/* * linux/kernel/time/tick-broadcast.c * * This file contains functions which emulate a local clock-event * device via a broadcast event source. * * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner * * This code is licenced under the GPL version 2. For details see * kernel-base/COPYING. */ #include <linux/cpu.h> #include <linux/err.h> #include <linux/hrtimer.h> #include <linux/interrupt.h> #include <linux/percpu.h> #include <linux/profile.h> #include <linux/sched.h> #include <linux/smp.h> #include "tick-internal.h" /* * Broadcast support for broken x86 hardware, where the local apic * timer stops in C3 state. */ static struct tick_device tick_broadcast_device; static cpumask_var_t tick_broadcast_mask; static cpumask_var_t tmpmask; static DEFINE_RAW_SPINLOCK(tick_broadcast_lock); static int tick_broadcast_force; #ifdef CONFIG_TICK_ONESHOT static void tick_broadcast_clear_oneshot(int cpu); #else static inline void tick_broadcast_clear_oneshot(int cpu) { } #endif /* * Debugging: see timer_list.c */ struct tick_device *tick_get_broadcast_device(void) { return &tick_broadcast_device; } struct cpumask *tick_get_broadcast_mask(void) { return tick_broadcast_mask; } /* * Start the device in periodic mode */ static void tick_broadcast_start_periodic(struct clock_event_device *bc) { if (bc) tick_setup_periodic(bc, 1); } /* * Check, if the device can be utilized as broadcast device: */ int tick_check_broadcast_device(struct clock_event_device *dev) { struct clock_event_device *cur = tick_broadcast_device.evtdev; if ((dev->features & CLOCK_EVT_FEAT_DUMMY) || (tick_broadcast_device.evtdev && tick_broadcast_device.evtdev->rating >= dev->rating) || (dev->features & CLOCK_EVT_FEAT_C3STOP)) return 0; clockevents_exchange_device(tick_broadcast_device.evtdev, dev); if (cur) cur->event_handler = clockevents_handle_noop; tick_broadcast_device.evtdev = dev; if (!cpumask_empty(tick_broadcast_mask)) tick_broadcast_start_periodic(dev); /* * Inform all cpus about this. We might be in a situation * where we did not switch to oneshot mode because the per cpu * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack * of a oneshot capable broadcast device. Without that * notification the systems stays stuck in periodic mode * forever. */ if (dev->features & CLOCK_EVT_FEAT_ONESHOT) tick_clock_notify(); return 1; } /* * Check, if the device is the broadcast device */ int tick_is_broadcast_device(struct clock_event_device *dev) { return (dev && tick_broadcast_device.evtdev == dev); } static void err_broadcast(const struct cpumask *mask) { pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n"); } static void tick_device_setup_broadcast_func(struct clock_event_device *dev) { if (!dev->broadcast) dev->broadcast = tick_broadcast; if (!dev->broadcast) { pr_warn_once("%s depends on broadcast, but no broadcast function available\n", dev->name); dev->broadcast = err_broadcast; } } /* * Check, if the device is disfunctional and a place holder, which * needs to be handled by the broadcast device. */ int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu) { unsigned long flags; int ret = 0; raw_spin_lock_irqsave(&tick_broadcast_lock, flags); /* * Devices might be registered with both periodic and oneshot * mode disabled. This signals, that the device needs to be * operated from the broadcast device and is a placeholder for * the cpu local device. */ if (!tick_device_is_functional(dev)) { dev->event_handler = tick_handle_periodic; tick_device_setup_broadcast_func(dev); cpumask_set_cpu(cpu, tick_broadcast_mask); tick_broadcast_start_periodic(tick_broadcast_device.evtdev); ret = 1; } else { /* * When the new device is not affected by the stop * feature and the cpu is marked in the broadcast mask * then clear the broadcast bit. */ if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) { int cpu = smp_processor_id(); cpumask_clear_cpu(cpu, tick_broadcast_mask); tick_broadcast_clear_oneshot(cpu); } else { tick_device_setup_broadcast_func(dev); } } raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); return ret; } #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST int tick_receive_broadcast(void) { struct tick_device *td = this_cpu_ptr(&tick_cpu_device); struct clock_event_device *evt = td->evtdev; if (!evt) return -ENODEV; if (!evt->event_handler) return -EINVAL; evt->event_handler(evt); return 0; } #endif /* * Broadcast the event to the cpus, which are set in the mask (mangled). */ static void tick_do_broadcast(struct cpumask *mask) { int cpu = smp_processor_id(); struct tick_device *td; /* * Check, if the current cpu is in the mask */ if (cpumask_test_cpu(cpu, mask)) { cpumask_clear_cpu(cpu, mask); td = &per_cpu(tick_cpu_device, cpu); td->evtdev->event_handler(td->evtdev); } if (!cpumask_empty(mask)) { /* * It might be necessary to actually check whether the devices * have different broadcast functions. For now, just use the * one of the first device. This works as long as we have this * misfeature