(ML_HEARTBEAT, "hr_timeout_ms = %u\n", reg->hr_timeout_ms);
	mlog(ML_HEARTBEAT, "dead threshold = %u\n", o2hb_dead_threshold);
}

static int o2hb_map_slot_data(struct o2hb_region *reg)
{
	int i, j;
	unsigned int last_slot;
	unsigned int spp = reg->hr_slots_per_page;
	struct page *page;
	char *raw;
	struct o2hb_disk_slot *slot;

	reg->hr_tmp_block = kmalloc(reg->hr_block_bytes, GFP_KERNEL);
	if (reg->hr_tmp_block == NULL) {
		mlog_errno(-ENOMEM);
		return -ENOMEM;
	}

	reg->hr_slots = kcalloc(reg->hr_blocks,
				sizeof(struct o2hb_disk_slot), GFP_KERNEL);
	if (reg->hr_slots == NULL) {
		mlog_errno(-ENOMEM);
		return -ENOMEM;
	}

	for(i = 0; i < reg->hr_blocks; i++) {
		slot = &reg->hr_slots[i];
		slot->ds_node_num = i;
		INIT_LIST_HEAD(&slot->ds_live_item);
		slot->ds_raw_block = NULL;
	}

	reg->hr_num_pages = (reg->hr_blocks + spp - 1) / spp;
	mlog(ML_HEARTBEAT, "Going to require %u pages to cover %u blocks "
			   "at %u blocks per page\n",
	     reg->hr_num_pages, reg->hr_blocks, spp);

	reg->hr_slot_data = kcalloc(reg->hr_num_pages, sizeof(struct page *),
				    GFP_KERNEL);
	if (!reg->hr_slot_data) {
		mlog_errno(-ENOMEM);
		return -ENOMEM;
	}

	for(i = 0; i < reg->hr_num_pages; i++) {
		page = alloc_page(GFP_KERNEL);
		if (!page) {
			mlog_errno(-ENOMEM);
			return -ENOMEM;
		}

		reg->hr_slot_data[i] = page;

		last_slot = i * spp;
		raw = page_address(page);
		for (j = 0;
		     (j < spp) && ((j + last_slot) < reg->hr_blocks);
		     j++) {
			BUG_ON((j + last_slot) >= reg->hr_blocks);

			slot = &reg->hr_slots[j + last_slot];
			slot->ds_raw_block =
				(struct o2hb_disk_heartbeat_block *) raw;

			raw += reg->hr_block_bytes;
		}
	}

	return 0;
}

/* Read in all the slots available and populate the tracking
 * structures so that we can start with a baseline idea of what's
 * there. */
static int o2hb_populate_slot_data(struct o2hb_region *reg)
{
	int ret, i;
	struct o2hb_disk_slot *slot;
	struct o2hb_disk_heartbeat_block *hb_block;

	ret = o2hb_read_slots(reg, reg->hr_blocks);
	if (ret) {
		mlog_errno(ret);
		goto out;
	}

	/* We only want to get an idea of the values initially in each
	 * slot, so we do no verification - o2hb_check_slot will
	 * actually determine if each configured slot is valid and
	 * whether any values have changed. */
	for(i = 0; i < reg->hr_blocks; i++) {
		slot = &reg->hr_slots[i];
		hb_block = (struct o2hb_disk_heartbeat_block *) slot->ds_raw_block;

		/* Only fill the values that o2hb_check_slot uses to
		 * determine changing slots */
		slot->ds_last_time = le64_to_cpu(hb_block->hb_seq);
		slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation);
	}

out:
	return ret;
}

/* this is acting as commit; we set up all of hr_bdev and hr_task or nothing */
static ssize_t o2hb_region_dev_write(struct o2hb_region *reg,
				     const char *page,
				     size_t count)
{
	struct task_struct *hb_task;
	long fd;
	int sectsize;
	char *p = (char *)page;
	struct fd f;
	struct inode *inode;
	ssize_t ret = -EINVAL;
	int live_threshold;

	if (reg->hr_bdev)
		goto out;

