/* * Driver for NeoMagic 256AV and 256ZX chipsets. * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de> * * Based on nm256_audio.c OSS driver in linux kernel. * The original author of OSS nm256 driver wishes to remain anonymous, * so I just put my acknoledgment to him/her here. * The original author's web page is found at * http://www.uglx.org/sony.html * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <asm/io.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/mutex.h> #include <sound/core.h> #include <sound/info.h> #include <sound/control.h> #include <sound/pcm.h> #include <sound/ac97_codec.h> #include <sound/initval.h> #define CARD_NAME "NeoMagic 256AV/ZX" #define DRIVER_NAME "NM256" MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>"); MODULE_DESCRIPTION("NeoMagic NM256AV/ZX"); MODULE_LICENSE("GPL"); MODULE_SUPPORTED_DEVICE("{{NeoMagic,NM256AV}," "{NeoMagic,NM256ZX}}"); /* * some compile conditions. */ static int index = SNDRV_DEFAULT_IDX1; /* Index */ static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */ static int playback_bufsize = 16; static int capture_bufsize = 16; static bool force_ac97; /* disabled as default */ static int buffer_top; /* not specified */ static bool use_cache; /* disabled */ static bool vaio_hack; /* disabled */ static bool reset_workaround; static bool reset_workaround_2; module_param(index, int, 0444); MODULE_PARM_DESC(index, "Index value for " CARD_NAME " soundcard."); module_param(id, charp, 0444); MODULE_PARM_DESC(id, "ID string for " CARD_NAME " soundcard."); module_param(playback_bufsize, int, 0444); MODULE_PARM_DESC(playback_bufsize, "DAC frame size in kB for " CARD_NAME " soundcard."); module_param(capture_bufsize, int, 0444); MODULE_PARM_DESC(capture_bufsize, "ADC frame size in kB for " CARD_NAME " soundcard."); module_param(force_ac97, bool, 0444); MODULE_PARM_DESC(force_ac97, "Force to use AC97 codec for " CARD_NAME " soundcard."); module_param(buffer_top, int, 0444); MODULE_PARM_DESC(buffer_top, "Set the top address of audio buffer for " CARD_NAME " soundcard."); module_param(use_cache, bool, 0444); MODULE_PARM_DESC(use_cache, "Enable the cache for coefficient table access."); module_param(vaio_hack, bool, 0444); MODULE_PARM_DESC(vaio_hack, "Enable workaround for Sony VAIO notebooks."); module_param(reset_workaround, bool, 0444); MODULE_PARM_DESC(reset_workaround, "Enable AC97 RESET workaround for some laptops."); module_param(reset_workaround_2, bool, 0444); MODULE_PARM_DESC(reset_workaround_2, "Enable extended AC97 RESET workaround for some other laptops."); /* just for backward compatibility */ static bool enable; module_param(enable, bool, 0444); /* * hw definitions */ /* The BIOS signature. */ #define NM_SIGNATURE 0x4e4d0000 /* Signature mask. */ #define NM_SIG_MASK 0xffff0000 /* Size of the second memory area. */ #define NM_PORT2_SIZE 4096 /* The base offset of the mixer in the second memory area. */ #define NM_MIXER_OFFSET 0x600 /* The maximum size of a coefficient entry. */ #define NM_MAX_PLAYBACK_COEF_SIZE 0x5000 #define NM_MAX_RECORD_COEF_SIZE 0x1260 /* The interrupt register. */ #define NM_INT_REG 0xa04 /* And its bits. */ #define NM_PLAYBACK_INT 0x40 #define NM_RECORD_INT 0x100 #define NM_MISC_INT_1 0x4000 #define NM_MISC_INT_2 0x1 #define NM_ACK_INT(chip, X) snd_nm256_writew(chip, NM_INT_REG, (X) << 1) /* The AV's "mixer ready" status bit and location. */ #define NM_MIXER_STATUS_OFFSET 0xa04 #define NM_MIXER_READY_MASK 0x0800 #define NM_MIXER_PRESENCE 0xa06 #define NM_PRESENCE_MASK 0x0050 #define NM_PRESENCE_VALUE 0x0040 /* * For the ZX. It uses the same interrupt register, but it holds 32 * bits instead of 16. */ #define NM2_PLAYBACK_INT 0x10000 #define NM2_RECORD_INT 0x80000 #define NM2_MISC_INT_1 0x8 #define NM2_MISC_INT_2 0x2 #define NM2_ACK_INT(chip, X) snd_nm256_writel(chip, NM_INT_REG, (X)) /* The ZX's "mixer ready" status bit and location. */ #define NM2_MIXER_STATUS_OFFSET 0xa06 #define NM2_MIXER_READY_MASK 0x0800 /* The playback registers start from here. */ #define NM_PLAYBACK_REG_OFFSET 0x0 /* The record registers start from here. */ #define NM_RECORD_REG_OFFSET 0x200 /* The rate register is located 2 bytes from the start of the register area. */ #define NM_RATE_REG_OFFSET 2 /* Mono/stereo flag, number of bits on playback, and rate mask. */ #define NM_RATE_STEREO 1 #define NM_RATE_BITS_16 2 #define NM_RATE_MASK 0xf0 /* Playback enable register. */ #define NM_PLAYBACK_ENABLE_REG (NM_PLAYBACK_REG_OFFSET + 0x1) #define NM_PLAYBACK_ENABLE_FLAG 1 #define NM_PLAYBACK_ONESHOT 2 #define NM_PLAYBACK_FREERUN 4 /* Mutes the audio output. */ #define NM_AUDIO_MUTE_REG (NM_PLAYBACK_REG_OFFSET + 0x18) #define NM_AUDIO_MUTE_LEFT 0x8000 #define NM_AUDIO_MUTE_RIGHT 0x0080 /* Recording enable register. */ #define NM_RECORD_ENABLE_REG (NM_RECORD_REG_OFFSET + 0) #define NM_RECORD_ENABLE_FLAG 1 #define NM_RECORD_FREERUN 2 /* coefficient buffer pointer */ #define NM_COEFF_START_OFFSET 0x1c #define NM_COEFF_END_OFFSET 0x20 /* DMA buffer offsets */ #define NM_RBUFFER_START (NM_RECORD_REG_OFFSET + 0x4) #define NM_RBUFFER_END (NM_RECORD_REG_OFFSET + 0x10) #define NM_RBUFFER_WMARK (NM_RECORD_REG_OFFSET + 0xc) #define NM_RBUFFER_CURRP (NM_RECORD_REG_OFFSET + 0x8) #define NM_PBUFFER_START (NM_PLAYBACK_REG_OFFSET + 0x4) #define NM_PBUFFER_END (NM_PLAYBACK_REG_OFFSET + 0x14) #define NM_PBUFFER_WMARK (NM_PLAYBACK_REG_OFFSET + 0xc) #define