/* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * The Internet Protocol (IP) output module. * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Donald Becker, <becker@super.org> * Alan Cox, <Alan.Cox@linux.org> * Richard Underwood * Stefan Becker, <stefanb@yello.ping.de> * Jorge Cwik, <jorge@laser.satlink.net> * Arnt Gulbrandsen, <agulbra@nvg.unit.no> * Hirokazu Takahashi, <taka@valinux.co.jp> * * See ip_input.c for original log * * Fixes: * Alan Cox : Missing nonblock feature in ip_build_xmit. * Mike Kilburn : htons() missing in ip_build_xmit. * Bradford Johnson: Fix faulty handling of some frames when * no route is found. * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit * (in case if packet not accepted by * output firewall rules) * Mike McLagan : Routing by source * Alexey Kuznetsov: use new route cache * Andi Kleen: Fix broken PMTU recovery and remove * some redundant tests. * Vitaly E. Lavrov : Transparent proxy revived after year coma. * Andi Kleen : Replace ip_reply with ip_send_reply. * Andi Kleen : Split fast and slow ip_build_xmit path * for decreased register pressure on x86 * and more readibility. * Marc Boucher : When call_out_firewall returns FW_QUEUE, * silently drop skb instead of failing with -EPERM. * Detlev Wengorz : Copy protocol for fragments. * Hirokazu Takahashi: HW checksumming for outgoing UDP * datagrams. * Hirokazu Takahashi: sendfile() on UDP works now. */ #include <asm/uaccess.h> #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/highmem.h> #include <linux/slab.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/in.h> #include <linux/inet.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/proc_fs.h> #include <linux/stat.h> #include <linux/init.h> #include <net/snmp.h> #include <net/ip.h> #include <net/protocol.h> #include <net/route.h> #include <net/xfrm.h> #include <linux/skbuff.h> #include <net/sock.h> #include <net/arp.h> #include <net/icmp.h> #include <net/checksum.h> #include <net/inetpeer.h> #include <linux/igmp.h> #include <linux/netfilter_ipv4.h> #include <linux/netfilter_bridge.h> #include <linux/mroute.h> #include <linux/netlink.h> #include <linux/tcp.h> int sysctl_ip_default_ttl __read_mostly = IPDEFTTL; EXPORT_SYMBOL(sysctl_ip_default_ttl); /* Generate a checksum for an outgoing IP datagram. */ void ip_send_check(struct iphdr *iph) { iph->check = 0; iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); } EXPORT_SYMBOL(ip_send_check); int __ip_local_out(struct sk_buff *skb) { struct iphdr *iph = ip_hdr(skb); iph->tot_len = htons(skb->len); ip_send_check(iph); return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL, skb_dst(skb)->dev, dst_output); } int ip_local_out(struct sk_buff *skb) { int err; err = __ip_local_out(skb); if (likely(err == 1)) err = dst_output(skb); return err; } EXPORT_SYMBOL_GPL(ip_local_out); static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst) { int ttl = inet->uc_ttl; if (ttl < 0) ttl = ip4_dst_hoplimit(dst); return ttl; } /* * Add an ip header to a skbuff and send it out. * */ int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk, __be32 saddr, __be32 daddr, struct ip_options_rcu *opt) { struct inet_sock *inet = inet_sk(sk); struct rtable *rt = skb_rtable(skb); struct iphdr *iph; /* Build the IP header. */ skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); skb_reset_network_header(skb); iph = ip_hdr(skb); iph->version = 4; iph->ihl = 5; iph->tos = inet->tos; if (ip_dont_fragment(sk, &rt->dst)) iph->frag_off = htons(IP_DF); else iph->frag_off = 0; iph->ttl = ip_select_ttl(inet, &rt->dst); iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); iph->saddr = saddr; iph->protocol = sk->sk_protocol; ip_select_ident(iph, &rt->dst, sk); if (opt && opt->opt.optlen) { iph->ihl += opt->opt.optlen>>2; ip_options_build(skb, &opt->opt, daddr, rt, 0); } skb->priority = sk->sk_priority; skb->mark = sk->sk_mark; /* Send it out. */ return ip_local_out(skb); } EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); static inline int ip_finish_output2(struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); struct rtable *rt = (struct rtable *)dst; struct net_device *dev = dst->dev; unsigned int hh_len = LL_RESERVED_SPACE(dev); struct neighbour *neigh; u32 nexthop; if (rt->rt_type == RTN_MULTICAST) { IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len); } else if (rt->rt_type == RTN_BROADCAST) IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len); /* Be paranoid, rather than too clever. */ if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { struct sk_buff *skb2; skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); if (skb2 == NULL) { kfree_skb(skb); return -ENOMEM; } if (skb->sk) skb_set_owner_w(skb2, skb->sk); consume_skb(skb); skb = skb2; } rcu_read_lock_bh(); nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr); neigh = __ipv4_neigh_lookup_noref(dev, nexthop); if (unlikely(!neigh)) neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); if (!IS_ERR(neigh)) { int res = dst_neigh_output(dst, neigh, skb); rcu_read_unlock_bh(); return res; } rcu_read_unlock_bh(); net_dbg_ratelimited("%s: No header cache and no neighbour!\n", __func__); kfree_skb(skb); return -EINVAL; } static inline int ip_skb_dst_mtu(struct sk_buff *skb) { struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL; return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ? skb_dst(skb)->dev->mtu : dst_mtu(skb_dst(skb)); } static int ip_finish_output(struct sk_buff *skb) { #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) /* Policy lookup after SNAT yielded a new policy */ if (skb_dst(skb)->xfrm != NULL) { IPCB(skb)->flags |= IPSKB_REROUTED; return dst_output(skb); } #endif if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb)) return ip_fragment(skb, ip_finish_output2); else return ip_finish_output2(skb); } int ip_mc_output(struct sk_buff *skb) { struct sock *sk = skb->sk; struct rtable *rt = skb_rtable(skb); struct net_device *dev = rt->dst.dev; /* * If the indicated interface is up and running, send the packet. */ IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len); skb->dev = dev; skb->protocol = htons(ETH_P_IP); /* * Multicasts are looped back for other local users */ if (rt->rt_flags&RTCF_MULTICAST) { if (sk_mc_loop(sk) #ifdef CONFIG_IP_MROUTE /* Small optimization: do not loopback not local frames, which returned after forwarding; they will be dropped by ip_mr_input in any case. Note, that local frames are looped back to be delivered to local recipients. This check is duplicated in ip_mr_input at the moment. */ && ((rt->rt_flags & RTCF_LOCAL) || !(IPCB(skb)->flags & IPSKB_FORWARDED)) #endif ) { struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); if (newskb) NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb, NULL, newskb->dev, dev_loopback_xmit); } /* Multicasts with ttl 0 must not go beyond the host */ if (ip_hdr(skb)->ttl == 0) { kfree_skb(skb); return 0; } } if (rt->rt_flags&RTCF_BROADCAST) { struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); if (newskb) NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb, NULL, newskb->dev, dev_loopback_xmit); } return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, skb->dev, ip_finish_output, !(IPCB(skb)->flags & IPSKB_REROUTED)); } int ip_output(struct sk_buff *skb) { struct net_device *dev = skb_dst(skb)->dev; IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len); skb->dev = dev; skb->protocol = htons(ETH_P_IP); return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, dev, ip_finish_output, !(IPCB(skb)->flags & IPSKB_REROUTED)); } /* * copy saddr and daddr, possibly using 64bit load/stores * Equivalent to : * iph->saddr = fl4->saddr; * iph->daddr = fl4->daddr; */ static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) { BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); memcpy(&iph->saddr, &fl4->saddr, sizeof(fl4->saddr) + sizeof(fl4->daddr)); } int ip_queue_xmit(struct sk_buff *skb, struct flowi *fl) { struct sock *sk = skb->sk; struct inet_sock *inet = inet_sk(sk); struct ip_options_rcu *inet_opt; struct flowi4 *fl4; struct rtable *rt; struct iphdr *iph; int res; /* Skip all of this if the packet is already routed, * f.e. by something like SCTP. */ rcu_read_lock(); inet_opt = rcu_dereference(inet->inet_opt); fl4 = &fl->u.ip4; rt = skb_rtable(skb); if (rt != NULL) goto packet_routed; /* Make sure we can route this packet. */ rt = (struct rtable *)__sk_dst_check(sk, 0); if (rt == NULL) { __be32 daddr; /* Use correct destination address if we have options. */ daddr = inet->inet_daddr; if (inet_opt && inet_opt->opt.srr) daddr = inet_opt->opt.faddr; /* If this fails, retransmit mechanism of transport layer will * keep trying until route appears