	/* We can't heartbeat without having had our node number
	 * configured yet. */
	if (o2nm_this_node() == O2NM_MAX_NODES)
		goto out;

	fd = simple_strtol(p, &p, 0);
	if (!p || (*p && (*p != '\n')))
		goto out;

	if (fd < 0 || fd >= INT_MAX)
		goto out;

	f = fdget(fd);
	if (f.file == NULL)
		goto out;

	if (reg->hr_blocks == 0 || reg->hr_start_block == 0 ||
	    reg->hr_block_bytes == 0)
		goto out2;

	inode = igrab(f.file->f_mapping->host);
	if (inode == NULL)
		goto out2;

	if (!S_ISBLK(inode->i_mode))
		goto out3;

	reg->hr_bdev = I_BDEV(f.file->f_mapping->host);
	ret = blkdev_get(reg->hr_bdev, FMODE_WRITE | FMODE_READ, NULL);
	if (ret) {
		reg->hr_bdev = NULL;
		goto out3;
	}
	inode = NULL;

	bdevname(reg->hr_bdev, reg->hr_dev_name);

	sectsize = bdev_logical_block_size(reg->hr_bdev);
	if (sectsize != reg->hr_block_bytes) {
		mlog(ML_ERROR,
		     "blocksize %u incorrect for device, expected %d",
		     reg->hr_block_bytes, sectsize);
		ret = -EINVAL;
		goto out3;
	}

	o2hb_init_region_params(reg);

	/* Generation of zero is invalid */
	do {
		get_random_bytes(&reg->hr_generation,
				 sizeof(reg->hr_generation));
	} while (reg->hr_generation == 0);

	ret = o2hb_map_slot_data(reg);
	if (ret) {
		mlog_errno(ret);
		goto out3;
	}

	ret = o2hb_populate_slot_data(reg);
	if (ret) {
		mlog_errno(ret);
		goto out3;
	}

	INIT_DELAYED_WORK(&reg->hr_write_timeout_work, o2hb_write_timeout);

	/*
	 * A node is considered live after it has beat LIVE_THRESHOLD
	 * times.  We're not steady until we've given them a chance
	 * _after_ our first read.
	 * The default threshold is bare minimum so as to limit the delay
	 * during mounts. For global heartbeat, the threshold doubled for the
	 * first region.
	 */
	live_threshold = O2HB_LIVE_THRESHOLD;
	if (o2hb_global_heartbeat_active()) {
		spin_lock(&o2hb_live_lock);
		if (o2hb_pop_count(&o2hb_region_bitmap, O2NM_MAX_REGIONS) == 1)
			live_threshold <<= 1;
		spin_unlock(&o2hb_live_lock);
	}
	++live_threshold;
	atomic_set(&reg->hr_steady_iterations, live_threshold);
	/* unsteady_iterations is double the steady_iterations */
	atomic_set(&reg->hr_unsteady_iterations, (live_threshold << 1));

	hb_task = kthread_run(o2hb_thread, reg, "o2hb-%s",
			      reg->hr_item.ci_name);
	if (IS_ERR(hb_task)) {
		ret = PTR_ERR(hb_task);
		mlog_errno(ret);
		goto out3;
	}

	spin_lock(&o2hb_live_lock);
	reg->hr_task = hb_task;
	spin_unlock(&o2hb_live_lock);

	ret = wait_event_interruptible(o2hb_steady_queue,
				atomic_read(&reg->hr_steady_iterations) == 0);
	if (ret) {
		atomic_set(&reg->hr_steady_iterations, 0);
		reg->hr_aborted_start = 1;
	}

	if (reg->hr_aborted_start) {
		ret = -EIO;
		goto out3;
	}

	/* Ok, we were woken.  Make sure it wasn't by drop_item() */
	spin_lock(&o2hb_live_lock);
	hb_task = reg->hr_task;
	if (o2hb_global_heartbeat_active())
		set_bit(reg->hr_region_num, o2hb_live_region_bitmap);
	spin_unlock(&o2hb_live_lock);

	if (hb_task)
		ret = count;
	else
		ret = -EIO;

	if (hb_task && o2hb_global_heartbeat_active())
		printk(KERN_NOTICE "o2hb: Heartbeat started on region %s (%s)\n",
		       config_item_name(&reg->hr_item), reg->hr_dev_name);

out3:
	iput(inode);
out2:
	fdput(f);
out:
	if (ret < 0) {
		if (reg->hr_bdev) {
			blkdev_put(reg->hr_bdev, FMODE_READ|FMODE_WRITE);
			reg->hr_bdev = NULL;
		}
	}
	return ret;
}