NM_PBUFFER_CURRP (NM_PLAYBACK_REG_OFFSET + 0x8) struct nm256_stream { struct nm256 *chip; struct snd_pcm_substream *substream; int running; int suspended; u32 buf; /* offset from chip->buffer */ int bufsize; /* buffer size in bytes */ void __iomem *bufptr; /* mapped pointer */ unsigned long bufptr_addr; /* physical address of the mapped pointer */ int dma_size; /* buffer size of the substream in bytes */ int period_size; /* period size in bytes */ int periods; /* # of periods */ int shift; /* bit shifts */ int cur_period; /* current period # */ }; struct nm256 { struct snd_card *card; void __iomem *cport; /* control port */ struct resource *res_cport; /* its resource */ unsigned long cport_addr; /* physical address */ void __iomem *buffer; /* buffer */ struct resource *res_buffer; /* its resource */ unsigned long buffer_addr; /* buffer phyiscal address */ u32 buffer_start; /* start offset from pci resource 0 */ u32 buffer_end; /* end offset */ u32 buffer_size; /* total buffer size */ u32 all_coeff_buf; /* coefficient buffer */ u32 coeff_buf[2]; /* coefficient buffer for each stream */ unsigned int coeffs_current: 1; /* coeff. table is loaded? */ unsigned int use_cache: 1; /* use one big coef. table */ unsigned int reset_workaround: 1; /* Workaround for some laptops to avoid freeze */ unsigned int reset_workaround_2: 1; /* Extended workaround for some other laptops to avoid freeze */ unsigned int in_resume: 1; int mixer_base; /* register offset of ac97 mixer */ int mixer_status_offset; /* offset of mixer status reg. */ int mixer_status_mask; /* bit mask to test the mixer status */ int irq; int irq_acks; irq_handler_t interrupt; int badintrcount; /* counter to check bogus interrupts */ struct mutex irq_mutex; struct nm256_stream streams[2]; struct snd_ac97 *ac97; unsigned short *ac97_regs; /* register caches, only for valid regs */ struct snd_pcm *pcm; struct pci_dev *pci; spinlock_t reg_lock; }; /* * include coefficient table */ #include "nm256_coef.c" /* * PCI ids */ static DEFINE_PCI_DEVICE_TABLE(snd_nm256_ids) = { {PCI_VDEVICE(NEOMAGIC, PCI_DEVICE_ID_NEOMAGIC_NM256AV_AUDIO), 0}, {PCI_VDEVICE(NEOMAGIC, PCI_DEVICE_ID_NEOMAGIC_NM256ZX_AUDIO), 0}, {PCI_VDEVICE(NEOMAGIC, PCI_DEVICE_ID_NEOMAGIC_NM256XL_PLUS_AUDIO), 0}, {0,}, }; MODULE_DEVICE_TABLE(pci, snd_nm256_ids); /* * lowlvel stuffs */ static inline u8 snd_nm256_readb(struct nm256 *chip, int offset) { return readb(chip->cport + offset); } static inline u16 snd_nm256_readw(struct nm256 *chip, int offset) { return readw(chip->cport + offset); } static inline u32 snd_nm256_readl(struct nm256 *chip, int offset) { return readl(chip->cport + offset); } static inline void snd_nm256_writeb(struct nm256 *chip, int offset, u8 val) { writeb(val, chip->cport + offset); } static inline void snd_nm256_writew(struct nm256 *chip, int offset, u16 val) { writew(val, chip->cport + offset); } static inline void snd_nm256_writel(struct nm256 *chip, int offset, u32 val) { writel(val, chip->cport + offset); } static inline void snd_nm256_write_buffer(struct nm256 *chip, void *src, int offset, int size) { offset -= chip->buffer_start; #ifdef CONFIG_SND_DEBUG if (offset < 0 || offset >= chip->buffer_size) { snd_printk(KERN_ERR "write_buffer invalid offset = %d size = %d\n", offset, size); return; } #endif memcpy_toio(chip->buffer + offset, src, size); } /* * coefficient handlers -- what a magic! */ static u16 snd_nm256_get_start_offset(int which) { u16 offset = 0; while (which-- > 0) offset += coefficient_sizes[which]; return offset; } static void snd_nm256_load_one_coefficient(struct nm256 *chip, int stream, u32 port, int which) { u32 coeff_buf = chip->coeff_buf[stream]; u16 offset = snd_nm256_get_start_offset(which); u16 size = coefficient_sizes[which]; snd_nm256_write_buffer(chip, coefficients + offset, coeff_buf, size); snd_nm256_writel(chip, port, coeff_buf); /* ??? Record seems to behave differently than playback. */ if (stream == SNDRV_PCM_STREAM_PLAYBACK) size--; snd_nm256_writel(chip, port + 4, coeff_buf + size); } static void snd_nm256_load_coefficient(struct nm256 *chip, int stream, int number) { /* The enable register for the specified engine. */ u32 poffset = (stream == SNDRV_PCM_STREAM_CAPTURE ? NM_RECORD_ENABLE_REG : NM_PLAYBACK_ENABLE_REG); u32 addr = NM_COEFF_START_OFFSET; addr += (stream == SNDRV_PCM_STREAM_CAPTURE ? NM_RECORD_REG_OFFSET : NM_PLAYBACK_REG_OFFSET); if (snd_nm256_readb(chip, poffset) & 1) { snd_printd("NM256: Engine was enabled while loading coefficients!\n"); return; } /* The recording engine uses coefficient values 8-15. */ number &= 7; if (stream == SNDRV_PCM_STREAM_CAPTURE) number += 8; if (! chip->use_cache) { snd_nm256_load_one_coefficient(chip, stream, addr, number); return; } if (! chip->coeffs_current) { snd_nm256_write_buffer(chip, coefficients, chip->all_coeff_buf, NM_TOTAL_COEFF_COUNT * 4); chip->coeffs_current = 1; } else { u32 base = chip->all_coeff_buf; u32 offset = snd_nm256_get_start_offset(number); u32 end_offset = offset + coefficient_sizes[number]; snd_nm256_writel(chip, addr, base + offset); if (stream == SNDRV_PCM_STREAM_PLAYBACK) end_offset--; snd_nm256_writel(chip, addr + 4, base + end_offset); } } /* The actual rates supported by the card. */ static unsigned int samplerates[8] = { 8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000, }; static struct snd_pcm_hw_constraint_list constraints_rates = { .count = ARRAY_SIZE(samplerates), .list = samplerates, .mask = 0, }; /* * return the index of the target rate */ static int snd_nm256_fixed_rate(unsigned int rate) { unsigned int i; for (i = 0; i < ARRAY_SIZE(samplerates); i++) { if (rate == samplerates[i]) return i; } snd_BUG(); return 0; } /* * set sample rate and format */ static void snd_nm256_set_format(struct nm256 *chip, struct nm256_stream *s, struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; int rate_index = snd_nm256_fixed_rate(runtime->rate); unsigned char ratebits = (rate_index << 4) & NM_RATE_MASK; s->shift = 0; if (snd_pcm_format_width(runtime->format) == 16) { ratebits |= NM_RATE_BITS_16; s->shift++; } if (runtime->channels > 1) { ratebits |= NM_RATE_STEREO; s->shift++; } runtime->rate = samplerates[rate_index]; switch (substream->stream) { case SNDRV_PCM_STREAM_PLAYBACK: snd_nm256_load_coefficient(chip, 0, rate_index); /* 0 = playback */ snd_nm256_writeb(chip, NM_PLAYBACK_REG_OFFSET + NM_RATE_REG_OFFSET, ratebits); break; case SNDRV_PCM_STREAM_CAPTURE: snd_nm256_load_coefficient(chip, 1, rate_index); /* 1 = record */ snd_nm256_writeb(chip, NM_RECORD_REG_OFFSET + NM_RATE_REG_OFFSET, ratebits); break; } } /* acquire interrupt */ static int snd_nm256_acquire_irq(struct nm256 *chip) { mutex_lock(&chip->irq_mutex); if (chip->irq < 0) { if (request_irq(chip->pci->irq, chip->interrupt, IRQF_SHARED, KBUILD_MODNAME, chip)) { snd_printk(KERN_ERR "unable to grab IRQ %d\n", chip->pci->irq); mutex_unlock(&chip->irq_mutex); return -EBUSY; } chip->irq = chip->pci->irq; } chip->irq_acks++; mutex_unlock(&chip->irq_mutex); return 0; } /* release interrupt */ static void snd_nm256_release_irq(struct nm256 *chip) { mutex_lock(&chip->irq_mutex); if (chip->irq_acks > 0) chip->irq_acks--; if (chip->irq_acks == 0 && chip->irq >= 0) { free_irq(chip->irq, chip); chip->irq = -1; } mutex_unlock(&chip->irq_mutex); } /* * start / stop */ /* update the watermark (current period) */ static void snd_nm256_pcm_mark(struct nm256 *chip, struct nm256_stream *s, int reg) { s->cur_period++; s->cur_period %= s->periods; snd_nm256_writel(chip, reg, s->buf + s->cur_period * s->period_size); } #define snd_nm256_playback_mark(chip, s) snd_nm256_pcm_mark(chip, s, NM_PBUFFER_WMARK) #define snd_nm256_capture_mark(chip, s) snd_nm256_pcm_mark(chip, s, NM_RBUFFER_WMARK) static void snd_nm256_playback_start(struct nm256 *chip, struct nm256_stream *s, struct snd_pcm_substream *substream) { /* program buffer pointers */ snd_nm256_writel(chip, NM_PBUFFER_START, s->buf); snd_nm256_writel(chip, NM_PBUFFER_END, s->buf + s->dma_size - (1 << s->shift)); snd_nm256_writel(chip, NM_PBUFFER_CURRP, s->buf); snd_nm256_playback_mark(chip, s); /* Enable playback engine and interrupts. */ snd_nm256_writeb(chip, NM_PLAYBACK_ENABLE_REG, NM_PLAYBACK_ENABLE_FLAG | NM_PLAYBACK_FREERUN); /* Enable both channels. */ snd_nm256_writew(chip, NM_AUDIO_MUTE_REG, 0x0); } static void snd_nm256_capture_start(struct nm256 *chip, struct nm256_stream *s, struct snd_pcm_substream *substream) { /* program buffer pointers */ snd_nm256_writel(chip, NM_RBUFFER_START, s->buf); snd_nm256_writel(chip, NM_RBUFFER_END, s->buf + s->dma_size); snd_nm256_writel(chip, NM_RBUFFER_CURRP, s->buf); snd_nm256_capture_mark(chip, s); /* Enable playback engine and interrupts. */ snd_nm256_writeb(chip, NM_RECORD_ENABLE_REG, NM_RECORD_ENABLE_FLAG | NM_RECORD_FREERUN); } /* Stop the play engine. */ static void snd_nm256_playback_stop(struct nm256 *chip) { /* Shut off sound from both channels. */ snd_nm256_writew(chip, NM_AUDIO_MUTE_REG, NM_AUDIO_MUTE_LEFT | NM_AUDIO_MUTE_RIGHT); /* Disable play engine. */ snd_nm256_writeb(chip, NM_PLAYBACK_ENABLE_REG, 0); } static void snd_nm256_capture_stop(struct nm256 *chip) { /* Disable recording engine. */ snd_nm256_writeb(chip, NM_RECORD_ENABLE_REG, 0); } static int snd_nm256_playback_trigger(struct snd_pcm_substream *substream, int cmd) { struct nm256 *chip = snd_pcm_substream_chip(substream); struct nm256_stream *s = substream->runtime->private_data; int err = 0; if (snd_BUG_ON(!s)) return -ENXIO; spin_lock(&chip->reg_lock); switch (cmd) { case SNDRV_PCM_TRIGGER_RESUME: s->suspended = 0; /* fallthru */ case SNDRV_PCM_TRIGGER_START: if (! s->running) { snd_nm256_playback_start(chip, s, substream); s->running = 1; } break; case SNDRV_PCM_TRIGGER_SUSPEND: s->suspended = 1; /* fallthru */ case SNDRV_PCM_TRIGGER_STOP: if (s->running) { snd_nm256_playback_stop(chip); s->running = 0; } break; default: err = -EINVAL; break; } spin_unlock(&chip->reg_lock); return err; } static int snd_nm256_capture_trigger(struct snd_pcm_substream *substream, int cmd) { struct nm256 *chip = snd_pcm_substream_chip(substream); struct nm256_stream *s = substream->runtime->private_data; int err = 0; if (snd_BUG_ON(!s)) return -ENXIO; spin_lock(&chip->reg_lock); switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: if (! s->running) { snd_nm256_capture_start(chip, s, substream); s->running = 1; } break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: if (s->running) { snd_nm256_capture_stop(chip); s->running = 0; } break; default: err = -EINVAL; break; } spin_unlock(&chip->reg_lock); return err; } /* * prepare playback/capture channel */ static int snd_nm256_pcm_prepare(struct snd_pcm_substream *substream) { struct nm256 *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct nm256_stream *s = runtime->private_data; if (snd_BUG_ON(!s)) return -ENXIO; s->dma_size = frames_to_bytes(runtime, substream->runtime->buffer_size); s->period_size = frames_to_bytes(runtime, substream->runtime->period_size); s->periods = substream->runtime->periods; s->cur_period = 0; spin_lock_irq(&chip->reg_lock); s->running = 0; snd_nm256_set_format(chip, s, substream); spin_unlock_irq(&chip->reg_lock); return 0; } /* * get the current pointer */ static snd_pcm_uframes_t snd_nm256_playback_pointer(struct snd_pcm_substream *substream) { struct nm256 *chip = snd_pcm_substream_chip(substream); struct nm256_stream *s = substream->runtime->private_data; unsigned long curp; if (snd_BUG_ON(!s)) return 0; curp = snd_nm256_readl(chip, NM_PBUFFER_CURRP) - (unsigned long)s->buf; curp %= s->dma_size; return bytes_to_frames(substream->runtime, curp); } static snd_pcm_uframes_t snd_nm256_capture_pointer(struct snd_pcm_substream *substream) { struct nm256 *chip = snd_pcm_substream_chip(substream); struct nm256_stream *s = substream->runtime->private_data; unsigned long curp; if (snd_BUG_ON(!s)) return 0; curp = snd_nm256_readl(chip, NM_RBUFFER_CURRP) - (unsigned long)s->buf; curp %= s->dma_size; return bytes_to_frames(substream->runtime, curp); } /* Remapped I/O space can be accessible as pointer on i386 */ /* This might be changed in the future */ #ifndef __i386__ /* * silence / copy for playback */ static int snd_nm256_playback_silence(struct snd_pcm_substream *substream, int channel, /* not used (interleaved data) */ snd_pcm_uframes_t pos, snd_pcm_uframes_t count) { struct snd_pcm_runtime *runtime = substream->runtime; struct nm256_stream *s = runtime->private_data; count = frames_to_bytes(runtime, count); pos = frames_to_bytes(runtime, pos); memset_io(s->bufptr + pos, 0, count); return 0; } static int snd_nm256_playback_copy(struct snd_pcm_substream *substream, int channel, /* not used (interleaved data) */ snd_pcm_uframes_t pos, void __user *src, snd_pcm_uframes_t count) { struct snd_pcm_runtime *runtime = substream->runtime; struct nm256_stream *s = runtime->private_data; count = frames_to_bytes(runtime, count); pos = frames_to_bytes(runtime, pos); if (copy_from_user_toio(s->bufptr + pos, src, count)) return -EFAULT; return 0; } /* * copy to user */ static int snd_nm256_capture_copy(struct snd_pcm_substream *substream, int channel, /* not used (interleaved data) */ snd_pcm_uframes_t pos, void __user *dst, snd_pcm_uframes_t count) { struct snd_pcm_runtime *runtime = substream->runtime; struct nm256_stream *s = runtime->private_data; count = frames_to_bytes(runtime, count); pos = frames_to_bytes(runtime, pos); if (copy_to_user_fromio(dst, s->bufptr + pos, count)) return -EFAULT; return 0; } #endif /* !__i386__ */ /* * update playback/capture watermarks */ /* spinlock held! */ static void snd_nm256_playback_update(struct nm256 *chip) { struct nm256_stream *s; s = &chip->streams[SNDRV_PCM_STREAM_PLAYBACK]; if (s->running && s->substream) { spin_unlock(&chip->reg_lock); snd_pcm_period_elapsed(s->substream); spin_lock(&chip->reg_lock); snd_nm256_playback_mark(chip, s); } } /* spinlock held! */ static void snd_nm256_capture_update(struct nm256 *chip) { struct nm256_stream *s; s = &chip->streams[SNDRV_PCM_STREAM_CAPTURE]; if (s->running && s->substream) { spin_unlock(&chip->reg_lock); snd_pcm_period_elapsed(s->substream); spin_lock(&chip->reg_lock); snd_nm256_capture_mark(chip, s); } } /* * hardware info */ static struct snd_pcm_hardware snd_nm256_playback = { .info = SNDRV_PCM_INFO_MMAP_IOMEM |SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_INTERLEAVED | /*SNDRV_PCM_INFO_PAUSE |*/ SNDRV_PCM_INFO_RESUME, .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_KNOT/*24k*/ | SNDRV_PCM_RATE_8000_48000, .rate_min = 8000, .rate_max = 48000, .channels_min = 1, .channels_max = 2, .periods_min = 2, .periods_max = 1024, .buffer_bytes_max = 128 * 1024, .period_bytes_min = 256, .period_bytes_max = 128 * 1024, }; static struct snd_pcm_hardware snd_nm256_capture = { .info = SNDRV_PCM_INFO_MMAP_IOMEM | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_INTERLEAVED | /*SNDRV_PCM_INFO_PAUSE |*/ SNDRV_PCM_INFO_RESUME, .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_KNOT/*24k*/ | SNDRV_PCM_RATE_8000_48000, .rate_min = 8000, .rate_max = 48000, .channels_min = 1, .channels_max = 2, .periods_min = 2, .periods_max = 1024, .buffer_bytes_max = 128 * 1024, .period_bytes_min = 256, .period_bytes_max = 128 * 1024, }; /* set dma transfer size */ static int snd_nm256_pcm_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { /* area and addr are already set and unchanged */ substream->runtime->dma_bytes = params_buffer_bytes(hw_params); return 0; } /* * open */ static void snd_nm256_setup_stream(struct nm256 *chip, struct nm256_stream *s, struct snd_pcm_substream *substream, struct snd_pcm_hardware *hw_ptr) { struct snd_pcm_runtime *runtime = substream->runtime; s->running = 0; runtime->hw = *hw_ptr; runtime->hw.buffer_bytes_max = s->bufsize; runtime->hw.period_bytes_max = s->bufsize / 2; runtime->dma_area = (void __force *) s->bufptr; runtime->dma_addr = s->bufptr_addr; runtime->dma_bytes = s->bufsize; runtime->private_data = s; s->substream = substream; snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraints_rates); } static int snd_nm256_playback_open(struct snd_pcm_substream *substream) { struct nm256 *chip = snd_pcm_substream_chip(substream); if (snd_nm256_acquire_irq(chip) < 0) return -EBUSY; snd_nm256_setup_stream(chip, &chip->streams[SNDRV_PCM_STREAM_PLAYBACK], substream, &snd_nm256_playback); return 0; } static int snd_nm256_capture_open(struct snd_pcm_substream *substream) { struct nm256 *chip = snd_pcm_substream_chip(substream); if (snd_nm256_acquire_irq(chip) < 0) return -EBUSY; snd_nm256_setup_stream(chip, &chip->streams[SNDRV_PCM_STREAM_CAPTURE], substream, &snd_nm256_capture); return 0; } /* * close - we don't have to do special.. */ static int snd_nm256_playback_close(struct snd_pcm_substream *substream) { struct nm256 *chip = snd_pcm_substream_chip(substream); snd_nm256_release_irq(chip); return 0; } static int snd_nm256_capture_close(struct snd_pcm_substream *substream) { struct nm256 *chip = snd_pcm_substream_chip(substream); snd_nm256_release_irq(chip); return 0; } /* * create a pcm instance */ static struct snd_pcm_ops snd_nm256_playback_ops = { .open = snd_nm256_playback_open, .close = snd_nm256_playback_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_nm256_pcm_hw_params, .prepare = snd_nm256_pcm_prepare, .trigger = snd_nm256_playback_trigger, .pointer = snd_nm256_playback_pointer, #ifndef __i386__ .copy = snd_nm256_playback_copy, .silence = snd_nm256_playback_silence, #endif .mmap = snd_pcm_lib_mmap_iomem, }; static struct snd_pcm_ops snd_nm256_capture_ops = { .open = snd_nm256_capture_open, .close = snd_nm256_capture_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_nm256_pcm_hw_params, .prepare = snd_nm256_pcm_prepare, .trigger = snd_nm256_capture_trigger, .pointer = snd_nm256_capture_pointer, #ifndef __i386__ .copy = snd_nm256_capture_copy, #endif .mmap = snd_pcm_lib_mmap_iomem, }; static int snd_nm256_pcm(struct nm256 *chip, int device) { struct snd_pcm *pcm; int i, err; for (i = 0; i < 2; i++) { struct nm256_stream *s = &chip->streams[i]; s->bufptr = chip->buffer + (s->buf - chip->buffer_start); s->bufptr_addr = chip->buffer_addr + (s->buf - chip->buffer_start); } err = snd_pcm_new(chip->card, chip->card->driver, device, 1, 1, &pcm); if (err < 0) return err; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_nm256_playback_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_nm256_capture_ops); pcm->private_data = chip; pcm->info_flags = 0; chip->pcm = pcm; return 0; } /* * Initialize the hardware. */ static void snd_nm256_init_chip(struct nm256 *chip) { /* Reset everything. */ snd_nm256_writeb(chip, 0x0, 0x11); snd_nm256_writew(chip, 0x214, 0); /* stop sounds.. */ //snd_nm256_playback_stop(chip); //snd_nm256_capture_stop(chip); } static irqreturn_t snd_nm256_intr_check(struct nm256 *chip) { if (chip->badintrcount++ > 1000) { /* * I'm not sure if the best thing is to stop the card from * playing or just release the interrupt (after all, we're in * a bad situation, so doing fancy stuff may not be such a good * idea). * * I worry about the card engine continuing to play noise * over and over, however--that could become a very * obnoxious problem. And we know that when this usually * happens things are fairly safe, it just means the user's * inserted a PCMCIA card and someone's spamming us with IRQ 9s. */ if (chip->streams[SNDRV_PCM_STREAM_PLAYBACK].running) snd_nm256_playback_stop(chip); if (chip->streams[SNDRV_PCM_STREAM_CAPTURE].running) snd_nm256_capture_stop(chip); chip->badintrcount = 0; return IRQ_HANDLED; } return IRQ_NONE; } /* * Handle a potential interrupt for the device referred to by DEV_ID. * * I don't like the cut-n-paste job here either between the two routines, * but there are sufficient differences between the two interrupt handlers * that parameterizing it isn't all that great either. (Could use a macro, * I suppose...yucky bleah.) */ static irqreturn_t snd_nm256_interrupt(int irq, void *dev_id) { struct nm256 *chip = dev_id; u16 status; u8 cbyte; status = snd_nm256_readw(chip, NM_INT_REG); /* Not ours. */ if (status == 0) return snd_nm256_intr_check(chip); chip->badintrcount = 0; /* Rather boring; check for individual interrupts and process them. */ spin_lock(&chip->reg_lock); if (status & NM_PLAYBACK_INT) { status &= ~NM_PLAYBACK_INT; NM_ACK_INT(chip, NM_PLAYBACK_INT); snd_nm256_playback_update(chip); } if (status & NM_RECORD_INT) { status &= ~NM_RECORD_INT; NM_ACK_INT(chip, NM_RECORD_INT); snd_nm256_capture_update(chip); } if (status & NM_MISC_INT_1) { status &= ~NM_MISC_INT_1; NM_ACK_INT(chip, NM_MISC_INT_1); snd_printd("NM256: Got misc interrupt #1\n"); snd_nm256_writew(chip, NM_INT_REG, 0x8000); cbyte = snd_nm256_readb(chip, 0x400); snd_nm256_writeb(chip, 0x400, cbyte | 2); } if (status & NM_MISC_INT_2) { status &= ~NM_MISC_INT_2; NM_ACK_INT(chip, NM_MISC_INT_2); snd_printd("NM256: Got misc interrupt #2\n"); cbyte = snd_nm256_readb(chip, 0x400); snd_nm256_writeb(chip, 0x400, cbyte & ~2); } /* Unknown interrupt. */ if (status) { snd_printd("NM256: Fire in the hole! Unknown status 0x%x\n", status); /* Pray. */ NM_ACK_INT(chip, status); } spin_unlock(&chip->reg_lock); return IRQ_HANDLED; } /* * Handle a potential interrupt for the device referred to by DEV_ID. * This handler is for the 256ZX, and is very similar to the non-ZX * routine. */ static irqreturn_t snd_nm256_interrupt_zx(int irq, void *dev_id) { struct nm256 *chip = dev_id; u32 status; u8 cbyte; status = snd_nm256_readl(chip, NM_INT_REG); /* Not ours. */ if (status == 0) return snd_nm256_intr_check(chip); chip->badintrcount = 0; /* Rather boring; check for individual interrupts and process them. */ spin_lock(&chip->reg_lock); if (status & NM2_PLAYBACK_INT) { status &= ~NM2_PLAYBACK_INT; NM2_ACK_INT(chip, NM2_PLAYBACK_INT); snd_nm256_playback_update(chip); } if (status & NM2_RECORD_INT) { status &= ~NM2_RECORD_INT; NM2_ACK_INT(chip, NM2_RECORD_INT); snd_nm256_capture_update(chip); } if (status & NM2_MISC_INT_1) { status &= ~NM2_MISC_INT_1; NM2_ACK_INT(chip, NM2_MISC_INT_1); snd_printd("NM256: Got misc interrupt #1\n"); cbyte = snd_nm256_readb(chip, 0x400); snd_nm256_writeb(chip, 0x400, cbyte | 2); } if (status & NM2_MISC_INT_2) { status &= ~NM2_MISC_INT_2; NM2_ACK_INT(chip, NM2_MISC_INT_2); snd_printd("NM256: Got misc interrupt #2\n"); cbyte = snd_nm256_readb(chip, 0x400); snd_nm256_writeb(chip, 0x400, cbyte & ~2); } /* Unknown interrupt. */ if (status) { snd_printd("NM256: Fire in the hole! Unknown status 0x%x\n", status); /* Pray. */ NM2_ACK_INT(chip, status); } spin_unlock(&chip->reg_lock); return IRQ_HANDLED; } /* * AC97 interface */ /* * Waits for the mixer to become ready to be written; returns a zero value * if it timed out. */ static int snd_nm256_ac97_ready(struct nm256 *chip) { int timeout = 10; u32 testaddr; u16 testb; testaddr = chip->mixer_status_offset; testb = chip->mixer_status_mask; /* * Loop around waiting for the mixer to become ready. */ while (timeout-- > 0) { if ((snd_nm256_readw(chip, testaddr) & testb) == 0) return 1; udelay(100); } return 0; } /* * Initial register values to be written to the AC97 mixer. * While most of these are identical to the reset values, we do this * so that we have most of the register contents cached--this avoids * reading from the mixer directly (which seems to be problematic, * probably due to ignorance). */ struct initialValues { unsigned short reg; unsigned short value; }; static struct initialValues nm256_ac97_init_val[] = { { AC97_MASTER, 0x8000 }, { AC97_HEADPHONE, 0x8000 }, { AC97_MASTER_MONO, 0x8000 }, { AC97_PC_BEEP, 0x8000 }, { AC97_PHONE, 0x8008 }, { AC97_MIC, 0x8000 }, { AC97_LINE, 0x8808 }, { AC97_CD, 0x8808 }, { AC97_VIDEO, 0x8808 }, { AC97_AUX, 0x8808 }, { AC97_PCM, 0x8808 }, { AC97_REC_SEL, 0x0000 }, { AC97_REC_GAIN, 0x0B0B }, { AC97_GENERAL_PURPOSE, 0x0000 }, { AC97_3D_CONTROL, 0x8000 }, { AC97_VENDOR_ID1, 0x8384 }, { AC97_VENDOR_ID2, 0x7609 }, }; static int nm256_ac97_idx(unsigned short reg) { int i; for (i = 0; i < ARRAY_SIZE(nm256_ac97_init_val); i++) if (nm256_ac97_init_val[i].reg == reg) return i; return -1; } /* * some nm256 easily crash when reading from mixer registers * thus we're treating it as a write-only mixer and cache the * written values */ static unsigned short snd_nm256_ac97_read(struct snd_ac97 *ac97, unsigned short reg) { struct nm256 *chip = ac97->private_data; int idx = nm256_ac97_idx(reg); if (idx < 0) return 0; return chip->ac97_regs[idx]; } /* */ static void snd_nm256_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short val) { struct nm256 *chip = ac97->private_data; int tries = 2; int idx = nm256_ac97_idx(reg); u32 base; if (idx < 0) return; base = chip->mixer_base; snd_nm256_ac97_ready(chip); /* Wait for the write to take, too. */ while (tries-- > 0) { snd_nm256_writew(chip, base + reg, val); msleep(1); /* a little delay here seems better.. */ if (snd_nm256_ac97_ready(chip)) { /* successful write: set cache */ chip->ac97_regs[idx] = val; return; } } snd_printd("nm256: ac97 codec not ready..\n"); } /* static resolution table */ static struct snd_ac97_res_table nm256_res_table[] = { { AC97_MASTER, 0x1f1f }, { AC97_HEADPHONE, 0x1f1f }, { AC97_MASTER_MONO, 0x001f }, { AC97_PC_BEEP, 0x001f }, { AC97_PHONE, 0x001f }, { AC97_MIC, 0x001f }, { AC97_LINE, 0x1f1f }, { AC97_CD, 0x1f1f }, { AC97_VIDEO, 0x1f1f }, { AC97_AUX, 0x1f1f }, { AC97_PCM, 0x1f1f }, { AC97_REC_GAIN, 0x0f0f }, { } /* terminator */ }; /* initialize the ac97 into a known state */ static void snd_nm256_ac97_reset(struct snd_ac97 *ac97) { struct nm256 *chip = ac97->private_data; /* Reset the mixer. 'Tis magic! */ snd_nm256_writeb(chip, 0x6c0, 1); if (! chip->reset_workaround) { /* Dell latitude LS will lock up by this */ snd_nm256_writeb(chip, 0x6cc, 0x87); } if (! chip->reset_workaround_2) { /* Dell latitude CSx will lock up by this */ snd_nm256_writeb(chip, 0x6cc, 0x80); snd_nm256_writeb(chip, 0x6cc, 0x0); } if (! chip->in_resume) { int i; for (i = 0; i < ARRAY_SIZE(nm256_ac97_init_val); i++) { /* preload the cache, so as to avoid even a single * read of the mixer regs */ snd_nm256_ac97_write(ac97, nm256_ac97_init_val[i].reg, nm256_ac97_init_val[i].value); } } } /* create an ac97 mixer interface */ static int snd_nm256_mixer(struct nm256 *chip) { struct snd_ac97_bus *pbus; struct snd_ac97_template ac97; int err; static struct snd_ac97_bus_ops ops = { .reset = snd_nm256_ac97_reset, .write = snd_nm256_ac97_write, .read = snd_nm256_ac97_read, }; chip->ac97_regs = kcalloc(ARRAY_SIZE(nm256_ac97_init_val), sizeof(short), GFP_KERNEL); if (! chip->ac97_regs) return -ENOMEM; if ((err = snd_ac97_bus(chip->card, 0, &ops, NULL, &pbus)) < 0) return err; memset(&ac97, 0, sizeof(ac97)); ac97.scaps = AC97_SCAP_AUDIO; /* we support audio! */ ac97.private_data = chip; ac97.res_table = nm256_res_table; pbus->no_vra = 1; err = snd_ac97_mixer(pbus, &ac97, &chip->ac97); if (err < 0) return err; if (! (chip->ac97->id & (0xf0000000))) { /* looks like an invalid id */ sprintf(chip->card->mixername, "%s AC97", chip->card->driver); } return 0; } /* * See if the signature left by the NM256 BIOS is intact; if so, we use * the associated address as the end of our audio buffer in the video * RAM. */ static int snd_nm256_peek_for_sig(struct nm256 *chip) { /* The signature is located 1K below the end of video RAM. */ void __iomem *temp; /* Default buffer end is 5120 bytes below the top of RAM. */ unsigned long pointer_found = chip->buffer_end - 0x1400; u32 sig; temp = ioremap_nocache(chip->buffer_addr + chip->buffer_end - 0x400, 16); if (temp == NULL) { snd_printk(KERN_ERR "Unable to scan for card signature in video RAM\n"); return -EBUSY; } sig = readl(temp); if ((sig & NM_SIG_MASK) == NM_SIGNATURE) { u32 pointer = readl(temp + 4); /* * If it's obviously invalid, don't use it */ if (pointer == 0xffffffff || pointer < chip->buffer_size || pointer > chip->buffer_end) { snd_printk(KERN_ERR "invalid signature found: 0x%x\n", pointer); iounmap(temp); return -ENODEV; } else { pointer_found = pointer; printk(KERN_INFO "nm256: found card signature in video RAM: 0x%x\n", pointer); } } iounmap(temp); chip->buffer_end = pointer_found; return 0; } #ifdef CONFIG_PM_SLEEP /* * APM event handler, so the card is properly reinitialized after a power * event. */ static int nm256_suspend(struct device *dev) { struct pci_dev *pci = to_pci_dev(dev); struct snd_card *card = dev_get_drvdata(dev); struct nm256 *chip = card->private_data; snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); snd_pcm_suspend_all(chip->pcm); snd_ac97_suspend(chip->ac97); chip->coeffs_current = 0; pci_disable_device(pci); pci_save_state(pci); pci_set_power_state(pci, PCI_D3hot); return 0; } static int nm256_resume(struct device *dev) { struct pci_dev *pci = to_pci_dev(dev); struct snd_card *card = dev_get_drvdata(dev); struct nm256 *chip = card->private_data; int i; /* Perform a full reset on the hardware */ chip->in_resume = 1; pci_set_power_state(pci, PCI_D0); pci_restore_state(pci); if (pci_enable_device(pci) < 0) { printk(KERN_ERR "nm256: pci_enable_device failed, " "disabling device\n"); snd_card_disconnect(card); return -EIO; } pci_set_master(pci); snd_nm256_init_chip(chip); /* restore ac97 */ snd_ac97_resume(chip->ac97); for (i = 0; i < 2; i++) { struct nm256_stream *s = &chip->streams[i]; if (s->substream && s->suspended) { spin_lock_irq(&chip->reg_lock); snd_nm256_set_format(chip, s, s->substream); spin_unlock_irq(&chip->reg_lock); } } snd_power_change_state(card, SNDRV_CTL_POWER_D0); chip->in_resume = 0; return 0; } static SIMPLE_DEV_PM_OPS(nm256_pm, nm256_suspend, nm256_resume); #define NM256_PM_OPS &nm256_pm #else #define NM256_PM_OPS NULL #endif /* CONFIG_PM_SLEEP */ static int snd_nm256_free(struct nm256 *chip) { if (chip->streams[SNDRV_PCM_STREAM_PLAYBACK].running) snd_nm256_playback_stop(chip); if (chip->streams[SNDRV_PCM_STREAM_CAPTURE].running) snd_nm256_capture_stop(chip); if (chip->irq >= 0) free_irq(chip->irq, chip); if (chip->cport) iounmap(chip->cport); if (chip->buffer) iounmap(chip->buffer); release_and_free_resource(chip->res_cport); release_and_free_resource(chip->res_buffer); pci_disable_device(chip->pci); kfree(chip->ac97_regs); kfree(chip); return 0; } static int snd_nm256_dev_free(struct snd_device *device) { struct nm256 *chip = device->device_data; return snd_nm256_free(chip); } static int snd_nm256_create(struct snd_card *card, struct pci_dev *pci, struct nm256 **chip_ret) { struct nm256 *chip; int err, pval; static struct snd_device_ops ops = { .dev_free = snd_nm256_dev_free, }; u32 addr; *chip_ret = NULL; if ((err = pci_enable_device(pci)) < 0) return err; chip = kzalloc(sizeof(*chip), GFP_KERNEL); if (chip == NULL) { pci_disable_device(pci); return -ENOMEM; } chip->card = card; chip->pci = pci; chip->use_cache = use_cache; spin_lock_init(&chip->reg_lock); chip->irq = -1; mutex_init(&chip->irq_mutex); /* store buffer sizes in bytes */ chip->streams[SNDRV_PCM_STREAM_PLAYBACK].bufsize = playback_bufsize * 1024; chip->streams[SNDRV_PCM_STREAM_CAPTURE].bufsize = capture_bufsize * 1024; /* * The NM256 has two memory ports. The first port is nothing * more than a chunk of video RAM, which is used as the I/O ring * buffer. The second port has the actual juicy stuff (like the * mixer and the playback engine control registers). */ chip->buffer_addr = pci_resource_start(pci, 0); chip->cport_addr = pci_resource_start(pci, 1); /* Init the memory port info. */ /* remap control port (#2) */ chip->res_cport = request_mem_region(chip->cport_addr, NM_PORT2_SIZE, card->driver); if (chip->res_cport == NULL) { snd_printk(KERN_ERR "memory region 0x%lx (size 0x%x) busy\n", chip->cport_addr, NM_PORT2_SIZE); err = -EBUSY; goto __error; } chip->cport = ioremap_nocache(chip->cport_addr, NM_PORT2_SIZE); if (chip->cport == NULL) { snd_printk(KERN_ERR "unable to map control port %lx\n", chip->cport_addr); err = -ENOMEM; goto __error; } if (!strcmp(card->driver, "NM256AV")) { /* Ok, try to see if this is a non-AC97 version of the hardware. */ pval = snd_nm256_readw(chip, NM_MIXER_PRESENCE); if ((pval & NM_PRESENCE_MASK) != NM_PRESENCE_VALUE) { if (! force_ac97) { printk(KERN_ERR "nm256: no ac97 is found!\n"); printk(KERN_ERR " force the driver to load by " "passing in the module parameter\n"); printk(KERN_ERR " force_ac97=1\n"); printk(KERN_ERR " or try sb16, opl3sa2, or " "cs423x drivers instead.