only on x86 (lapic) */ td = &per_cpu(tick_cpu_device, cpumask_first(mask)); td->evtdev->broadcast(mask); } } /* * Periodic broadcast: * - invoke the broadcast handlers */ static void tick_do_periodic_broadcast(void) { raw_spin_lock(&tick_broadcast_lock); cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask); tick_do_broadcast(tmpmask); raw_spin_unlock(&tick_broadcast_lock); } /* * Event handler for periodic broadcast ticks */ static void tick_handle_periodic_broadcast(struct clock_event_device *dev) { ktime_t next; tick_do_periodic_broadcast(); /* * The device is in periodic mode. No reprogramming necessary: */ if (dev->mode == CLOCK_EVT_MODE_PERIODIC) return; /* * Setup the next period for devices, which do not have * periodic mode. We read dev->next_event first and add to it * when the event already expired. clockevents_program_event() * sets dev->next_event only when the event is really * programmed to the device. */ for (next = dev->next_event; ;) { next = ktime_add(next, tick_period); if (!clockevents_program_event(dev, next, false)) return; tick_do_periodic_broadcast(); } } /* * Powerstate information: The system enters/leaves a state, where * affected devices might stop */ static void tick_do_broadcast_on_off(unsigned long *reason) { struct clock_event_device *bc, *dev; struct tick_device *td; unsigned long flags; int cpu, bc_stopped; raw_spin_lock_irqsave(&tick_broadcast_lock, flags); cpu = smp_processor_id(); td = &per_cpu(tick_cpu_device, cpu); dev = td->evtdev; bc = tick_broadcast_device.evtdev; /* * Is the device not affected by the powerstate ? */ if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP)) goto out; if (!tick_device_is_functional(dev)) goto out; bc_stopped = cpumask_empty(tick_broadcast_mask); switch (*reason) { case CLOCK_EVT_NOTIFY_BROADCAST_ON: case CLOCK_EVT_NOTIFY_BROADCAST_FORCE: if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) { if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) clockevents_shutdown(dev); } if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE) tick_broadcast_force = 1; break; case CLOCK_EVT_NOTIFY_BROADCAST_OFF: if (!tick_broadcast_force && cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) { if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) tick_setup_periodic(dev, 0); } break; } if (cpumask_empty(tick_broadcast_mask)) { if (!bc_stopped) clockevents_shutdown(bc); } else if (bc_stopped) { if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) tick_broadcast_start_periodic(bc); else tick_broadcast_setup_oneshot(bc); } out: raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); } /* * Powerstate information: The system enters/leaves a state, where * affected devices might stop. */ void tick_broadcast_on_off(unsigned long reason, int *oncpu) { if (!cpumask_test_cpu(*oncpu, cpu_online_mask)) printk(KERN_ERR "tick-broadcast: ignoring broadcast for " "offline CPU #%d\n", *oncpu); else tick_do_broadcast_on_off(&reason); } /* * Set the periodic handler depending on broadcast on/off */ void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast) { if (!broadcast) dev->event_handler = tick_handle_periodic; else dev->event_handler = tick_handle_periodic_broadcast; } /* * Remove a CPU from broadcasting */ void tick_shutdown_broadcast(unsigned int *cpup) { struct clock_event_device *bc; unsigned long flags; unsigned int cpu = *cpup; raw_spin_lock_irqsave(&tick_broadcast_lock, flags); bc = tick_broadcast_device.evtdev; cpumask_clear_cpu(cpu, tick_broadcast_mask); if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { if (bc && cpumask_empty(tick_broadcast_mask)) clockevents_shutdown(bc); } raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); } void tick_suspend_broadcast(void) { struct clock_event_device *bc; unsigned long flags; raw_spin_lock_irqsave(&tick_broadcast_lock, flags); bc = tick_broadcast_device.evtdev; if (bc) clockevents_shutdown(bc); raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); } int tick_resume_broadcast(void) { struct clock_event_device *bc; unsigned long flags; int broadcast = 0; raw_spin_lock_irqsave(&tick_broadcast_lock, flags); bc = tick_broadcast_device.evtdev; if (bc) { clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME); switch (tick_broadcast_device.mode) { case TICKDEV_MODE_PERIODIC: if (!cpumask_empty(tick_broadcast_mask)) tick_broadcast_start_periodic(bc); broadcast = cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask); break; case TICKDEV_MODE_ONESHOT: if (!cpumask_empty(tick_broadcast_mask)) broadcast = tick_resume_broadcast_oneshot(bc); break; } } raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); return broadcast; } #ifdef CONFIG_TICK_ONESHOT static cpumask_var_t tick_broadcast_oneshot_mask; static cpumask_var_t tick_broadcast_pending_mask; static cpumask_var_t tick_broadcast_force_mask; /* * Exposed for debugging: see timer_list.c */ struct cpumask *tick_get_broadcast_oneshot_mask(void) { return tick_broadcast_oneshot_mask; } /* * Called