/* * wm_adsp.c -- Wolfson ADSP support * * Copyright 2012 Wolfson Microelectronics plc * * Author: Mark Brown <broonie@opensource.wolfsonmicro.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/firmware.h> #include <linux/list.h> #include <linux/pm.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <linux/slab.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/jack.h> #include <sound/initval.h> #include <sound/tlv.h> #include <linux/mfd/arizona/registers.h> #include "arizona.h" #include "wm_adsp.h" #define adsp_crit(_dsp, fmt, ...) \ dev_crit(_dsp->dev, "DSP%d: " fmt, _dsp->num, ##__VA_ARGS__) #define adsp_err(_dsp, fmt, ...) \ dev_err(_dsp->dev, "DSP%d: " fmt, _dsp->num, ##__VA_ARGS__) #define adsp_warn(_dsp, fmt, ...) \ dev_warn(_dsp->dev, "DSP%d: " fmt, _dsp->num, ##__VA_ARGS__) #define adsp_info(_dsp, fmt, ...) \ dev_info(_dsp->dev, "DSP%d: " fmt, _dsp->num, ##__VA_ARGS__) #define adsp_dbg(_dsp, fmt, ...) \ dev_dbg(_dsp->dev, "DSP%d: " fmt, _dsp->num, ##__VA_ARGS__) #define ADSP1_CONTROL_1 0x00 #define ADSP1_CONTROL_2 0x02 #define ADSP1_CONTROL_3 0x03 #define ADSP1_CONTROL_4 0x04 #define ADSP1_CONTROL_5 0x06 #define ADSP1_CONTROL_6 0x07 #define ADSP1_CONTROL_7 0x08 #define ADSP1_CONTROL_8 0x09 #define ADSP1_CONTROL_9 0x0A #define ADSP1_CONTROL_10 0x0B #define ADSP1_CONTROL_11 0x0C #define ADSP1_CONTROL_12 0x0D #define ADSP1_CONTROL_13 0x0F #define ADSP1_CONTROL_14 0x10 #define ADSP1_CONTROL_15 0x11 #define ADSP1_CONTROL_16 0x12 #define ADSP1_CONTROL_17 0x13 #define ADSP1_CONTROL_18 0x14 #define ADSP1_CONTROL_19 0x16 #define ADSP1_CONTROL_20 0x17 #define ADSP1_CONTROL_21 0x18 #define ADSP1_CONTROL_22 0x1A #define ADSP1_CONTROL_23 0x1B #define ADSP1_CONTROL_24 0x1C #define ADSP1_CONTROL_25 0x1E #define ADSP1_CONTROL_26 0x20 #define ADSP1_CONTROL_27 0x21 #define ADSP1_CONTROL_28 0x22 #define ADSP1_CONTROL_29 0x23 #define ADSP1_CONTROL_30 0x24 #define ADSP1_CONTROL_31 0x26 /* * ADSP1 Control 19 */ #define ADSP1_WDMA_BUFFER_LENGTH_MASK 0x00FF /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */ #define ADSP1_WDMA_BUFFER_LENGTH_SHIFT 0 /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */ #define ADSP1_WDMA_BUFFER_LENGTH_WIDTH 8 /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */ /* * ADSP1 Control 30 */ #define ADSP1_DBG_CLK_ENA 0x0008 /* DSP1_DBG_CLK_ENA */ #define ADSP1_DBG_CLK_ENA_MASK 0x0008 /* DSP1_DBG_CLK_ENA */ #define ADSP1_DBG_CLK_ENA_SHIFT 3 /* DSP1_DBG_CLK_ENA */ #define ADSP1_DBG_CLK_ENA_WIDTH 1 /* DSP1_DBG_CLK_ENA */ #define ADSP1_SYS_ENA 0x0004 /* DSP1_SYS_ENA */ #define ADSP1_SYS_ENA_MASK 0x0004 /* DSP1_SYS_ENA */ #define ADSP1_SYS_ENA_SHIFT 2 /* DSP1_SYS_ENA */ #define ADSP1_SYS_ENA_WIDTH 1 /* DSP1_SYS_ENA */ #define ADSP1_CORE_ENA 0x0002 /* DSP1_CORE_ENA */ #define ADSP1_CORE_ENA_MASK 0x0002 /* DSP1_CORE_ENA */ #define ADSP1_CORE_ENA_SHIFT 1 /* DSP1_CORE_ENA */ #define ADSP1_CORE_ENA_WIDTH 1 /* DSP1_CORE_ENA */ #define ADSP1_START 0x0001 /* DSP1_START */ #define ADSP1_START_MASK 0x0001 /* DSP1_START */ #define ADSP1_START_SHIFT 0 /* DSP1_START */ #define ADSP1_START_WIDTH 1 /* DSP1_START */ /* * ADSP1 Control 31 */ #define ADSP1_CLK_SEL_MASK 0x0007 /* CLK_SEL_ENA */ #define ADSP1_CLK_SEL_SHIFT 0 /* CLK_SEL_ENA */ #define ADSP1_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */ #define ADSP2_CONTROL 0x0 #define ADSP2_CLOCKING 0x1 #define ADSP2_STATUS1 0x4 #define ADSP2_WDMA_CONFIG_1 0x30 #define ADSP2_WDMA_CONFIG_2 0x31 #define ADSP2_RDMA_CONFIG_1 0x34 /* * ADSP2 Control */ #define ADSP2_MEM_ENA 0x0010 /* DSP1_MEM_ENA */ #define ADSP2_MEM_ENA_MASK 0x0010 /* DSP1_MEM_ENA */ #define ADSP2_MEM_ENA_SHIFT 4 /* DSP1_MEM_ENA */ #define ADSP2_MEM_ENA_WIDTH 1 /* DSP1_MEM_ENA */ #define ADSP2_SYS_ENA 0x0004 /* DSP1_SYS_ENA */ #define ADSP2_SYS_ENA_MASK 0x0004 /* DSP1_SYS_ENA */ #define ADSP2_SYS_ENA_SHIFT 2 /* DSP1_SYS_ENA */ #define ADSP2_SYS_ENA_WIDTH 1 /* DSP1_SYS_ENA */ #define ADSP2_CORE_ENA 0x0002 /* DSP1_CORE_ENA */ #define ADSP2_CORE_ENA_MASK 0x0002 /* DSP1_CORE_ENA */ #define ADSP2_CORE_ENA_SHIFT 1 /* DSP1_CORE_ENA */ #define ADSP2_CORE_ENA_WIDTH 1 /* DSP1_CORE_ENA */ #define ADSP2_START 0x0001 /* DSP1_START */ #define ADSP2_START_MASK 0x0001 /* DSP1_START */ #define ADSP2_START_SHIFT 0 /* DSP1_START */ #define ADSP2_START_WIDTH 1 /* DSP1_START */ /* * ADSP2 clocking */ #define ADSP2_CLK_SEL_MASK 0x0007 /* CLK_SEL_ENA */ #define ADSP2_CLK_SEL_SHIFT 0 /* CLK_SEL_ENA */ #define ADSP2_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */ /* * ADSP2 Status 1 */ #define ADSP2_RAM_RDY 0x0001 #define ADSP2_RAM_RDY_MASK 0x0001 #define ADSP2_RAM_RDY_SHIFT 0 #define ADSP2_RAM_RDY_WIDTH 1 struct wm_adsp_buf { struct list_head list; void *buf; }; static struct wm_adsp_buf *wm_adsp_buf_alloc(const void *src, size_t len, struct list_head *list) { struct wm_adsp_buf *buf = kzalloc(sizeof(*buf), GFP_KERNEL); if (buf == NULL) return NULL; buf->buf = kmemdup(src, len, GFP_KERNEL | GFP_DMA); if (!buf->buf) { kfree(buf); return NULL; } if (list) list_add_tail(&buf->list, list); return buf; } static void wm_adsp_buf_free(struct list_head *list) { while (!list_empty(list)) { struct wm_adsp_buf *buf = list_first_entry(list, struct wm_adsp_buf, list); list_del(&buf->list); kfree(buf->buf); kfree(buf); } } #define WM_ADSP_NUM_FW 4 #define WM_ADSP_FW_MBC_VSS 0 #define WM_ADSP_FW_TX 1 #define WM_ADSP_FW_TX_SPK 2 #define WM_ADSP_FW_RX_ANC 3 static const char *wm_adsp_fw_text[WM_ADSP_NUM_FW] = { [WM_ADSP_FW_MBC_VSS] = "MBC/VSS", [WM_ADSP_FW_TX] = "Tx", [WM_ADSP_FW_TX_SPK] = "Tx Speaker", [WM_ADSP_FW_RX_ANC] = "Rx ANC", }; static struct { const char *file; } wm_adsp_fw[WM_ADSP_NUM_FW] = { [WM_ADSP_FW_MBC_VSS] = { .file = "mbc-vss" }, [WM_ADSP_FW_TX] = { .file = "tx" }, [WM_ADSP_FW_TX_SPK] = { .file = "tx-spk" }, [WM_ADSP_FW_RX_ANC] = { .file = "rx-anc" }, }; static int wm_adsp_fw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; struct wm_adsp *adsp = snd_soc_codec_get_drvdata(codec); ucontrol->value.integer.value[0] = adsp[e->shift_l].fw; return 0; } static int wm_adsp_fw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; struct wm_adsp *adsp = snd_soc_codec_get_drvdata(codec); if (ucontrol->value.integer.value[0] == adsp[e->shift_l].fw) return 0; if (ucontrol->value.integer.value[0] >= WM_ADSP_NUM_FW) return -EINVAL; if (adsp[e->shift_l].running) return -EBUSY; adsp[e->shift_l].fw = ucontrol->value.integer.value[0]; return 0; } static const struct soc_enum wm_adsp_fw_enum[] = { SOC_ENUM_SINGLE(0, 0, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text), SOC_ENUM_SINGLE(0, 1, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text), SOC_ENUM_SINGLE(0, 2, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text), SOC_ENUM_SINGLE(0, 3, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text), }; const struct snd_kcontrol_new wm_adsp1_fw_controls[] = { SOC_ENUM_EXT("DSP1 Firmware", wm_adsp_fw_enum[0], wm_adsp_fw_get, wm_adsp_fw_put), SOC_ENUM_EXT("DSP2 Firmware", wm_adsp_fw_enum[1], wm_adsp_fw_get, wm_adsp_fw_put), SOC_ENUM_EXT("DSP3 Firmware", wm_adsp_fw_enum[2], wm_adsp_fw_get, wm_adsp_fw_put), }; EXPORT_SYMBOL_GPL(wm_adsp1_fw_controls); #if IS_ENABLED(CONFIG_SND_SOC_ARIZONA) static const struct soc_enum wm_adsp2_rate_enum[] = { SOC_VALUE_ENUM_SINGLE(ARIZONA_DSP1_CONTROL_1, ARIZONA_DSP1_RATE_SHIFT, 0xf, ARIZONA_RATE_ENUM_SIZE, arizona_rate_text, arizona_rate_val), SOC_VALUE_ENUM_SINGLE(ARIZONA_DSP2_CONTROL_1, ARIZONA_DSP1_RATE_SHIFT, 