#include <net/tcp.h> #include <net/tcp_memcontrol.h> #include <net/sock.h> #include <net/ip.h> #include <linux/nsproxy.h> #include <linux/memcontrol.h> #include <linux/module.h> static inline struct tcp_memcontrol *tcp_from_cgproto(struct cg_proto *cg_proto) { return container_of(cg_proto, struct tcp_memcontrol, cg_proto); } static void memcg_tcp_enter_memory_pressure(struct sock *sk) { if (sk->sk_cgrp->memory_pressure) *sk->sk_cgrp->memory_pressure = 1; } EXPORT_SYMBOL(memcg_tcp_enter_memory_pressure); int tcp_init_cgroup(struct mem_cgroup *memcg, struct cgroup_subsys *ss) { /* * The root cgroup does not use res_counters, but rather, * rely on the data already collected by the network * subsystem */ struct res_counter *res_parent = NULL; struct cg_proto *cg_proto, *parent_cg; struct tcp_memcontrol *tcp; struct mem_cgroup *parent = parent_mem_cgroup(memcg); struct net *net = current->nsproxy->net_ns; cg_proto = tcp_prot.proto_cgroup(memcg); if (!cg_proto) return 0; tcp = tcp_from_cgproto(cg_proto); tcp->tcp_prot_mem[0] = net->ipv4.sysctl_tcp_mem[0]; tcp->tcp_prot_mem[1] = net->ipv4.sysctl_tcp_mem[1]; tcp->tcp_prot_mem[2] = net->ipv4.sysctl_tcp_mem[2]; tcp->tcp_memory_pressure = 0; parent_cg = tcp_prot.proto_cgroup(parent); if (parent_cg) res_parent = parent_cg->memory_allocated; res_counter_init(&tcp->tcp_memory_allocated, res_parent); percpu_counter_init(&tcp->tcp_sockets_allocated, 0); cg_proto->enter_memory_pressure = memcg_tcp_enter_memory_pressure; cg_proto->memory_pressure = &tcp->tcp_memory_pressure; cg_proto->sysctl_mem = tcp->tcp_prot_mem; cg_proto->memory_allocated = &tcp->tcp_memory_allocated; cg_proto->sockets_allocated = &tcp->tcp_sockets_allocated; cg_proto->memcg = memcg; return 0; } EXPORT_SYMBOL(tcp_init_cgroup); void tcp_destroy_cgroup(struct mem_cgroup *memcg) { struct cg_proto *cg_proto; struct tcp_memcontrol *tcp; cg_proto = tcp_prot.proto_cgroup(memcg); if (!cg_proto) return; tcp = tcp_from_cgproto(cg_proto); percpu_counter_destroy(&tcp->tcp_sockets_allocated); } EXPORT_SYMBOL(tcp_destroy_cgroup); static int tcp_update_limit(struct mem_cgroup *memcg, u64 val) { struct net *net = current->nsproxy->net_ns; struct tcp_memcontrol *tcp; struct cg_proto *cg_proto; u64 old_lim; int i; int ret; cg_proto = tcp_prot.proto_cgroup(memcg); if (!cg_proto) return -EINVAL; if (val > RESOURCE_MAX) val = RESOURCE_MAX; tcp = tcp_from_cgproto(cg_proto); old_lim = res_counter_read_u64(&tcp->tcp_memory_allocated, RES_LIMIT); ret = res_counter_set_limit(&tcp->tcp_memory_allocated, val); if (ret) return ret; for (i = 0; i < 3; i++) tcp->tcp_prot_mem[i] = min_t(long, val >> PAGE_SHIFT, net->ipv4.sysctl_tcp_mem[i]); if (val == RESOURCE_MAX) clear_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags); else if (val != RESOURCE_MAX) { /* * The active bit needs to be written after the static_key * update. This is what guarantees that the socket activation * function is the last one to run. See sock_update_memcg() for * details, and note that we don't mark any socket as belonging * to this memcg until that flag is up. * * We need to do this, because static_keys will span multiple * sites, but we can't control their order. If we mark a socket * as accounted, but the accounting functions are not patched in * yet, we'll lose accounting. * * We never race with the readers in sock_update_memcg(), * because when this value change, the code to process it is not * patched in yet. * * The activated bit is used to guarantee that no two writers * will do the update in the same memcg. Without that, we can't * properly shutdown the static key. */ if (!test_and_set_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags)) static_key_slow_inc(&memcg_socket_limit_enabled); set_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags); } return 0; } static int tcp_cgroup_write(struct cgroup *cont, struct cftype *cft, const char *buffer) { struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); unsigned long long val; int ret = 0; switch (cft->private) { case RES_LIMIT: /* see memcontrol.c */ ret = res_counter_memparse_write_strategy(buffer, &val); if (ret) break; ret = tcp_update_limit(memcg, val); break; default: ret = -EINVAL; break; } return ret; } static u64 tcp_read_stat(struct mem_cgroup *memcg, int type, u64 default_val) { struct tcp_memcontrol *tcp; struct cg_proto *cg_proto; cg_proto = tcp_prot.proto_cgroup(memcg); if (!cg_proto) return default_val; tcp = tcp_from_cgproto(cg_proto); return res_counter_read_u64(&tcp->tcp_memory_allocated, type); } static u64 tcp_read_usage(struct mem_cgroup *memcg) { struct tcp_memcontrol *tcp; struct cg_proto *cg_proto; cg_proto = tcp_prot.proto_cgroup(memcg); if (!cg_proto) return atomic_long_read(&tcp_memory_allocated) << PAGE_SHIFT; tcp = tcp_from_cgproto(cg_proto); return res_counter_read_u64(&tcp->tcp_memory_allocated, RES_USAGE); } static u64 tcp_cgroup_read(struct cgroup *cont, struct cftype *cft) { struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); u64 val; switch (cft->private) { case RES_LIMIT: val = tcp_read_stat(memcg, RES_LIMIT, RESOURCE_MAX); break; case RES_USAGE: val = tcp_read_usage(memcg); break; case RES_FAILCNT: case RES_MAX_USAGE: val = tcp_read_stat(memcg, cft->private, 0); break; default: BUG(); } return val; } static int tcp_cgroup_reset(struct cgroup *cont, unsigned int event) { struct mem_cgroup *memcg; struct tcp_memcontrol *tcp; struct cg_proto *cg_proto; memcg = mem_cgroup_from_cont(cont); cg_proto = tcp_prot.proto_cgroup(memcg); if (!cg_proto) return 0; tcp = tcp_from_cgproto(cg_proto); switch (event) { case RES_MAX_USAGE: res_counter_reset_max(&tcp->tcp_memory_allocated); break; case RES_FAILCNT: res_counter_reset_failcnt(&tcp->tcp_memory_allocated); break; } return 0; } unsigned long long tcp_max_memory(const struct mem_cgroup *memcg) { struct tcp_memcontrol *tcp; struct cg_proto *cg_proto; cg_proto = tcp_prot.proto_cgroup((struct mem_cgroup *)memcg); if (!cg_proto) return 0; tcp = tcp_from_cgproto(cg_proto); return res_counter_read_u64(&tcp->tcp_memory_allocated, RES_LIMIT); } void tcp_prot_mem(struct mem_cgroup *memcg, long val, int idx) { struct tcp_memcontrol *tcp; struct cg_proto *cg_proto; cg_proto = tcp_prot.proto_cgroup(memcg); if (!cg_proto) return; tcp = tcp_from_cgproto(cg_proto); tcp->tcp_prot_mem[idx] = val; } static struct cftype tcp_files[] = { { .name = "kmem.tcp.limit_in_bytes", .write_string = tcp_cgroup_write, .read_u64 = tcp_cgroup_read, .private = RES_LIMIT, }, { .name = "kmem.tcp.usage_in_bytes", .read_u64 = tcp_cgroup_read, .private = RES_USAGE, }, { .name = "kmem.tcp.failcnt", .private = RES_FAILCNT, .trigger = tcp_cgroup_reset, .read_u64 = tcp_cgroup_read, }, { .name = "kmem.tcp.max_usage_in_bytes", .private = RES_MAX_USAGE, .trigger = tcp_cgroup_reset, .read_u64 = tcp_cgroup_read, }, { } /* terminate */ }; static int __init tcp_memcontrol_init(void) { WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, tcp_files)); return 0; } __initcall(tcp_memcontrol_init);