static ssize_t o2hb_region_pid_read(struct o2hb_region *reg,
                                      char *page)
{
	pid_t pid = 0;

	spin_lock(&o2hb_live_lock);
	if (reg->hr_task)
		pid = task_pid_nr(reg->hr_task);
	spin_unlock(&o2hb_live_lock);

	if (!pid)
		return 0;

	return sprintf(page, "%u\n", pid);
}

struct o2hb_region_attribute {
	struct configfs_attribute attr;
	ssize_t (*show)(struct o2hb_region *, char *);
	ssize_t (*store)(struct o2hb_region *, const char *, size_t);
};

static struct o2hb_region_attribute o2hb_region_attr_block_bytes = {
	.attr	= { .ca_owner = THIS_MODULE,
		    .ca_name = "block_bytes",
		    .ca_mode = S_IRUGO | S_IWUSR },
	.show	= o2hb_region_block_bytes_read,
	.store	= o2hb_region_block_bytes_write,
};

static struct o2hb_region_attribute o2hb_region_attr_start_block = {
	.attr	= { .ca_owner = THIS_MODULE,
		    .ca_name = "start_block",
		    .ca_mode = S_IRUGO | S_IWUSR },
	.show	= o2hb_region_start_block_read,
	.store	= o2hb_region_start_block_write,
};

static struct o2hb_region_attribute o2hb_region_attr_blocks = {
	.attr	= { .ca_owner = THIS_MODULE,
		    .ca_name = "blocks",
		    .ca_mode = S_IRUGO | S_IWUSR },
	.show	= o2hb_region_blocks_read,
	.store	= o2hb_region_blocks_write,
};

static struct o2hb_region_attribute o2hb_region_attr_dev = {
	.attr	= { .ca_owner = THIS_MODULE,
		    .ca_name = "dev",
		    .ca_mode = S_IRUGO | S_IWUSR },
	.show	= o2hb_region_dev_read,
	.store	= o2hb_region_dev_write,
};

static struct o2hb_region_attribute o2hb_region_attr_pid = {
       .attr   = { .ca_owner = THIS_MODULE,
                   .ca_name = "pid",
                   .ca_mode = S_IRUGO | S_IRUSR },
       .show   = o2hb_region_pid_read,
};

static struct configfs_attribute *o2hb_region_attrs[] = {
	&o2hb_region_attr_block_bytes.attr,
	&o2hb_region_attr_start_block.attr,
	&o2hb_region_attr_blocks.attr,
	&o2hb_region_attr_dev.attr,
	&o2hb_region_attr_pid.attr,
	NULL,
};

static ssize_t o2hb_region_show(struct config_item *item,
				struct configfs_attribute *attr,
				char *page)
{
	struct o2hb_region *reg = to_o2hb_region(item);
	struct o2hb_region_attribute *o2hb_region_attr =
		container_of(attr, struct o2hb_region_attribute, attr);
	ssize_t ret = 0;

	if (o2hb_region_attr->show)
		ret = o2hb_region_attr->show(reg, page);
	return ret;
}

static ssize_t o2hb_region_store(struct config_item *item,
				 struct configfs_attribute *attr,
				 const char *page, size_t count)
{
	struct o2hb_region *reg = to_o2hb_region(item);
	struct o2hb_region_attribute *o2hb_region_attr =
		container_of(attr, struct o2hb_region_attribute, attr);
	ssize_t ret = -EINVAL;

	if (o2hb_region_attr->store)
		ret = o2hb_region_attr->store(reg, page, count);
	return ret;
}

static struct configfs_item_operations o2hb_region_item_ops = {
	.release		= o2hb_region_release,
	.show_attribute		= o2hb_region_show,
	.store_attribute	= o2hb_region_store,
};

static struct config_item_type o2hb_region_type = {
	.ct_item_ops	= &o2hb_region_item_ops,
	.ct_attrs	= o2hb_region_attrs,
	.ct_owner	= THIS_MODULE,
};