0xf, ARIZONA_RATE_ENUM_SIZE, arizona_rate_text, arizona_rate_val), SOC_VALUE_ENUM_SINGLE(ARIZONA_DSP3_CONTROL_1, ARIZONA_DSP1_RATE_SHIFT, 0xf, ARIZONA_RATE_ENUM_SIZE, arizona_rate_text, arizona_rate_val), SOC_VALUE_ENUM_SINGLE(ARIZONA_DSP3_CONTROL_1, ARIZONA_DSP1_RATE_SHIFT, 0xf, ARIZONA_RATE_ENUM_SIZE, arizona_rate_text, arizona_rate_val), }; const struct snd_kcontrol_new wm_adsp2_fw_controls[] = { SOC_ENUM_EXT("DSP1 Firmware", wm_adsp_fw_enum[0], wm_adsp_fw_get, wm_adsp_fw_put), SOC_ENUM("DSP1 Rate", wm_adsp2_rate_enum[0]), SOC_ENUM_EXT("DSP2 Firmware", wm_adsp_fw_enum[1], wm_adsp_fw_get, wm_adsp_fw_put), SOC_ENUM("DSP2 Rate", wm_adsp2_rate_enum[1]), SOC_ENUM_EXT("DSP3 Firmware", wm_adsp_fw_enum[2], wm_adsp_fw_get, wm_adsp_fw_put), SOC_ENUM("DSP3 Rate", wm_adsp2_rate_enum[2]), SOC_ENUM_EXT("DSP4 Firmware", wm_adsp_fw_enum[3], wm_adsp_fw_get, wm_adsp_fw_put), SOC_ENUM("DSP4 Rate", wm_adsp2_rate_enum[3]), }; EXPORT_SYMBOL_GPL(wm_adsp2_fw_controls); #endif static struct wm_adsp_region const *wm_adsp_find_region(struct wm_adsp *dsp, int type) { int i; for (i = 0; i < dsp->num_mems; i++) if (dsp->mem[i].type == type) return &dsp->mem[i]; return NULL; } static unsigned int wm_adsp_region_to_reg(struct wm_adsp_region const *region, unsigned int offset) { switch (region->type) { case WMFW_ADSP1_PM: return region->base + (offset * 3); case WMFW_ADSP1_DM: return region->base + (offset * 2); case WMFW_ADSP2_XM: return region->base + (offset * 2); case WMFW_ADSP2_YM: return region->base + (offset * 2); case WMFW_ADSP1_ZM: return region->base + (offset * 2); default: WARN_ON(NULL != "Unknown memory region type"); return offset; } } static int wm_adsp_load(struct wm_adsp *dsp) { LIST_HEAD(buf_list); const struct firmware *firmware; struct regmap *regmap = dsp->regmap; unsigned int pos = 0; const struct wmfw_header *header; const struct wmfw_adsp1_sizes *adsp1_sizes; const struct wmfw_adsp2_sizes *adsp2_sizes; const struct wmfw_footer *footer; const struct wmfw_region *region; const struct wm_adsp_region *mem; const char *region_name; char *file, *text; struct wm_adsp_buf *buf; unsigned int reg; int regions = 0; int ret, offset, type, sizes; file = kzalloc(PAGE_SIZE, GFP_KERNEL); if (file == NULL) return -ENOMEM; snprintf(file, PAGE_SIZE, "%s-dsp%d-%s.wmfw", dsp->part, dsp->num, wm_adsp_fw[dsp->fw].file); file[PAGE_SIZE - 1] = '\0'; ret = request_firmware(&firmware, file, dsp->dev); if (ret != 0) { adsp_err(dsp, "Failed to request '%s'\n", file); goto out; } ret = -EINVAL; pos = sizeof(*header) + sizeof(*adsp1_sizes) + sizeof(*footer); if (pos >= firmware->size) { adsp_err(dsp, "%s: file too short, %zu bytes\n", file, firmware->size); goto out_fw; } header = (void*)&firmware->data[0]; if (memcmp(&header->magic[0], "WMFW", 4) != 0) { adsp_err(dsp, "%s: invalid magic\n", file); goto out_fw; } if (header->ver != 0) { adsp_err(dsp, "%s: unknown file format %d\n", file, header->ver); goto out_fw; } if (header->core != dsp->type) { adsp_err(dsp, "%s: invalid core %d != %d\n", file, header->core, dsp->type); goto out_fw; } switch (dsp->type) { case WMFW_ADSP1: pos = sizeof(*header) + sizeof(*adsp1_sizes) + sizeof(*footer); adsp1_sizes = (void *)&(header[1]); footer = (void *)&(adsp1_sizes[1]); sizes = sizeof(*adsp1_sizes); adsp_dbg(dsp, "%s: %d DM, %d PM, %d ZM\n", file, le32_to_cpu(adsp1_sizes->dm), le32_to_cpu(adsp1_sizes->pm), le32_to_cpu(adsp1_sizes->zm)); break; case WMFW_ADSP2: pos = sizeof(*header) + sizeof(*adsp2_sizes) + sizeof(*footer); adsp2_sizes = (void *)&(header[1]); footer = (void *)&(adsp2_sizes[1]); sizes = sizeof(*adsp2_sizes); adsp_dbg(dsp, "%s: %d XM, %d YM %d PM, %d ZM\n", file, le32_to_cpu(adsp2_sizes->xm), le32_to_cpu(adsp2_sizes->ym), le32_to_cpu(adsp2_sizes->pm), le32_to_cpu(adsp2_sizes->zm)); break; default: BUG_ON(NULL == "Unknown DSP type"); goto out_fw; } if (le32_to_cpu(header->len) != sizeof(*header) + sizes + sizeof(*footer)) { adsp_err(dsp, "%s: unexpected header length %d\n", file, le32_to_cpu(header->len)); goto out_fw; } adsp_dbg(dsp, "%s: timestamp %llu\n", file, le64_to_cpu(footer->timestamp)); while (pos < firmware->size && pos - firmware->size > sizeof(*region)) { region = (void *)&(firmware->data[pos]); region_name = "Unknown"; reg = 0; text = NULL; offset = le32_to_cpu(region->offset) & 0xffffff; type = be32_to_cpu(region->type) & 0xff; mem = wm_adsp_find_region(dsp, type); switch (type) { case WMFW_NAME_TEXT: region_name = "Firmware name"; text = kzalloc(le32_to_cpu(region->len) + 1, GFP_KERNEL); break; case WMFW_INFO_TEXT: region_name = "Information"; text = kzalloc(le32_to_cpu(region->len) + 1, GFP_KERNEL); break; case WMFW_ABSOLUTE: region_name = "Absolute"; reg = offset; break; case WMFW_ADSP1_PM: BUG_ON(!mem); region_name = "PM"; reg = wm_adsp_region_to_reg(mem, offset); break; case WMFW_ADSP1_DM: BUG_ON(!mem); region_name = "DM"; reg = wm_adsp_region_to_reg(mem, offset); break; case WMFW_ADSP2_XM: BUG_ON(!mem); region_name = "XM"; reg = wm_adsp_region_to_reg(mem, offset); break; case WMFW_ADSP2_YM: BUG_ON(!mem); region_name = "YM"; reg = wm_adsp_region_to_reg(mem, offset); break; case WMFW_ADSP1_ZM: BUG_ON(!mem); region_name = "ZM"; reg = wm_adsp_region_to_reg(mem, offset); break; default: adsp_warn(dsp, "%s.%d: Unknown region type %x at %d(%x)\n", file, regions, type, pos, pos); break; } adsp_dbg(dsp, "%s.%d: %d bytes at %d in %s\n", file, regions, le32_to_cpu(region->len), offset, region_name); if (text) { memcpy(text, region->data, le32_to_cpu(region->len)); adsp_info(dsp, "%s: %s\n", file, text); kfree(text); } if (reg) { buf = wm_adsp_buf_alloc(region->data, le32_to_cpu(region->len), &buf_list); if (!buf) { adsp_err(dsp, "Out of memory\n"); return -ENOMEM; } ret = regmap_raw_write_async(regmap, reg, buf->buf, le32_to_cpu(region->len)); if (ret != 0) { adsp_err(dsp, "%s.%d: Failed to write %d bytes at %d in %s: %d\n", file, regions, le32_to_cpu(region->len), offset, region_name, ret); goto out_fw; } } pos += le32_to_cpu(region->len) + sizeof(*region); regions++; } ret = regmap_async_complete(regmap); if (ret != 0) { adsp_err(dsp, "Failed to complete async write: %d\n", ret); goto out_fw; } if (pos > firmware->size) adsp_warn(dsp, "%s.%d: %zu bytes at end of file\n", file, regions, pos - firmware->size); out_fw: regmap_async_complete(regmap); wm_adsp_buf_free(&buf_list); release_firmware(firmware); out: kfree(file); return ret; } static int wm_adsp_setup_algs(struct wm_adsp *dsp) { struct regmap *regmap = dsp->regmap; struct wmfw_adsp1_id_hdr adsp1_id; struct wmfw_adsp2_id_hdr adsp2_id; struct wmfw_adsp1_alg_hdr *adsp1_alg; struct wmfw_adsp2_alg_hdr *adsp2_alg; void *alg, *buf; struct wm_adsp_alg_region *region; const struct wm_adsp_region *mem; unsigned int pos, term; size_t algs, buf_size; __be32 val; int i, ret; switch (dsp->type) { case WMFW_ADSP1: mem = wm_adsp_find_region(dsp, WMFW_ADSP1_DM); break; case WMFW_ADSP2: mem = wm_adsp_find_region(dsp, WMFW_ADSP2_XM); break; default: mem = NULL; break; } if (mem == NULL) { BUG_ON(mem != NULL); return -EINVAL; } switch (dsp->type) { case WMFW_ADSP1: ret = regmap_raw_read(regmap, mem->base, &adsp1_id, sizeof(adsp1_id)); if (ret != 0) { adsp_err(dsp, "Failed to read algorithm info: %d\n", ret); return ret; } buf = &adsp1_id; buf_size = sizeof(adsp1_id); algs = be32_to_cpu(adsp1_id.algs); dsp->fw_id = be32_to_cpu(adsp1_id.fw.id); adsp_info(dsp, "Firmware: %x v%d.%d.