or the connection times * itself out. */ rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, inet->inet_saddr, inet->inet_dport, inet->inet_sport, sk->sk_protocol, RT_CONN_FLAGS(sk), sk->sk_bound_dev_if); if (IS_ERR(rt)) goto no_route; sk_setup_caps(sk, &rt->dst); } skb_dst_set_noref(skb, &rt->dst); packet_routed: if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway) goto no_route; /* OK, we know where to send it, allocate and build IP header. */ skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); skb_reset_network_header(skb); iph = ip_hdr(skb); *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff)); if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df) iph->frag_off = htons(IP_DF); else iph->frag_off = 0; iph->ttl = ip_select_ttl(inet, &rt->dst); iph->protocol = sk->sk_protocol; ip_copy_addrs(iph, fl4); /* Transport layer set skb->h.foo itself. */ if (inet_opt && inet_opt->opt.optlen) { iph->ihl += inet_opt->opt.optlen >> 2; ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0); } ip_select_ident_more(iph, &rt->dst, sk, (skb_shinfo(skb)->gso_segs ?: 1) - 1); skb->priority = sk->sk_priority; skb->mark = sk->sk_mark; res = ip_local_out(skb); rcu_read_unlock(); return res; no_route: rcu_read_unlock(); IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES); kfree_skb(skb); return -EHOSTUNREACH; } EXPORT_SYMBOL(ip_queue_xmit); static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) { to->pkt_type = from->pkt_type; to->priority = from->priority; to->protocol = from->protocol; skb_dst_drop(to); skb_dst_copy(to, from); to->dev = from->dev; to->mark = from->mark; /* Copy the flags to each fragment. */ IPCB(to)->flags = IPCB(from)->flags; #ifdef CONFIG_NET_SCHED to->tc_index = from->tc_index; #endif nf_copy(to, from); #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) to->nf_trace = from->nf_trace; #endif #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) to->ipvs_property = from->ipvs_property; #endif skb_copy_secmark(to, from); } /* * This IP datagram is too large to be sent in one piece. Break it up into * smaller pieces (each of size equal to IP header plus * a block of the data of the original IP data part) that will yet fit in a * single device frame, and queue such a frame for sending. */ int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *)) { struct iphdr *iph; int ptr; struct net_device *dev; struct sk_buff *skb2; unsigned int mtu, hlen, left, len, ll_rs; int offset; __be16 not_last_frag; struct rtable *rt = skb_rtable(skb); int err = 0; dev = rt->dst.dev; /* * Point into the IP datagram header. */ iph = ip_hdr(skb); if (unlikely(((iph->frag_off & htons(IP_DF)) && !skb->local_df) || (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size > dst_mtu(&rt->dst)))) { IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS); icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, htonl(ip_skb_dst_mtu(skb))); kfree_skb(skb); return -EMSGSIZE; } /* * Setup starting values. */ hlen = iph->ihl * 4; mtu = dst_mtu(&rt->dst) - hlen; /* Size of data space */ #ifdef CONFIG_BRIDGE_NETFILTER if (skb->nf_bridge) mtu -= nf_bridge_mtu_reduction(skb); #endif IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; /* When frag_list is given, use it. First, check its validity: * some transformers could create wrong frag_list or break existing * one, it is not prohibited. In this case fall back to copying. * * LATER: this step can be merged to real generation of fragments, * we can switch to copy when see the first bad fragment. */ if (skb_has_frag_list(skb)) { struct sk_buff *frag, *frag2; int first_len = skb_pagelen(skb); if (first_len - hlen > mtu || ((first_len - hlen) & 7) || ip_is_fragment(iph) || skb_cloned(skb)) goto slow_path; skb_walk_frags(skb, frag) { /* Correct geometry. */ if (frag->len > mtu || ((frag->len & 7) && frag->next) || skb_headroom(frag) < hlen) goto slow_path_clean; /* Partially cloned skb? */ if (skb_shared(frag)) goto slow_path_clean; BUG_ON(frag->sk); if (skb->sk) { frag->sk = skb->sk; frag->destructor = sock_wfree; } skb->truesize -= frag->truesize; } /* Everything is OK. Generate! */ err = 0; offset = 0; frag = skb_shinfo(skb)->frag_list; skb_frag_list_init(skb); skb->data_len = first_len - skb_headlen(skb); skb->len = first_len; iph->tot_len = htons(first_len); iph->frag_off = htons(IP_MF); ip_send_check(iph); for (;;) { /* Prepare header of the next frame, * before previous one went down. */ if (frag) { frag->ip_summed = CHECKSUM_NONE; skb_reset_transport_header(frag); __skb_push(frag, hlen); skb_reset_network_header(frag); memcpy(skb_network_header(frag), iph, hlen); iph = ip_hdr(frag); iph->tot_len = htons(frag->len); ip_copy_metadata(frag, skb); if (offset == 0) ip_options_fragment(frag); offset += skb->len - hlen; iph->frag_off = htons(offset>>3); if (frag->next != NULL) iph->frag_off |= htons(IP_MF); /* Ready, complete checksum */ ip_send_check(iph); } err = output(skb); if (!err) IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES); if (err || !frag) break; skb = frag; frag = skb->next; skb->next = NULL; } if (err == 0) { IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS); return 0; } while (frag) { skb = frag->next; kfree_skb(frag); frag = skb; } IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS); return err; slow_path_clean: skb_walk_frags(skb, frag2) { if (frag2 == frag) break; frag2->sk = NULL; frag2->destructor = NULL; skb->truesize += frag2->truesize; } } slow_path: /* for offloaded checksums cleanup checksum before fragmentation */ if ((skb->ip_summed == CHECKSUM_PARTIAL) && skb_checksum_help(skb)) goto fail; iph = ip_hdr(skb); left = skb->len - hlen; /* Space per frame */ ptr = hlen; /* Where to start from */ /* for bridged IP traffic encapsulated inside f.e. a vlan header, * we need to make room for the encapsulating header */ ll_rs = LL_RESERVED_SPACE_EXTRA(rt->dst.dev, nf_bridge_pad(skb)); /* * Fragment the datagram. */ offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; not_last_frag = iph->frag_off & htons(IP_MF); /* * Keep copying data until we run out. */ while (left > 0) { len = left; /* IF: it doesn't fit, use 'mtu' - the data space left */ if (len > mtu) len = mtu; /* IF: we are not sending up to and including the packet end then align the next start on an eight byte boundary */ if (len < left) { len &= ~7; } /* * Allocate buffer. */ if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) { NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n"); err = -ENOMEM; goto fail; } /* * Set up data on packet */ ip_copy_metadata(skb2, skb); skb_reserve(skb2, ll_rs); skb_put(skb2, len + hlen); skb_reset_network_header(skb2); skb2->transport_header = skb2->network_header + hlen; /* * Charge the memory for the fragment to any owner * it might possess */ if (skb->sk) skb_set_owner_w(skb2, skb->sk); /* * Copy the packet header into the new buffer. */ skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen); /* * Copy a block of the IP datagram. */ if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len)) BUG(); left -= len; /* * Fill in the new header fields. */ iph = ip_hdr(skb2); iph->frag_off = htons((offset >> 3)); /* ANK: dirty, but effective trick. Upgrade options only if * the segment to be fragmented was THE FIRST (otherwise, * options are already fixed) and make it ONCE * on the initial skb, so that all the following fragments * will inherit fixed options. */ if (offset == 0) ip_options_fragment(skb); /* * Added AC : If we are fragmenting a fragment that's not the * last fragment then keep MF on each bit */ if (left > 0 || not_last_frag) iph->frag_off |= htons(IP_MF); ptr += len; offset += len; /* * Put this fragment into the sending queue. */ iph->tot_len = htons(len + hlen); ip_send_check(iph); err = output(skb2); if (err) goto fail; IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES); } consume_skb(skb); IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS); return err; fail: kfree_skb(skb); IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS); return err; } EXPORT_SYMBOL(ip_fragment); int ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) { struct iovec *iov = from; if (skb->ip_summed == CHECKSUM_PARTIAL) { if (memcpy_fromiovecend(to, iov, offset, len) < 0) return -EFAULT; } else { __wsum csum = 0; if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0) return -EFAULT; skb->csum = csum_block_add(skb->csum, csum, odd); } return 0; } EXPORT_SYMBOL(ip_generic_getfrag); static inline __wsum csum_page(struct page *page, int offset, int copy) { char *kaddr; __wsum csum; kaddr = kmap(page); csum = csum_partial(kaddr + offset, copy, 0); kunmap(page); return csum; } static inline int ip_ufo_append_data(struct sock *sk, struct