/* heartbeat set */

struct o2hb_heartbeat_group {
	struct config_group hs_group;
	/* some stuff? */
};

static struct o2hb_heartbeat_group *to_o2hb_heartbeat_group(struct config_group *group)
{
	return group ?
		container_of(group, struct o2hb_heartbeat_group, hs_group)
		: NULL;
}

static int o2hb_debug_region_init(struct o2hb_region *reg, struct dentry *dir)
{
	int ret = -ENOMEM;

	reg->hr_debug_dir =
		debugfs_create_dir(config_item_name(&reg->hr_item), dir);
	if (!reg->hr_debug_dir) {
		mlog_errno(ret);
		goto bail;
	}

	reg->hr_debug_livenodes =
			o2hb_debug_create(O2HB_DEBUG_LIVENODES,
					  reg->hr_debug_dir,
					  &(reg->hr_db_livenodes),
					  sizeof(*(reg->hr_db_livenodes)),
					  O2HB_DB_TYPE_REGION_LIVENODES,
					  sizeof(reg->hr_live_node_bitmap),
					  O2NM_MAX_NODES, reg);
	if (!reg->hr_debug_livenodes) {
		mlog_errno(ret);
		goto bail;
	}

	reg->hr_debug_regnum =
			o2hb_debug_create(O2HB_DEBUG_REGION_NUMBER,
					  reg->hr_debug_dir,
					  &(reg->hr_db_regnum),
					  sizeof(*(reg->hr_db_regnum)),
					  O2HB_DB_TYPE_REGION_NUMBER,
					  0, O2NM_MAX_NODES, reg);
	if (!reg->hr_debug_regnum) {
		mlog_errno(ret);
		goto bail;
	}

	reg->hr_debug_elapsed_time =
			o2hb_debug_create(O2HB_DEBUG_REGION_ELAPSED_TIME,
					  reg->hr_debug_dir,
					  &(reg->hr_db_elapsed_time),
					  sizeof(*(reg->hr_db_elapsed_time)),
					  O2HB_DB_TYPE_REGION_ELAPSED_TIME,
					  0, 0, reg);
	if (!reg->hr_debug_elapsed_time) {
		mlog_errno(ret);
		goto bail;
	}

	reg->hr_debug_pinned =
			o2hb_debug_create(O2HB_DEBUG_REGION_PINNED,
					  reg->hr_debug_dir,
					  &(reg->hr_db_pinned),
					  sizeof(*(reg->hr_db_pinned)),
					  O2HB_DB_TYPE_REGION_PINNED,
					  0, 0, reg);
	if (!reg->hr_debug_pinned) {
		mlog_errno(ret);
		goto bail;
	}

	ret = 0;
bail:
	return ret;
}

static struct config_item *o2hb_heartbeat_group_make_item(struct config_group *group,
							  const char *name)
{
	struct o2hb_region *reg = NULL;
	int ret;

	reg = kzalloc(sizeof(struct o2hb_region), GFP_KERNEL);
	if (reg == NULL)
		return ERR_PTR(-ENOMEM);

	if (strlen(name) > O2HB_MAX_REGION_NAME_LEN) {
		ret = -ENAMETOOLONG;
		goto free;
	}

	spin_lock(&o2hb_live_lock);
	reg->hr_region_num = 0;
	if (o2hb_global_heartbeat_active()) {
		reg->hr_region_num = find_first_zero_bit(o2hb_region_bitmap,
							 O2NM_MAX_REGIONS);
		if (reg->hr_region_num >= O2NM_MAX_REGIONS) {
			spin_unlock(&o2hb_live_lock);
			ret = -EFBIG;
			goto free;
		}
		set_bit(reg->hr_region_num, o2hb_region_bitmap);
	}
	list_add_tail(&reg->hr_all_item, &o2hb_all_regions);
	spin_unlock(&o2hb_live_lock);

	config_item_init_type_name(&reg->hr_item, name, &o2hb_region_type);

	ret = o2hb_debug_region_init(reg, o2hb_debug_dir);
	if (ret) {
		config_item_put(&reg->hr_item);
		goto free;
	}

	return &reg->hr_item;
free:
	kfree(reg);
	return ERR_PTR(ret);
}

static void o2hb_heartbeat_group_drop_item(struct config_group *group,
					   struct config_item *item)
{
	struct task_struct *hb_task;
	struct o2hb_region *reg = to_o2hb_region(item);
	int quorum_region = 0;