%d, %zu algorithms\n", dsp->fw_id, (be32_to_cpu(adsp1_id.fw.ver) & 0xff0000) >> 16, (be32_to_cpu(adsp1_id.fw.ver) & 0xff00) >> 8, be32_to_cpu(adsp1_id.fw.ver) & 0xff, algs); region = kzalloc(sizeof(*region), GFP_KERNEL); if (!region) return -ENOMEM; region->type = WMFW_ADSP1_ZM; region->alg = be32_to_cpu(adsp1_id.fw.id); region->base = be32_to_cpu(adsp1_id.zm); list_add_tail(®ion->list, &dsp->alg_regions); region = kzalloc(sizeof(*region), GFP_KERNEL); if (!region) return -ENOMEM; region->type = WMFW_ADSP1_DM; region->alg = be32_to_cpu(adsp1_id.fw.id); region->base = be32_to_cpu(adsp1_id.dm); list_add_tail(®ion->list, &dsp->alg_regions); pos = sizeof(adsp1_id) / 2; term = pos + ((sizeof(*adsp1_alg) * algs) / 2); break; case WMFW_ADSP2: ret = regmap_raw_read(regmap, mem->base, &adsp2_id, sizeof(adsp2_id)); if (ret != 0) { adsp_err(dsp, "Failed to read algorithm info: %d\n", ret); return ret; } buf = &adsp2_id; buf_size = sizeof(adsp2_id); algs = be32_to_cpu(adsp2_id.algs); dsp->fw_id = be32_to_cpu(adsp2_id.fw.id); adsp_info(dsp, "Firmware: %x v%d.%d.%d, %zu algorithms\n", dsp->fw_id, (be32_to_cpu(adsp2_id.fw.ver) & 0xff0000) >> 16, (be32_to_cpu(adsp2_id.fw.ver) & 0xff00) >> 8, be32_to_cpu(adsp2_id.fw.ver) & 0xff, algs); region = kzalloc(sizeof(*region), GFP_KERNEL); if (!region) return -ENOMEM; region->type = WMFW_ADSP2_XM; region->alg = be32_to_cpu(adsp2_id.fw.id); region->base = be32_to_cpu(adsp2_id.xm); list_add_tail(®ion->list, &dsp->alg_regions); region = kzalloc(sizeof(*region), GFP_KERNEL); if (!region) return -ENOMEM; region->type = WMFW_ADSP2_YM; region->alg = be32_to_cpu(adsp2_id.fw.id); region->base = be32_to_cpu(adsp2_id.ym); list_add_tail(®ion->list, &dsp->alg_regions); region = kzalloc(sizeof(*region), GFP_KERNEL); if (!region) return -ENOMEM; region->type = WMFW_ADSP2_ZM; region->alg = be32_to_cpu(adsp2_id.fw.id); region->base = be32_to_cpu(adsp2_id.zm); list_add_tail(®ion->list, &dsp->alg_regions); pos = sizeof(adsp2_id) / 2; term = pos + ((sizeof(*adsp2_alg) * algs) / 2); break; default: BUG_ON(NULL == "Unknown DSP type"); return -EINVAL; } if (algs == 0) { adsp_err(dsp, "No algorithms\n"); return -EINVAL; } if (algs > 1024) { adsp_err(dsp, "Algorithm count %zx excessive\n", algs); print_hex_dump_bytes(dev_name(dsp->dev), DUMP_PREFIX_OFFSET, buf, buf_size); return -EINVAL; } /* Read the terminator first to validate the length */ ret = regmap_raw_read(regmap, mem->base + term, &val, sizeof(val)); if (ret != 0) { adsp_err(dsp, "Failed to read algorithm list end: %d\n", ret); return ret; } if (be32_to_cpu(val) != 0xbedead) adsp_warn(dsp, "Algorithm list end %x 0x%x != 0xbeadead\n", term, be32_to_cpu(val)); alg = kzalloc((term - pos) * 2, GFP_KERNEL | GFP_DMA); if (!alg) return -ENOMEM; ret = regmap_raw_read(regmap, mem->base + pos, alg, (term - pos) * 2); if (ret != 0) { adsp_err(dsp, "Failed to read algorithm list: %d\n", ret); goto out; } adsp1_alg = alg; adsp2_alg = alg; for (i = 0; i < algs; i++) { switch (dsp->type) { case WMFW_ADSP1: adsp_info(dsp, "%d: ID %x v%d.%d.%d DM@%x ZM@%x\n", i, be32_to_cpu(adsp1_alg[i].alg.id), (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff0000) >> 16, (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff00) >> 8, be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff, be32_to_cpu(adsp1_alg[i].dm), be32_to_cpu(adsp1_alg[i].zm)); region = kzalloc(sizeof(*region), GFP_KERNEL); if (!region) return -ENOMEM; region->type = WMFW_ADSP1_DM; region->alg = be32_to_cpu(adsp1_alg[i].alg.id); region->base = be32_to_cpu(adsp1_alg[i].dm); list_add_tail(®ion->list, &dsp->alg_regions); region = kzalloc(sizeof(*region), GFP_KERNEL); if (!region) return -ENOMEM; region->type = WMFW_ADSP1_ZM; region->alg = be32_to_cpu(adsp1_alg[i].alg.id); region->base = be32_to_cpu(adsp1_alg[i].zm); list_add_tail(®ion->list, &dsp->alg_regions); break; case WMFW_ADSP2: adsp_info(dsp, "%d: ID %x v%d.