sk_buff_head *queue, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int length, int hh_len, int fragheaderlen, int transhdrlen, int maxfraglen, unsigned int flags) { struct sk_buff *skb; int err; /* There is support for UDP fragmentation offload by network * device, so create one single skb packet containing complete * udp datagram */ if ((skb = skb_peek_tail(queue)) == NULL) { skb = sock_alloc_send_skb(sk, hh_len + fragheaderlen + transhdrlen + 20, (flags & MSG_DONTWAIT), &err); if (skb == NULL) return err; /* reserve space for Hardware header */ skb_reserve(skb, hh_len); /* create space for UDP/IP header */ skb_put(skb, fragheaderlen + transhdrlen); /* initialize network header pointer */ skb_reset_network_header(skb); /* initialize protocol header pointer */ skb->transport_header = skb->network_header + fragheaderlen; skb->ip_summed = CHECKSUM_PARTIAL; skb->csum = 0; /* specify the length of each IP datagram fragment */ skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen; skb_shinfo(skb)->gso_type = SKB_GSO_UDP; __skb_queue_tail(queue, skb); } return skb_append_datato_frags(sk, skb, getfrag, from, (length - transhdrlen)); } static int __ip_append_data(struct sock *sk, struct flowi4 *fl4, struct sk_buff_head *queue, struct inet_cork *cork, struct page_frag *pfrag, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int length, int transhdrlen, unsigned int flags) { struct inet_sock *inet = inet_sk(sk); struct sk_buff *skb; struct ip_options *opt = cork->opt; int hh_len; int exthdrlen; int mtu; int copy; int err; int offset = 0; unsigned int maxfraglen, fragheaderlen; int csummode = CHECKSUM_NONE; struct rtable *rt = (struct rtable *)cork->dst; skb = skb_peek_tail(queue); exthdrlen = !skb ? rt->dst.header_len : 0; mtu = cork->fragsize; hh_len = LL_RESERVED_SPACE(rt->dst.dev); fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; if (cork->length + length > 0xFFFF - fragheaderlen) { ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, mtu-exthdrlen); return -EMSGSIZE; } /* * transhdrlen > 0 means that this is the first fragment and we wish * it won't be fragmented in the future. */ if (transhdrlen && length + fragheaderlen <= mtu && rt->dst.dev->features & NETIF_F_V4_CSUM && !exthdrlen) csummode = CHECKSUM_PARTIAL; cork->length += length; if (((length > mtu) || (skb && skb_is_gso(skb))) && (sk->sk_protocol == IPPROTO_UDP) && (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len) { err = ip_ufo_append_data(sk, queue, getfrag, from, length, hh_len, fragheaderlen, transhdrlen, maxfraglen, flags); if (err) goto error; return 0; } /* So, what's going on in the loop below? * * We use calculated fragment length to generate chained skb, * each of segments is IP fragment ready for sending to network after * adding appropriate IP header. */ if (!skb) goto alloc_new_skb; while (length > 0) { /* Check if the remaining data fits into current packet. */ copy = mtu - skb->len; if (copy < length) copy = maxfraglen - skb->len; if (copy <= 0) { char *data; unsigned int datalen; unsigned int fraglen; unsigned int fraggap; unsigned int alloclen; struct sk_buff *skb_prev; alloc_new_skb: skb_prev = skb; if (skb_prev) fraggap = skb_prev->len - maxfraglen; else fraggap = 0; /* * If remaining data exceeds the mtu, * we know we need more fragment(s). */ datalen = length + fraggap; if (datalen > mtu - fragheaderlen) datalen = maxfraglen - fragheaderlen; fraglen = datalen + fragheaderlen; if ((flags & MSG_MORE) && !(rt->dst.dev->features&NETIF_F_SG)) alloclen = mtu; else alloclen = fraglen; alloclen += exthdrlen; /* The last fragment gets additional space at tail. * Note, with MSG_MORE we overallocate on fragments, * because we have no idea what fragment will be * the last. */ if (datalen == length + fraggap) alloclen += rt->dst.trailer_len; if (transhdrlen) { skb = sock_alloc_send_skb(sk, alloclen + hh_len + 15, (flags & MSG_DONTWAIT), &err); } else { skb = NULL; if (atomic_read(&sk->sk_wmem_alloc) <= 2 * sk->sk_sndbuf) skb = sock_wmalloc(sk, alloclen + hh_len + 15, 1, sk->sk_allocation); if (unlikely(skb == NULL)) err = -ENOBUFS; else /* only the initial fragment is time stamped */ cork->tx_flags = 0; } if (skb == NULL) goto error; /* * Fill in the control structures */ skb->ip_summed = csummode; skb->csum = 0; skb_reserve(skb, hh_len); skb_shinfo(skb)->tx_flags = cork->tx_flags; /* * Find