	/* stop the thread when the user removes the region dir */
	spin_lock(&o2hb_live_lock);
	hb_task = reg->hr_task;
	reg->hr_task = NULL;
	reg->hr_item_dropped = 1;
	spin_unlock(&o2hb_live_lock);

	if (hb_task)
		kthread_stop(hb_task);

	if (o2hb_global_heartbeat_active()) {
		spin_lock(&o2hb_live_lock);
		clear_bit(reg->hr_region_num, o2hb_region_bitmap);
		clear_bit(reg->hr_region_num, o2hb_live_region_bitmap);
		if (test_bit(reg->hr_region_num, o2hb_quorum_region_bitmap))
			quorum_region = 1;
		clear_bit(reg->hr_region_num, o2hb_quorum_region_bitmap);
		spin_unlock(&o2hb_live_lock);
		printk(KERN_NOTICE "o2hb: Heartbeat %s on region %s (%s)\n",
		       ((atomic_read(&reg->hr_steady_iterations) == 0) ?
			"stopped" : "start aborted"), config_item_name(item),
		       reg->hr_dev_name);
	}

	/*
	 * If we're racing a dev_write(), we need to wake them.  They will
	 * check reg->hr_task
	 */
	if (atomic_read(&reg->hr_steady_iterations) != 0) {
		reg->hr_aborted_start = 1;
		atomic_set(&reg->hr_steady_iterations, 0);
		wake_up(&o2hb_steady_queue);
	}

	config_item_put(item);

	if (!o2hb_global_heartbeat_active() || !quorum_region)
		return;

	/*
	 * If global heartbeat active and there are dependent users,
	 * pin all regions if quorum region count <= CUT_OFF
	 */
	spin_lock(&o2hb_live_lock);

	if (!o2hb_dependent_users)
		goto unlock;

	if (o2hb_pop_count(&o2hb_quorum_region_bitmap,
			   O2NM_MAX_REGIONS) <= O2HB_PIN_CUT_OFF)
		o2hb_region_pin(NULL);

unlock:
	spin_unlock(&o2hb_live_lock);
}

struct o2hb_heartbeat_group_attribute {
	struct configfs_attribute attr;
	ssize_t (*show)(struct o2hb_heartbeat_group *, char *);
	ssize_t (*store)(struct o2hb_heartbeat_group *, const char *, size_t);
};

static ssize_t o2hb_heartbeat_group_show(struct config_item *item,
					 struct configfs_attribute *attr,
					 char *page)
{
	struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item));
	struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr =
		container_of(attr, struct o2hb_heartbeat_group_attribute, attr);
	ssize_t ret = 0;

	if (o2hb_heartbeat_group_attr->show)
		ret = o2hb_heartbeat_group_attr->show(reg, page);
	return ret;
}

static ssize_t o2hb_heartbeat_group_store(struct config_item *item,
					  struct configfs_attribute *attr,
					  const char *page, size_t count)
{
	struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item));
	struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr =
		container_of(attr, struct o2hb_heartbeat_group_attribute, attr);
	ssize_t ret = -EINVAL;

	if (o2hb_heartbeat_group_attr->store)
		ret = o2hb_heartbeat_group_attr->store(reg, page, count);
	return ret;
}

static ssize_t o2hb_heartbeat_group_threshold_show(struct o2hb_heartbeat_group *group,
						     char *page)
{
	return sprintf(page, "%u\n", o2hb_dead_threshold);
}

static ssize_t o2hb_heartbeat_group_threshold_store(struct o2hb_heartbeat_group *group,
						    const char *page,
						    size_t count)
{
	unsigned long tmp;
	char *p = (char *)page;

	tmp = simple_strtoul(p, &p, 10);
	if (!p || (*p && (*p != '\n')))
                return -EINVAL;