%d.%d XM@%x YM@%x ZM@%x\n", i, be32_to_cpu(adsp2_alg[i].alg.id), (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff0000) >> 16, (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff00) >> 8, be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff, be32_to_cpu(adsp2_alg[i].xm), be32_to_cpu(adsp2_alg[i].ym), be32_to_cpu(adsp2_alg[i].zm)); region = kzalloc(sizeof(*region), GFP_KERNEL); if (!region) return -ENOMEM; region->type = WMFW_ADSP2_XM; region->alg = be32_to_cpu(adsp2_alg[i].alg.id); region->base = be32_to_cpu(adsp2_alg[i].xm); list_add_tail(®ion->list, &dsp->alg_regions); region = kzalloc(sizeof(*region), GFP_KERNEL); if (!region) return -ENOMEM; region->type = WMFW_ADSP2_YM; region->alg = be32_to_cpu(adsp2_alg[i].alg.id); region->base = be32_to_cpu(adsp2_alg[i].ym); list_add_tail(®ion->list, &dsp->alg_regions); region = kzalloc(sizeof(*region), GFP_KERNEL); if (!region) return -ENOMEM; region->type = WMFW_ADSP2_ZM; region->alg = be32_to_cpu(adsp2_alg[i].alg.id); region->base = be32_to_cpu(adsp2_alg[i].zm); list_add_tail(®ion->list, &dsp->alg_regions); break; } } out: kfree(alg); return ret; } static int wm_adsp_load_coeff(struct wm_adsp *dsp) { LIST_HEAD(buf_list); struct regmap *regmap = dsp->regmap; struct wmfw_coeff_hdr *hdr; struct wmfw_coeff_item *blk; const struct firmware *firmware; const struct wm_adsp_region *mem; struct wm_adsp_alg_region *alg_region; const char *region_name; int ret, pos, blocks, type, offset, reg; char *file; struct wm_adsp_buf *buf; int tmp; file = kzalloc(PAGE_SIZE, GFP_KERNEL); if (file == NULL) return -ENOMEM; snprintf(file, PAGE_SIZE, "%s-dsp%d-%s.bin", dsp->part, dsp->num, wm_adsp_fw[dsp->fw].file); file[PAGE_SIZE - 1] = '\0'; ret = request_firmware(&firmware, file, dsp->dev); if (ret != 0) { adsp_warn(dsp, "Failed to request '%s'\n", file); ret = 0; goto out; } ret = -EINVAL; if (sizeof(*hdr) >= firmware->size) { adsp_err(dsp, "%s: file too short, %zu bytes\n", file, firmware->size); goto out_fw; } hdr = (void*)&firmware->data[0]; if (memcmp(hdr->magic, "WMDR", 4) != 0) { adsp_err(dsp, "%s: invalid magic\n", file); goto out_fw; } switch (be32_to_cpu(hdr->rev) & 0xff) { case 1: break; default: adsp_err(dsp, "%s: Unsupported coefficient file format %d\n", file, be32_to_cpu(hdr->rev) & 0xff); ret = -EINVAL; goto out_fw; } adsp_dbg(dsp, "%s: v%d.%d.%d\n", file, (le32_to_cpu(hdr->ver) >> 16) & 0xff, (le32_to_cpu(hdr->ver) >> 8) & 0xff, le32_to_cpu(hdr->ver) & 0xff); pos = le32_to_cpu(hdr->len); blocks = 0; while (pos < firmware->size && pos - firmware->size > sizeof(*blk)) { blk = (void*)(&firmware->data[pos]); type = le16_to_cpu(blk->type); offset = le16_to_cpu(blk->offset); adsp_dbg(dsp, "%s.%d: %x v%d.%d.%d\n", file, blocks, le32_to_cpu(blk->id), (le32_to_cpu(blk->ver) >> 16) & 0xff, (le32_to_cpu(blk->ver) >> 8) & 0xff, le32_to_cpu(blk->ver) & 0xff); adsp_dbg(dsp, "%s.%d: %d bytes at 0x%x in %x\n", file, blocks, le32_to_cpu(blk->len), offset, type); reg = 0; region_name = "Unknown"; switch (type) { case (WMFW_NAME_TEXT << 8): case (WMFW_INFO_TEXT << 8): break; case (WMFW_ABSOLUTE << 8): /* * Old files may use this for global * coefficients. */ if (le32_to_cpu(blk->id) == dsp->fw_id && offset == 0) { region_name = "global coefficients"; mem = wm_adsp_find_region(dsp, type); if (!mem) { adsp_err(dsp, "No ZM\n"); break; } reg = wm_adsp_region_to_reg(mem, 0); } else { region_name = "register"; reg = offset; } break; case WMFW_ADSP1_DM: case WMFW_ADSP1_ZM: case WMFW_ADSP2_XM: case WMFW_ADSP2_YM: adsp_dbg(dsp, "%s.