\n"); err = -ENXIO; goto __error; } } chip->buffer_end = 2560 * 1024; chip->interrupt = snd_nm256_interrupt; chip->mixer_status_offset = NM_MIXER_STATUS_OFFSET; chip->mixer_status_mask = NM_MIXER_READY_MASK; } else { /* Not sure if there is any relevant detect for the ZX or not. */ if (snd_nm256_readb(chip, 0xa0b) != 0) chip->buffer_end = 6144 * 1024; else chip->buffer_end = 4096 * 1024; chip->interrupt = snd_nm256_interrupt_zx; chip->mixer_status_offset = NM2_MIXER_STATUS_OFFSET; chip->mixer_status_mask = NM2_MIXER_READY_MASK; } chip->buffer_size = chip->streams[SNDRV_PCM_STREAM_PLAYBACK].bufsize + chip->streams[SNDRV_PCM_STREAM_CAPTURE].bufsize; if (chip->use_cache) chip->buffer_size += NM_TOTAL_COEFF_COUNT * 4; else chip->buffer_size += NM_MAX_PLAYBACK_COEF_SIZE + NM_MAX_RECORD_COEF_SIZE; if (buffer_top >= chip->buffer_size && buffer_top < chip->buffer_end) chip->buffer_end = buffer_top; else { /* get buffer end pointer from signature */ if ((err = snd_nm256_peek_for_sig(chip)) < 0) goto __error; } chip->buffer_start = chip->buffer_end - chip->buffer_size; chip->buffer_addr += chip->buffer_start; printk(KERN_INFO "nm256: Mapping port 1 from 0x%x - 0x%x\n", chip->buffer_start, chip->buffer_end); chip->res_buffer = request_mem_region(chip->buffer_addr, chip->buffer_size, card->driver); if (chip->res_buffer == NULL) { snd_printk(KERN_ERR "nm256: buffer 0x%lx (size 0x%x) busy\n", chip->buffer_addr, chip->buffer_size); err = -EBUSY; goto __error; } chip->buffer = ioremap_nocache(chip->buffer_addr, chip->buffer_size); if (chip->buffer == NULL) { err = -ENOMEM; snd_printk(KERN_ERR "unable to map ring buffer at %lx\n", chip->buffer_addr); goto __error; } /* set offsets */ addr = chip->buffer_start; chip->streams[SNDRV_PCM_STREAM_PLAYBACK].buf = addr; addr += chip->streams[SNDRV_PCM_STREAM_PLAYBACK].bufsize; chip->streams[SNDRV_PCM_STREAM_CAPTURE].buf = addr; addr += chip->streams[SNDRV_PCM_STREAM_CAPTURE].bufsize; if (chip->use_cache) { chip->all_coeff_buf = addr; } else { chip->coeff_buf[SNDRV_PCM_STREAM_PLAYBACK] = addr; addr += NM_MAX_PLAYBACK_COEF_SIZE; chip->coeff_buf[SNDRV_PCM_STREAM_CAPTURE] = addr; } /* Fixed setting. */ chip->mixer_base = NM_MIXER_OFFSET; chip->coeffs_current = 0; snd_nm256_init_chip(chip); // pci_set_master(pci); /* needed? */ if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) goto __error; snd_card_set_dev(card, &pci->dev); *chip_ret = chip; return 0; __error: snd_nm256_free(chip); return err; } enum { NM_BLACKLISTED, NM_RESET_WORKAROUND, NM_RESET_WORKAROUND_2 }; static struct snd_pci_quirk nm256_quirks[] = { /* HP omnibook 4150 has cs4232 codec internally */ SND_PCI_QUIRK(0x103c, 0x0007, "HP omnibook 4150", NM_BLACKLISTED), /* Reset workarounds to avoid lock-ups */ SND_PCI_QUIRK(0x104d, 0x8041, "Sony PCG-F305", NM_RESET_WORKAROUND), SND_PCI_QUIRK(0x1028, 0x0080, "Dell Latitude LS", NM_RESET_WORKAROUND), SND_PCI_QUIRK(0x1028, 0x0091, "Dell Latitude CSx", NM_RESET_WORKAROUND_2), { } /* terminator */ }; static int snd_nm256_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { struct snd_card *card; struct nm256 *chip; int err; const struct snd_pci_quirk *q; q = snd_pci_quirk_lookup(pci, nm256_quirks); if (q) { snd_printdd(KERN_INFO "nm256: Enabled quirk for %s.\n", snd_pci_quirk_name(q)); switch (q->value) { case NM_BLACKLISTED: printk(KERN_INFO "nm256: The device is blacklisted. " "Loading stopped\n"); return -ENODEV; case NM_RESET_WORKAROUND_2: reset_workaround_2 = 1; /* Fall-through */ case NM_RESET_WORKAROUND: reset_workaround = 1; break; } } err = snd_card_create(index, id, THIS_MODULE, 0, &card); if (err < 0) return err; switch (pci->device) { case PCI_DEVICE_ID_NEOMAGIC_NM256AV_AUDIO: strcpy(card->driver, "NM256AV"); break; case PCI_DEVICE_ID_NEOMAGIC_NM256ZX_AUDIO: strcpy(card->driver, "NM256ZX"); break; case PCI_DEVICE_ID_NEOMAGIC_NM256XL_PLUS_AUDIO: strcpy(card->driver, "NM256XL+"); break; default: snd_printk(KERN_ERR "invalid device id 0x%x\n", pci->device); snd_card_free(card); return -EINVAL; } if (vaio_hack) buffer_top = 0x25a800; /* this avoids conflicts with XFree86 server */ if (playback_bufsize < 4) playback_bufsize = 4; if (playback_bufsize > 128) playback_bufsize = 128; if (capture_bufsize < 4) capture_bufsize = 4; if (capture_bufsize > 128) capture_bufsize = 128; if ((err = snd_nm256_create(card, pci, &chip)) < 0) { snd_card_free(card); return err; } card->private_data = chip; if (reset_workaround) { snd_printdd(KERN_INFO "nm256: reset_workaround activated\n"); chip->reset_workaround = 1; } if (reset_workaround_2) { snd_printdd(KERN_INFO "nm256: reset_workaround_2 activated\n"); chip->reset_workaround_2 = 1; } if ((err = snd_nm256_pcm(chip, 0)) < 0 || (err = snd_nm256_mixer(chip)) < 0) { snd_card_free(card); return err; } sprintf(card->shortname, "NeoMagic %s", card->driver); sprintf(card->longname, "%s at 0x%lx & 0x%lx, irq %d", card->shortname, chip->buffer_addr, chip->cport_addr, chip->irq); if ((err = snd_card_register(card)) < 0) { snd_card_free(card); return err; } pci_set_drvdata(pci, card); return 0; } static void snd_nm256_remove(struct pci_dev *pci) { snd_card_free(pci_get_drvdata(pci)); pci_set_drvdata(pci, NULL); } static struct pci_driver nm256_driver = { .name = KBUILD_MODNAME, .id_table = snd_nm256_ids, .probe = snd_nm256_probe, .remove = snd_nm256_remove, .driver = { .pm = NM256_PM_OPS, }, }; module_pci_driver(nm256_driver);