	/* this will validate ranges for us. */
	o2hb_dead_threshold_set((unsigned int) tmp);

	return count;
}

static
ssize_t o2hb_heartbeat_group_mode_show(struct o2hb_heartbeat_group *group,
				       char *page)
{
	return sprintf(page, "%s\n",
		       o2hb_heartbeat_mode_desc[o2hb_heartbeat_mode]);
}

static
ssize_t o2hb_heartbeat_group_mode_store(struct o2hb_heartbeat_group *group,
					const char *page, size_t count)
{
	unsigned int i;
	int ret;
	size_t len;

	len = (page[count - 1] == '\n') ? count - 1 : count;
	if (!len)
		return -EINVAL;

	for (i = 0; i < O2HB_HEARTBEAT_NUM_MODES; ++i) {
		if (strnicmp(page, o2hb_heartbeat_mode_desc[i], len))
			continue;

		ret = o2hb_global_hearbeat_mode_set(i);
		if (!ret)
			printk(KERN_NOTICE "o2hb: Heartbeat mode set to %s\n",
			       o2hb_heartbeat_mode_desc[i]);
		return count;
	}

	return -EINVAL;

}

static struct o2hb_heartbeat_group_attribute o2hb_heartbeat_group_attr_threshold = {
	.attr	= { .ca_owner = THIS_MODULE,
		    .ca_name = "dead_threshold",
		    .ca_mode = S_IRUGO | S_IWUSR },
	.show	= o2hb_heartbeat_group_threshold_show,
	.store	= o2hb_heartbeat_group_threshold_store,
};

static struct o2hb_heartbeat_group_attribute o2hb_heartbeat_group_attr_mode = {
	.attr   = { .ca_owner = THIS_MODULE,
		.ca_name = "mode",
		.ca_mode = S_IRUGO | S_IWUSR },
	.show   = o2hb_heartbeat_group_mode_show,
	.store  = o2hb_heartbeat_group_mode_store,
};

static struct configfs_attribute *o2hb_heartbeat_group_attrs[] = {
	&o2hb_heartbeat_group_attr_threshold.attr,
	&o2hb_heartbeat_group_attr_mode.attr,
	NULL,
};

static struct configfs_item_operations o2hb_hearbeat_group_item_ops = {
	.show_attribute		= o2hb_heartbeat_group_show,
	.store_attribute	= o2hb_heartbeat_group_store,
};

static struct configfs_group_operations o2hb_heartbeat_group_group_ops = {
	.make_item	= o2hb_heartbeat_group_make_item,
	.drop_item	= o2hb_heartbeat_group_drop_item,
};

static struct config_item_type o2hb_heartbeat_group_type = {
	.ct_group_ops	= &o2hb_heartbeat_group_group_ops,
	.ct_item_ops	= &o2hb_hearbeat_group_item_ops,
	.ct_attrs	= o2hb_heartbeat_group_attrs,
	.ct_owner	= THIS_MODULE,
};

/* this is just here to avoid touching group in heartbeat.h which the
 * entire damn world #includes */
struct config_group *o2hb_alloc_hb_set(void)
{
	struct o2hb_heartbeat_group *hs = NULL;
	struct config_group *ret = NULL;

	hs = kzalloc(sizeof(struct o2hb_heartbeat_group), GFP_KERNEL);
	if (hs == NULL)
		goto out;

	config_group_init_type_name(&hs->hs_group, "heartbeat",
				    &o2hb_heartbeat_group_type);

	ret = &hs->hs_group;
out:
	if (ret == NULL)
		kfree(hs);
	return ret;
}

void o2hb_free_hb_set(struct config_group *group)
{
	struct o2hb_heartbeat_group *hs = to_o2hb_heartbeat_group(group);
	kfree(hs);
}

/* hb callback registration and issuing */

static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type)
{
	if (type == O2HB_NUM_CB)
		return ERR_PTR(-EINVAL);

	return &o2hb_callbacks[type];
}

void o2hb_setup_callback(struct o2hb_callback_func *hc,
			 enum o2hb_callback_type type,
			 o2hb_cb_func *func,
			 void *data,
			 int priority)
{
	INIT_LIST_HEAD(&hc->hc_item);
	hc->hc_func = func;
	hc->hc_data = data;
	hc->hc_priority = priority;
	hc->hc_type = type;
	hc->hc_magic = O2HB_CB_MAGIC;
}
EXPORT_SYMBOL_GPL(o2hb_setup_callback);

/*
 * In local heartbeat mode, region_uuid passed matches the dlm domain name.
 * In global heartbeat mode, region_uuid passed is NULL.
 *
 * In local, we only pin the matching region. In global we pin all the active
 * regions.
 */
static int o2hb_region_pin(const char *region_uuid)
{
	int ret = 0, found = 0;
	struct o2hb_region *reg;
	char *uuid;

	assert_spin_locked(&o2hb_live_lock);

	list_for_each_entry(reg, &o2hb_all_regions, hr_all_item) {
		uuid = config_item_name(&reg->hr_item);