%d: %d bytes in %x for %x\n", file, blocks, le32_to_cpu(blk->len), type, le32_to_cpu(blk->id)); mem = wm_adsp_find_region(dsp, type); if (!mem) { adsp_err(dsp, "No base for region %x\n", type); break; } reg = 0; list_for_each_entry(alg_region, &dsp->alg_regions, list) { if (le32_to_cpu(blk->id) == alg_region->alg && type == alg_region->type) { reg = alg_region->base; reg = wm_adsp_region_to_reg(mem, reg); reg += offset; } } if (reg == 0) adsp_err(dsp, "No %x for algorithm %x\n", type, le32_to_cpu(blk->id)); break; default: adsp_err(dsp, "%s.%d: Unknown region type %x at %d\n", file, blocks, type, pos); break; } if (reg) { buf = wm_adsp_buf_alloc(blk->data, le32_to_cpu(blk->len), &buf_list); if (!buf) { adsp_err(dsp, "Out of memory\n"); ret = -ENOMEM; goto out_fw; } adsp_dbg(dsp, "%s.%d: Writing %d bytes at %x\n", file, blocks, le32_to_cpu(blk->len), reg); ret = regmap_raw_write_async(regmap, reg, buf->buf, le32_to_cpu(blk->len)); if (ret != 0) { adsp_err(dsp, "%s.%d: Failed to write to %x in %s\n", file, blocks, reg, region_name); } } tmp = le32_to_cpu(blk->len) % 4; if (tmp) pos += le32_to_cpu(blk->len) + (4 - tmp) + sizeof(*blk); else pos += le32_to_cpu(blk->len) + sizeof(*blk); blocks++; } ret = regmap_async_complete(regmap); if (ret != 0) adsp_err(dsp, "Failed to complete async write: %d\n", ret); if (pos > firmware->size) adsp_warn(dsp, "%s.%d: %zu bytes at end of file\n", file, blocks, pos - firmware->size); out_fw: release_firmware(firmware); wm_adsp_buf_free(&buf_list); out: kfree(file); return ret; } int wm_adsp1_init(struct wm_adsp *adsp) { INIT_LIST_HEAD(&adsp->alg_regions); return 0; } EXPORT_SYMBOL_GPL(wm_adsp1_init); int wm_adsp1_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; struct wm_adsp *dsps = snd_soc_codec_get_drvdata(codec); struct wm_adsp *dsp = &dsps[w->shift]; int ret; int val; switch (event) { case SND_SOC_DAPM_POST_PMU: regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30, ADSP1_SYS_ENA, ADSP1_SYS_ENA); /* * For simplicity set the DSP clock rate to be the * SYSCLK rate rather than making it configurable. */ if(dsp->sysclk_reg) { ret = regmap_read(dsp->regmap, dsp->sysclk_reg, &val); if (ret != 0) { adsp_err(dsp, "Failed to read SYSCLK state: %d\n", ret); return ret; } val = (val & dsp->sysclk_mask) >> dsp->sysclk_shift; ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_31, ADSP1_CLK_SEL_MASK, val); if (ret != 0) { adsp_err(dsp, "Failed to set clock rate: %d\n", ret); return ret; } } ret = wm_adsp_load(dsp); if (ret != 0) goto err; ret = wm_adsp_setup_algs(dsp); if (ret != 0) goto err; ret = wm_adsp_load_coeff(dsp); if (ret != 0) goto err; /* Start the core running */ regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30, ADSP1_CORE_ENA | ADSP1_START, ADSP1_CORE_ENA | ADSP1_START); break; case SND_SOC_DAPM_PRE_PMD: /* Halt the core */ regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30, ADSP1_CORE_ENA | ADSP1_START, 0); regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_19, ADSP1_WDMA_BUFFER_LENGTH_MASK, 0); regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30, ADSP1_SYS_ENA, 0); break; default: break; } return 0; err: regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30, ADSP1_SYS_ENA, 0); return ret; } EXPORT_SYMBOL_GPL(wm_adsp1_event); static int wm_adsp2_ena(struct wm_adsp *dsp) { unsigned int val; int ret, count; ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL, ADSP2_SYS_ENA, ADSP2_SYS_ENA); if (ret != 0) return ret; /* Wait for the RAM to start, should be near instantaneous */ count = 0; do { ret = regmap_read(dsp->regmap, dsp->base + ADSP2_STATUS1, &val); if (ret != 0) return ret; } while (!(val & ADSP2_RAM_RDY) && ++count < 10); if (!