where to start putting bytes. */ data = skb_put(skb, fraglen + exthdrlen); skb_set_network_header(skb, exthdrlen); skb->transport_header = (skb->network_header + fragheaderlen); data += fragheaderlen + exthdrlen; if (fraggap) { skb->csum = skb_copy_and_csum_bits( skb_prev, maxfraglen, data + transhdrlen, fraggap, 0); skb_prev->csum = csum_sub(skb_prev->csum, skb->csum); data += fraggap; pskb_trim_unique(skb_prev, maxfraglen); } copy = datalen - transhdrlen - fraggap; if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { err = -EFAULT; kfree_skb(skb); goto error; } offset += copy; length -= datalen - fraggap; transhdrlen = 0; exthdrlen = 0; csummode = CHECKSUM_NONE; /* * Put the packet on the pending queue. */ __skb_queue_tail(queue, skb); continue; } if (copy > length) copy = length; if (!(rt->dst.dev->features&NETIF_F_SG)) { unsigned int off; off = skb->len; if (getfrag(from, skb_put(skb, copy), offset, copy, off, skb) < 0) { __skb_trim(skb, off); err = -EFAULT; goto error; } } else { int i = skb_shinfo(skb)->nr_frags; err = -ENOMEM; if (!sk_page_frag_refill(sk, pfrag)) goto error; if (!skb_can_coalesce(skb, i, pfrag->page, pfrag->offset)) { err = -EMSGSIZE; if (i == MAX_SKB_FRAGS) goto error; __skb_fill_page_desc(skb, i, pfrag->page, pfrag->offset, 0); skb_shinfo(skb)->nr_frags = ++i; get_page(pfrag->page); } copy = min_t(int, copy, pfrag->size - pfrag->offset); if (getfrag(from, page_address(pfrag->page) + pfrag->offset, offset, copy, skb->len, skb) < 0) goto error_efault; pfrag->offset += copy; skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); skb->len += copy; skb->data_len += copy; skb->truesize += copy; atomic_add(copy, &sk->sk_wmem_alloc); } offset += copy; length -= copy; } return 0; error_efault: err = -EFAULT; error: cork->length -= length; IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); return err; } static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, struct ipcm_cookie *ipc, struct rtable **rtp) { struct inet_sock *inet = inet_sk(sk); struct ip_options_rcu *opt; struct rtable *rt; /* * setup for corking. */ opt = ipc->opt; if (opt) { if (cork->opt == NULL) { cork->opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation); if (unlikely(cork->opt == NULL)) return -ENOBUFS; } memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); cork->flags |= IPCORK_OPT; cork->addr = ipc->addr; } rt = *rtp; if (unlikely(!rt)) return -EFAULT; /* * We steal reference to this route, caller should not release it */ *rtp = NULL; cork->fragsize = inet->pmtudisc == IP_PMTUDISC_PROBE ? rt->dst.dev->mtu : dst_mtu(&rt->dst); cork->dst = &rt->dst; cork->length = 0; cork->tx_flags = ipc->tx_flags; return 0; } /* * ip_append_data() and ip_append_page() can make one large IP datagram * from many pieces of data. Each pieces will be holded on the socket * until ip_push_pending_frames() is called. Each piece can be a page * or non-page data. * * Not only UDP, other transport protocols - e.g. raw sockets - can use * this interface potentially. * * LATER: length must be adjusted by pad at tail, when it is required. */ int ip_append_data(struct sock *sk, struct flowi4 *fl4, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int length, int transhdrlen, struct ipcm_cookie *ipc, struct rtable **rtp, unsigned int flags) { struct inet_sock *inet = inet_sk(sk); int err; if (flags&MSG_PROBE) return 0; if (skb_queue_empty(&sk->sk_write_queue)) { err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); if (err) return err; } else { transhdrlen = 0; } return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, sk_page_frag(sk), getfrag, from, length, transhdrlen, flags); } ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, int offset, size_t size, int flags) { struct inet_sock *inet = inet_sk(sk); struct sk_buff *skb; struct rtable *rt; struct ip_options *opt = NULL; struct inet_cork *cork; int hh_len; int mtu; int len; int err; unsigned int maxfraglen, fragheaderlen, fraggap; if (inet->hdrincl) return -EPERM; if (flags&MSG_PROBE) return 0; if (skb_queue_empty(&sk->sk_write_queue)) return -EINVAL; cork = &inet->cork.base; rt = (struct rtable *)cork->dst; if (cork->flags & IPCORK_OPT) opt = cork->opt; if (!