		/* local heartbeat */
		if (region_uuid) {
			if (strcmp(region_uuid, uuid))
				continue;
			found = 1;
		}

		if (reg->hr_item_pinned || reg->hr_item_dropped)
			goto skip_pin;

		/* Ignore ENOENT only for local hb (userdlm domain) */
		ret = o2nm_depend_item(&reg->hr_item);
		if (!ret) {
			mlog(ML_CLUSTER, "Pin region %s\n", uuid);
			reg->hr_item_pinned = 1;
		} else {
			if (ret == -ENOENT && found)
				ret = 0;
			else {
				mlog(ML_ERROR, "Pin region %s fails with %d\n",
				     uuid, ret);
				break;
			}
		}
skip_pin:
		if (found)
			break;
	}

	return ret;
}

/*
 * In local heartbeat mode, region_uuid passed matches the dlm domain name.
 * In global heartbeat mode, region_uuid passed is NULL.
 *
 * In local, we only unpin the matching region. In global we unpin all the
 * active regions.
 */
static void o2hb_region_unpin(const char *region_uuid)
{
	struct o2hb_region *reg;
	char *uuid;
	int found = 0;

	assert_spin_locked(&o2hb_live_lock);

	list_for_each_entry(reg, &o2hb_all_regions, hr_all_item) {
		uuid = config_item_name(&reg->hr_item);
		if (region_uuid) {
			if (strcmp(region_uuid, uuid))
				continue;
			found = 1;
		}

		if (reg->hr_item_pinned) {
			mlog(ML_CLUSTER, "Unpin region %s\n", uuid);
			o2nm_undepend_item(&reg->hr_item);
			reg->hr_item_pinned = 0;
		}
		if (found)
			break;
	}
}

static int o2hb_region_inc_user(const char *region_uuid)
{
	int ret = 0;

	spin_lock(&o2hb_live_lock);

	/* local heartbeat */
	if (!o2hb_global_heartbeat_active()) {
	    ret = o2hb_region_pin(region_uuid);
	    goto unlock;
	}

	/*
	 * if global heartbeat active and this is the first dependent user,
	 * pin all regions if quorum region count <= CUT_OFF
	 */
	o2hb_dependent_users++;
	if (o2hb_dependent_users > 1)
		goto unlock;

	if (o2hb_pop_count(&o2hb_quorum_region_bitmap,
			   O2NM_MAX_REGIONS) <= O2HB_PIN_CUT_OFF)
		ret = o2hb_region_pin(NULL);

unlock:
	spin_unlock(&o2hb_live_lock);
	return ret;
}

void o2hb_region_dec_user(const char *region_uuid)
{
	spin_lock(&o2hb_live_lock);

	/* local heartbeat */
	if (!o2hb_global_heartbeat_active()) {
	    o2hb_region_unpin(region_uuid);
	    goto unlock;
	}

	/*
	 * if global heartbeat active and there are no dependent users,
	 * unpin all quorum regions
	 */
	o2hb_dependent_users--;
	if (!o2hb_dependent_users)
		o2hb_region_unpin(NULL);

unlock:
	spin_unlock(&o2hb_live_lock);
}

int o2hb_register_callback(const char *region_uuid,
			   struct o2hb_callback_func *hc)
{
	struct o2hb_callback_func *tmp;
	struct list_head *iter;
	struct o2hb_callback *hbcall;
	int ret;