(val & ADSP2_RAM_RDY)) { adsp_err(dsp, "Failed to start DSP RAM\n"); return -EBUSY; } adsp_dbg(dsp, "RAM ready after %d polls\n", count); adsp_info(dsp, "RAM ready after %d polls\n", count); return 0; } int wm_adsp2_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; struct wm_adsp *dsps = snd_soc_codec_get_drvdata(codec); struct wm_adsp *dsp = &dsps[w->shift]; struct wm_adsp_alg_region *alg_region; unsigned int val; int ret; switch (event) { case SND_SOC_DAPM_POST_PMU: /* * For simplicity set the DSP clock rate to be the * SYSCLK rate rather than making it configurable. */ ret = regmap_read(dsp->regmap, ARIZONA_SYSTEM_CLOCK_1, &val); if (ret != 0) { adsp_err(dsp, "Failed to read SYSCLK state: %d\n", ret); return ret; } val = (val & ARIZONA_SYSCLK_FREQ_MASK) >> ARIZONA_SYSCLK_FREQ_SHIFT; ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CLOCKING, ADSP2_CLK_SEL_MASK, val); if (ret != 0) { adsp_err(dsp, "Failed to set clock rate: %d\n", ret); return ret; } if (dsp->dvfs) { ret = regmap_read(dsp->regmap, dsp->base + ADSP2_CLOCKING, &val); if (ret != 0) { dev_err(dsp->dev, "Failed to read clocking: %d\n", ret); return ret; } if ((val & ADSP2_CLK_SEL_MASK) >= 3) { ret = regulator_enable(dsp->dvfs); if (ret != 0) { dev_err(dsp->dev, "Failed to enable supply: %d\n", ret); return ret; } ret = regulator_set_voltage(dsp->dvfs, 1800000, 1800000); if (ret != 0) { dev_err(dsp->dev, "Failed to raise supply: %d\n", ret); return ret; } } } ret = wm_adsp2_ena(dsp); if (ret != 0) return ret; ret = wm_adsp_load(dsp); if (ret != 0) goto err; ret = wm_adsp_setup_algs(dsp); if (ret != 0) goto err; ret = wm_adsp_load_coeff(dsp); if (ret != 0) goto err; ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL, ADSP2_CORE_ENA | ADSP2_START, ADSP2_CORE_ENA | ADSP2_START); if (ret != 0) goto err; dsp->running = true; break; case SND_SOC_DAPM_PRE_PMD: dsp->running = false; regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL, ADSP2_SYS_ENA | ADSP2_CORE_ENA | ADSP2_START, 0); /* Make sure DMAs are quiesced */ regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0); regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_2, 0); regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0); if (dsp->dvfs) { ret = regulator_set_voltage(dsp->dvfs, 1200000, 1800000); if (ret != 0) dev_warn(dsp->dev, "Failed to lower supply: %d\n", ret); ret = regulator_disable(dsp->dvfs); if (ret != 0) dev_err(dsp->dev, "Failed to enable supply: %d\n", ret); } while (!list_empty(&dsp->alg_regions)) { alg_region = list_first_entry(&dsp->alg_regions, struct wm_adsp_alg_region, list); list_del(&alg_region->list); kfree(alg_region); } break; default: break; } return 0; err: regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL, ADSP2_SYS_ENA | ADSP2_CORE_ENA | ADSP2_START, 0); return ret; } EXPORT_SYMBOL_GPL(wm_adsp2_event); int wm_adsp2_init(struct wm_adsp *adsp, bool dvfs) { int ret; /* * Disable the DSP memory by default when in reset for a small * power saving. */ ret = regmap_update_bits(adsp->regmap, adsp->base + ADSP2_CONTROL, ADSP2_MEM_ENA, 0); if (ret != 0) { adsp_err(adsp, "Failed to clear memory retention: %d\n", ret); return ret; } INIT_LIST_HEAD(&adsp->alg_regions); if (dvfs) { adsp->dvfs = devm_regulator_get(adsp->dev, "DCVDD"); if (IS_ERR(adsp->dvfs)) { ret = PTR_ERR(adsp->dvfs); dev_err(adsp->dev, "Failed to get DCVDD: %d\n", ret); return ret; } ret = regulator_enable(adsp->dvfs); if (ret != 0) { dev_err(adsp->dev, "Failed to enable DCVDD: %d\n", ret); return ret; } ret = regulator_set_voltage(adsp->dvfs, 1200000, 1800000); if (ret != 0) { dev_err(adsp->dev, "Failed to initialise DVFS: %d\n", ret); return ret; } ret = regulator_disable(adsp->dvfs); if (ret != 0) { dev_err(adsp->dev, "Failed to disable DCVDD: %d\n", ret); return ret; } } return 0; } EXPORT_SYMBOL_GPL(wm_adsp2_init);