before going idle with interrupts disabled. Checks whether a * broadcast event from the other core is about to happen. We detected * that in tick_broadcast_oneshot_control(). The callsite can use this * to avoid a deep idle transition as we are about to get the * broadcast IPI right away. */ int tick_check_broadcast_expired(void) { return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask); } /* * Set broadcast interrupt affinity */ static void tick_broadcast_set_affinity(struct clock_event_device *bc, const struct cpumask *cpumask) { if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ)) return; if (cpumask_equal(bc->cpumask, cpumask)) return; bc->cpumask = cpumask; irq_set_affinity(bc->irq, bc->cpumask); } static int tick_broadcast_set_event(struct clock_event_device *bc, int cpu, ktime_t expires, int force) { int ret; if (bc->mode != CLOCK_EVT_MODE_ONESHOT) clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT); ret = clockevents_program_event(bc, expires, force); if (!ret) tick_broadcast_set_affinity(bc, cpumask_of(cpu)); return ret; } int tick_resume_broadcast_oneshot(struct clock_event_device *bc) { clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT); return 0; } /* * Called from irq_enter() when idle was interrupted to reenable the * per cpu device. */ void tick_check_oneshot_broadcast(int cpu) { if (cpumask_test_cpu(cpu, tick_broadcast_oneshot_mask)) { struct tick_device *td = &per_cpu(tick_cpu_device, cpu); clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_ONESHOT); } } /* * Handle oneshot mode broadcasting */ static void tick_handle_oneshot_broadcast(struct clock_event_device *dev) { struct tick_device *td; ktime_t now, next_event; int cpu, next_cpu = 0; raw_spin_lock(&tick_broadcast_lock); again: dev->next_event.tv64 = KTIME_MAX; next_event.tv64 = KTIME_MAX; cpumask_clear(tmpmask); now = ktime_get(); /* Find all expired events */ for_each_cpu(cpu, tick_broadcast_oneshot_mask) { td = &per_cpu(tick_cpu_device, cpu); if (td->evtdev->next_event.tv64 <= now.tv64) { cpumask_set_cpu(cpu, tmpmask); /* * Mark the remote cpu in the pending mask, so * it can avoid reprogramming the cpu local * timer in tick_broadcast_oneshot_control(). */ cpumask_set_cpu(cpu, tick_broadcast_pending_mask); } else if (td->evtdev->next_event.tv64 < next_event.tv64) { next_event.tv64 = td->evtdev->next_event.tv64; next_cpu = cpu; } } /* * Remove the current cpu from the pending mask. The event is * delivered immediately in tick_do_broadcast() ! */ cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask); /* Take care of enforced broadcast requests */ cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask); cpumask_clear(tick_broadcast_force_mask); /* * Wakeup the cpus which have an expired event. */ tick_do_broadcast(tmpmask); /* * Two reasons for reprogram: * * - The global event did not expire any CPU local * events. This happens in dyntick mode, as the maximum PIT * delta is quite small. * * - There are pending events on sleeping CPUs which were not * in the event mask */ if (next_event.tv64 != KTIME_MAX) { /* * Rearm the broadcast device. If event expired, * repeat the above */ if (tick_broadcast_set_event(dev, next_cpu, next_event, 0)) goto again; } raw_spin_unlock(&tick_broadcast_lock); } /* * Powerstate information: The system enters/leaves a state, where * affected devices might stop */ void tick_broadcast_oneshot_control(unsigned long reason) { struct clock_event_device *bc, *dev; struct tick_device *td; unsigned long flags; ktime_t now; int cpu; /* * Periodic mode does not care about the enter/exit of power * states */ if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) return; /* * We are called with preemtion disabled from the depth of the * idle code, so we can't be moved away. */ cpu = smp_processor_id(); td = &per_cpu(tick_cpu_device, cpu); dev = td->evtdev; if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) return; bc = tick_broadcast_device.evtdev; raw_spin_lock_irqsave(&tick_broadcast_lock, flags); if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) { if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) { WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask)); clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN); /* * We only reprogram the broadcast timer if we * did not mark ourself in the force mask and * if the cpu local event is earlier than the * broadcast event. If the current CPU is in * the force mask, then we are going to be * woken by the IPI right away. */ if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) && dev->next_event.tv64 < bc->next_event.tv64) tick_broadcast_set_event(bc, cpu, dev->next_event, 1); } } else { if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) { clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT); /* * The cpu which was handling the broadcast * timer marked this cpu in the broadcast * pending mask and fired the broadcast * IPI. So we are going to handle the