	BUG_ON(hc->hc_magic != O2HB_CB_MAGIC);
	BUG_ON(!list_empty(&hc->hc_item));

	hbcall = hbcall_from_type(hc->hc_type);
	if (IS_ERR(hbcall)) {
		ret = PTR_ERR(hbcall);
		goto out;
	}

	if (region_uuid) {
		ret = o2hb_region_inc_user(region_uuid);
		if (ret) {
			mlog_errno(ret);
			goto out;
		}
	}

	down_write(&o2hb_callback_sem);

	list_for_each(iter, &hbcall->list) {
		tmp = list_entry(iter, struct o2hb_callback_func, hc_item);
		if (hc->hc_priority < tmp->hc_priority) {
			list_add_tail(&hc->hc_item, iter);
			break;
		}
	}
	if (list_empty(&hc->hc_item))
		list_add_tail(&hc->hc_item, &hbcall->list);

	up_write(&o2hb_callback_sem);
	ret = 0;
out:
	mlog(ML_CLUSTER, "returning %d on behalf of %p for funcs %p\n",
	     ret, __builtin_return_address(0), hc);
	return ret;
}
EXPORT_SYMBOL_GPL(o2hb_register_callback);

void o2hb_unregister_callback(const char *region_uuid,
			      struct o2hb_callback_func *hc)
{
	BUG_ON(hc->hc_magic != O2HB_CB_MAGIC);

	mlog(ML_CLUSTER, "on behalf of %p for funcs %p\n",
	     __builtin_return_address(0), hc);

	/* XXX Can this happen _with_ a region reference? */
	if (list_empty(&hc->hc_item))
		return;

	if (region_uuid)
		o2hb_region_dec_user(region_uuid);

	down_write(&o2hb_callback_sem);

	list_del_init(&hc->hc_item);

	up_write(&o2hb_callback_sem);
}
EXPORT_SYMBOL_GPL(o2hb_unregister_callback);

int o2hb_check_node_heartbeating(u8 node_num)
{
	unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)];

	o2hb_fill_node_map(testing_map, sizeof(testing_map));
	if (!test_bit(node_num, testing_map)) {
		mlog(ML_HEARTBEAT,
		     "node (%u) does not have heartbeating enabled.\n",
		     node_num);
		return 0;
	}

	return 1;
}
EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating);

int o2hb_check_node_heartbeating_from_callback(u8 node_num)
{
	unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)];

	o2hb_fill_node_map_from_callback(testing_map, sizeof(testing_map));
	if (!test_bit(node_num, testing_map)) {
		mlog(ML_HEARTBEAT,
		     "node (%u) does not have heartbeating enabled.\n",
		     node_num);
		return 0;
	}

	return 1;
}
EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating_from_callback);

/* Makes sure our local node is configured with a node number, and is
 * heartbeating. */
int o2hb_check_local_node_heartbeating(void)
{
	u8 node_num;

	/* if this node was set then we have networking */
	node_num = o2nm_this_node();
	if (node_num == O2NM_MAX_NODES) {
		mlog(ML_HEARTBEAT, "this node has not been configured.\n");
		return 0;
	}

	return o2hb_check_node_heartbeating(node_num);
}
EXPORT_SYMBOL_GPL(o2hb_check_local_node_heartbeating);

/*
 * this is just a hack until we get the plumbing which flips file systems
 * read only and drops the hb ref instead of killing the node dead.
 */
void o2hb_stop_all_regions(void)
{
	struct o2hb_region *reg;

	mlog(ML_ERROR, "stopping heartbeat on all active regions.\n");

	spin_lock(&o2hb_live_lock);

	list_for_each_entry(reg, &o2hb_all_regions, hr_all_item)
		reg->hr_unclean_stop = 1;

	spin_unlock(&o2hb_live_lock);
}
EXPORT_SYMBOL_GPL(o2hb_stop_all_regions);

int o2hb_get_all_regions(char *region_uuids, u8 max_regions)
{
	struct o2hb_region *reg;
	int numregs = 0;
	char *p;

	spin_lock(&o2hb_live_lock);

	p = region_uuids;
	list_for_each_entry(reg, &o2hb_all_regions, hr_all_item) {
		mlog(0, "Region: %s\n", config_item_name(&reg->hr_item));
		if (numregs < max_regions) {
			memcpy(p, config_item_name(&reg->hr_item),
			       O2HB_MAX_REGION_NAME_LEN);
			p += O2HB_MAX_REGION_NAME_LEN;
		}
		numregs++;
	}

	spin_unlock(&o2hb_live_lock);

	return numregs;
}
EXPORT_SYMBOL_GPL(o2hb_get_all_regions);

int o2hb_global_heartbeat_active(void)
{
	return (o2hb_heartbeat_mode == O2HB_HEARTBEAT_GLOBAL);
}
EXPORT_SYMBOL(o2hb_global_heartbeat_active);