(rt->dst.dev->features&NETIF_F_SG)) return -EOPNOTSUPP; hh_len = LL_RESERVED_SPACE(rt->dst.dev); mtu = cork->fragsize; fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; if (cork->length + size > 0xFFFF - fragheaderlen) { ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, mtu); return -EMSGSIZE; } if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL) return -EINVAL; cork->length += size; if ((size + skb->len > mtu) && (sk->sk_protocol == IPPROTO_UDP) && (rt->dst.dev->features & NETIF_F_UFO)) { skb_shinfo(skb)->gso_size = mtu - fragheaderlen; skb_shinfo(skb)->gso_type = SKB_GSO_UDP; } while (size > 0) { int i; if (skb_is_gso(skb)) len = size; else { /* Check if the remaining data fits into current packet. */ len = mtu - skb->len; if (len < size) len = maxfraglen - skb->len; } if (len <= 0) { struct sk_buff *skb_prev; int alloclen; skb_prev = skb; fraggap = skb_prev->len - maxfraglen; alloclen = fragheaderlen + hh_len + fraggap + 15; skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation); if (unlikely(!skb)) { err = -ENOBUFS; goto error; } /* * Fill in the control structures */ skb->ip_summed = CHECKSUM_NONE; skb->csum = 0; skb_reserve(skb, hh_len); /* * Find where to start putting bytes. */ skb_put(skb, fragheaderlen + fraggap); skb_reset_network_header(skb); skb->transport_header = (skb->network_header + fragheaderlen); if (fraggap) { skb->csum = skb_copy_and_csum_bits(skb_prev, maxfraglen, skb_transport_header(skb), fraggap, 0); skb_prev->csum = csum_sub(skb_prev->csum, skb->csum); pskb_trim_unique(skb_prev, maxfraglen); } /* * Put the packet on the pending queue. */ __skb_queue_tail(&sk->sk_write_queue, skb); continue; } i = skb_shinfo(skb)->nr_frags; if (len > size) len = size; if (skb_can_coalesce(skb, i, page, offset)) { skb_frag_size_add(&skb_shinfo(skb)->frags[i-1], len); } else if (i < MAX_SKB_FRAGS) { get_page(page); skb_fill_page_desc(skb, i, page, offset, len); } else { err = -EMSGSIZE; goto error; } if (skb->ip_summed == CHECKSUM_NONE) { __wsum csum; csum = csum_page(page, offset, len); skb->csum = csum_block_add(skb->csum, csum, skb->len); } skb->len += len; skb->data_len += len; skb->truesize += len; atomic_add(len, &sk->sk_wmem_alloc); offset += len; size -= len; } return 0; error: cork->length -= size; IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); return err; } static void ip_cork_release(struct inet_cork *cork) { cork->flags &= ~IPCORK_OPT; kfree(cork->opt); cork->opt = NULL; dst_release(cork->dst); cork->dst = NULL; } /* * Combined all pending IP fragments on the socket as one IP datagram * and push them out. */ struct sk_buff *__ip_make_skb(struct sock *sk, struct flowi4 *fl4, struct sk_buff_head *queue, struct inet_cork *cork) { struct sk_buff *skb, *tmp_skb; struct sk_buff **tail_skb; struct inet_sock *inet = inet_sk(sk); struct net *net = sock_net(sk); struct ip_options *opt = NULL; struct rtable *rt = (struct rtable *)cork->dst; struct iphdr *iph; __be16 df = 0; __u8 ttl; if ((skb = __skb_dequeue(queue)) == NULL) goto out; tail_skb = &(skb_shinfo(skb)->frag_list); /* move skb->data to ip header from ext header */ if (skb->data < skb_network_header(skb)) __skb_pull(skb, skb_network_offset(skb)); while ((tmp_skb = __skb_dequeue(queue)) != NULL) { __skb_pull(tmp_skb, skb_network_header_len(skb)); *tail_skb = tmp_skb; tail_skb = &(tmp_skb->next); skb->len += tmp_skb->len; skb->data_len += tmp_skb->len; skb->truesize += tmp_skb->truesize; tmp_skb->destructor = NULL; tmp_skb->sk = NULL; } /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow * to fragment the frame generated here. No matter, what transforms * how transforms change size of the packet, it will come out. */ if (inet->pmtudisc < IP_PMTUDISC_DO) skb->local_df = 1; /* DF bit is set when we want to see DF on outgoing frames. * If local_df is set too, we still allow to fragment this frame * locally. */ if (inet->pmtudisc >= IP_PMTUDISC_DO || (skb->len <= dst_mtu(&rt->dst) && ip_dont_fragment(sk, &rt->dst))) df = htons(IP_DF); if (cork->flags & IPCORK_OPT) opt = cork->opt; if (rt->rt_type == RTN_MULTICAST) ttl = inet->mc_ttl; else ttl = ip_select_ttl(inet, &rt->dst); iph = (struct iphdr *)skb->data; iph->version = 4; iph->ihl = 5; iph->tos = inet->tos; iph->frag_off = df; iph->ttl = ttl; iph->protocol = sk->sk_protocol; ip_copy_addrs(iph, fl4); ip_select_ident(iph, &rt->dst, sk); if (opt) { iph->ihl += opt->optlen>>2; ip_options_build(skb, opt, cork->addr, rt, 0); } skb->priority = sk->sk_priority; skb->mark = sk->sk_mark; /* * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec * on dst refcount */ cork->dst = NULL; skb_dst_set(skb, &rt->dst); if (iph->protocol == IPPROTO_ICMP) icmp_out_count(net, ((struct icmphdr *) skb_transport_header(skb))->type); ip_cork_release(cork); out: return skb; } int ip_send_skb(struct net *net, struct sk_buff *skb) { int err; err = ip_local_out(skb); if (err) { if (err > 0) err = net_xmit_errno(err); if (err) IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); } return err; } int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) { struct sk_buff *skb; skb = ip_finish_skb(sk, fl4); if (!skb) return 0; /* Netfilter gets whole the not fragmented skb. */ return ip_send_skb(sock_net(sk), skb); } /* * Throw away all pending data on the socket. */ static void __ip_flush_pending_frames(struct sock *sk, struct sk_buff_head *queue, struct inet_cork *cork) { struct sk_buff *skb; while ((skb = __skb_dequeue_tail(queue)) != NULL) kfree_skb(skb); ip_cork_release(cork); } void ip_flush_pending_frames(struct sock *sk) { __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); } struct sk_buff *ip_make_skb(struct sock *sk, struct flowi4 *fl4, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int length, int transhdrlen, struct ipcm_cookie *ipc, struct rtable **rtp, unsigned int flags) { struct inet_cork cork; struct sk_buff_head queue; int err; if (flags & MSG_PROBE) return NULL; __skb_queue_head_init(&queue); cork.flags = 0; cork.addr = 0; cork.opt = NULL; err = ip_setup_cork(sk, &cork, ipc, rtp); if (err) return ERR_PTR(err); err = __ip_append_data(sk, fl4, &queue, &cork, ¤t->task_frag, getfrag, from, length, transhdrlen, flags); if (err) { __ip_flush_pending_frames(sk, &queue, &cork); return ERR_PTR(err); } return __ip_make_skb(sk, fl4, &queue, &cork); } /* * Fetch data from kernel space and fill in checksum if needed. */ static int ip_reply_glue_bits(void *dptr, char *to, int offset, int len, int odd, struct sk_buff *skb) { __wsum csum; csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0); skb->csum = csum_block_add(skb->csum, csum, odd); return 0; } /* * Generic function to send a packet as reply to another packet. * Used to send some TCP resets/acks so far. * * Use a fake percpu inet socket to avoid false sharing and contention. */ static DEFINE_PER_CPU(struct inet_sock, unicast_sock) = { .sk = { .__sk_common = { .skc_refcnt = ATOMIC_INIT(1), }, .sk_wmem_alloc = ATOMIC_INIT(1), .sk_allocation = GFP_ATOMIC, .sk_flags = (1UL << SOCK_USE_WRITE_QUEUE), }, .pmtudisc = IP_PMTUDISC_WANT, .uc_ttl = -1, }; void ip_send_unicast_reply(struct net *net, struct sk_buff *skb, __be32 daddr, __be32 saddr, const struct ip_reply_arg *arg, unsigned int len) { struct ip_options_data replyopts; struct ipcm_cookie ipc; struct flowi4 fl4; struct rtable *rt = skb_rtable(skb); struct sk_buff *nskb; struct sock *sk; struct inet_sock *inet; if (ip_options_echo(&replyopts.opt.opt, skb)) return; ipc.addr = daddr; ipc.opt = NULL; ipc.tx_flags = 0; if (replyopts.opt.opt.optlen) { ipc.opt = &replyopts.opt; if (replyopts.opt.opt.srr) daddr = replyopts.opt.opt.faddr; } flowi4_init_output(&fl4, arg->bound_dev_if, IP4_REPLY_MARK(net, skb->mark), RT_TOS(arg->tos), RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, ip_reply_arg_flowi_flags(arg), daddr, saddr, tcp_hdr(skb)->source, tcp_hdr(skb)->dest, arg->uid); security_skb_classify_flow(skb, flowi4_to_flowi(&fl4)); rt = ip_route_output_key(net, &fl4); if (IS_ERR(rt)) return; inet = &get_cpu_var(unicast_sock); inet->tos = arg->tos; sk = &inet->sk; sk->sk_priority = skb->priority; sk->sk_protocol = ip_hdr(skb)->protocol; sk->sk_bound_dev_if = arg->bound_dev_if; sock_net_set(sk, net); __skb_queue_head_init(&sk->sk_write_queue); sk->sk_sndbuf = sysctl_wmem_default; ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, len, 0, &ipc, &rt, MSG_DONTWAIT); nskb = skb_peek(&sk->sk_write_queue); if (nskb) { if (arg->csumoffset >= 0) *((__sum16 *)skb_transport_header(nskb) + arg->csumoffset) = csum_fold(csum_add(nskb->csum, arg->csum)); nskb->ip_summed = CHECKSUM_NONE; skb_orphan(nskb); skb_set_queue_mapping(nskb, skb_get_queue_mapping(skb)); ip_push_pending_frames(sk, &fl4); } put_cpu_var(unicast_sock); ip_rt_put(rt); } void __init ip_init(void) { ip_rt_init(); inet_initpeers(); #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS) igmp_mc_proc_init(); #endif }