expired * event anyway via the broadcast IPI * handler. No need to reprogram the timer * with an already expired event. */ if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_pending_mask)) goto out; /* * Bail out if there is no next event. */ if (dev->next_event.tv64 == KTIME_MAX) goto out; /* * If the pending bit is not set, then we are * either the CPU handling the broadcast * interrupt or we got woken by something else. * * We are not longer in the broadcast mask, so * if the cpu local expiry time is already * reached, we would reprogram the cpu local * timer with an already expired event. * * This can lead to a ping-pong when we return * to idle and therefor rearm the broadcast * timer before the cpu local timer was able * to fire. This happens because the forced * reprogramming makes sure that the event * will happen in the future and depending on * the min_delta setting this might be far * enough out that the ping-pong starts. * * If the cpu local next_event has expired * then we know that the broadcast timer * next_event has expired as well and * broadcast is about to be handled. So we * avoid reprogramming and enforce that the * broadcast handler, which did not run yet, * will invoke the cpu local handler. * * We cannot call the handler directly from * here, because we might be in a NOHZ phase * and we did not go through the irq_enter() * nohz fixups. */ now = ktime_get(); if (dev->next_event.tv64 <= now.tv64) { cpumask_set_cpu(cpu, tick_broadcast_force_mask); goto out; } /* * We got woken by something else. Reprogram * the cpu local timer device. */ tick_program_event(dev->next_event, 1); } } out: raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); } /* * Reset the one shot broadcast for a cpu * * Called with tick_broadcast_lock held */ static void tick_broadcast_clear_oneshot(int cpu) { cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask); } static void tick_broadcast_init_next_event(struct cpumask *mask, ktime_t expires) { struct tick_device *td; int cpu; for_each_cpu(cpu, mask) { td = &per_cpu(tick_cpu_device, cpu); if (td->evtdev) td->evtdev->next_event = expires; } } /** * tick_broadcast_setup_oneshot - setup the broadcast device */ void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { int cpu = smp_processor_id(); /* Set it up only once ! */ if (bc->event_handler != tick_handle_oneshot_broadcast) { int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC; bc->event_handler = tick_handle_oneshot_broadcast; /* * We must be careful here. There might be other CPUs * waiting for periodic broadcast. We need to set the * oneshot_mask bits for those and program the * broadcast device to fire. */ cpumask_copy(tmpmask, tick_broadcast_mask); cpumask_clear_cpu(cpu, tmpmask); cpumask_or(tick_broadcast_oneshot_mask, tick_broadcast_oneshot_mask, tmpmask); if (was_periodic && !cpumask_empty(tmpmask)) { clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT); tick_broadcast_init_next_event(tmpmask, tick_next_period); tick_broadcast_set_event(bc, cpu, tick_next_period, 1); } else bc->next_event.tv64 = KTIME_MAX; } else { /* * The first cpu which switches to oneshot mode sets * the bit for all other cpus which are in the general * (periodic) broadcast mask. So the bit is set and * would prevent the first broadcast enter after this * to program the bc device. */ tick_broadcast_clear_oneshot(cpu); } } /* * Select oneshot operating mode for the broadcast device */ void tick_broadcast_switch_to_oneshot(void) { struct clock_event_device *bc; unsigned long flags; raw_spin_lock_irqsave(&tick_broadcast_lock, flags); tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT; bc = tick_broadcast_device.evtdev; if (bc) tick_broadcast_setup_oneshot(bc); raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); } /* * Remove a dead CPU from broadcasting */ void tick_shutdown_broadcast_oneshot(unsigned int *cpup) { unsigned long flags; unsigned int cpu = *cpup; raw_spin_lock_irqsave(&tick_broadcast_lock, flags); /* * Clear the broadcast mask flag for the dead cpu, but do not * stop the broadcast device! */ cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask); raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); } /* * Check, whether the broadcast device is in one shot mode */ int tick_broadcast_oneshot_active(void) { return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT; } /* * Check whether the broadcast device supports oneshot. */ bool tick_broadcast_oneshot_available(void) { struct clock_event_device *bc = tick_broadcast_device.evtdev; return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false; } #endif void __init tick_broadcast_init(void) { zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT); zalloc_cpumask_var(&tmpmask, GFP_NOWAIT); #ifdef CONFIG_TICK_ONESHOT zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT); zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT); zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT); #endif }