- 根目录:
- drivers
- crypto
- ux500
- cryp
- cryp_core.c
/**
* Copyright (C) ST-Ericsson SA 2010
* Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson.
* Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson.
* Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
* Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
* Author: Jonas Linde <jonas.linde@stericsson.com> for ST-Ericsson.
* Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
* License terms: GNU General Public License (GPL) version 2
*/
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/crypto.h>
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irqreturn.h>
#include <linux/klist.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/semaphore.h>
#include <linux/platform_data/dma-ste-dma40.h>
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <crypto/ctr.h>
#include <crypto/des.h>
#include <crypto/scatterwalk.h>
#include <linux/platform_data/crypto-ux500.h>
#include "cryp_p.h"
#include "cryp.h"
#define CRYP_MAX_KEY_SIZE 32
#define BYTES_PER_WORD 4
static int cryp_mode;
static atomic_t session_id;
static struct stedma40_chan_cfg *mem_to_engine;
static struct stedma40_chan_cfg *engine_to_mem;
/**
* struct cryp_driver_data - data specific to the driver.
*
* @device_list: A list of registered devices to choose from.
* @device_allocation: A semaphore initialized with number of devices.
*/
struct cryp_driver_data {
struct klist device_list;
struct semaphore device_allocation;
};
/**
* struct cryp_ctx - Crypto context
* @config: Crypto mode.
* @key[CRYP_MAX_KEY_SIZE]: Key.
* @keylen: Length of key.
* @iv: Pointer to initialization vector.
* @indata: Pointer to indata.
* @outdata: Pointer to outdata.
* @datalen: Length of indata.
* @outlen: Length of outdata.
* @blocksize: Size of blocks.
* @updated: Updated flag.
* @dev_ctx: Device dependent context.
* @device: Pointer to the device.
*/
struct cryp_ctx {
struct cryp_config config;
u8 key[CRYP_MAX_KEY_SIZE];
u32 keylen;
u8 *iv;
const u8 *indata;
u8 *outdata;
u32 datalen;
u32 outlen;
u32 blocksize;
u8 updated;
struct cryp_device_context dev_ctx;
struct cryp_device_data *device;
u32 session_id;
};
static struct cryp_driver_data driver_data;
/**
* uint8p_to_uint32_be - 4*uint8 to uint32 big endian
* @in: Data to convert.
*/
static inline u32 uint8p_to_uint32_be(u8 *in)
{
u32 *data = (u32 *)in;
return cpu_to_be32p(data);
}
/**
* swap_bits_in_byte - mirror the bits in a byte
* @b: the byte to be mirrored
*
* The bits are swapped the following way:
* Byte b include bits 0-7, nibble 1 (n1) include bits 0-3 and
* nibble 2 (n2) bits 4-7.
*
* Nibble 1 (n1):
* (The "old" (moved) bit is replaced with a zero)
* 1. Move bit 6 and 7, 4 positions to the left.
* 2. Move bit 3 and 5, 2 positions to the left.
* 3. Move bit 1-4, 1 position to the left.
*
* Nibble 2 (n2):
* 1. Move bit 0 and 1, 4 positions to the right.
* 2. Move bit 2 and 4, 2 positions to the right.
* 3. Move bit 3-6, 1 position to the right.
*
* Combine the two nibbles to a complete and swapped byte.
*/
static inline u8 swap_bits_in_byte(u8 b)
{
#define R_SHIFT_4_MASK 0xc0 /* Bits 6 and 7, right shift 4 */
#define R_SHIFT_2_MASK 0x28 /* (After right shift 4) Bits 3 and 5,
right shift 2 */
#define R_SHIFT_1_MASK 0x1e /* (After right shift 2) Bits 1-4,
right shift 1 */
#define L_SHIFT_4_MASK 0x03 /* Bits 0 and 1, left shift 4 */
#define L_SHIFT_2_MASK 0x14 /* (After left shift 4) Bits 2 and 4,
left shift 2 */
#define L_SHIFT_1_MASK 0x78 /* (After left shift 1) Bits 3-6,
left shift 1 */
u8 n1;
u8 n2;
/* Swap most significant nibble */
/* Right shift 4, bits 6 and 7 */
n1 = ((b & R_SHIFT_4_MASK) >> 4) | (b & ~(R_SHIFT_4_MASK >> 4));
/* Right shift 2, bits 3 and 5 */
n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2));
/* Right shift 1, bits 1-4 */
n1 = (n1 & R_SHIFT_1_MASK) >> 1;
/* Swap least significant nibble */
/* Left shift 4, bits 0 and 1 */
n2 = ((b & L_SHIFT_4_MASK) << 4) | (b & ~(L_SHIFT_4_MASK << 4));
/* Left shift 2, bits 2 and 4 */
n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2));
/* Left shift 1, bits 3-6 */
n2 = (n2 & L_SHIFT_1_MASK) << 1;
return n1 | n2;
}
static inline void swap_words_in_key_and_bits_in_byte(const u8 *in,
u8 *out, u32 len)
{
unsigned int i = 0;
int j;
int index = 0;
j = len - BYTES_PER_WORD;
while (j >= 0) {
for (i = 0; i < BYTES_PER_WORD; i++) {
index = len - j - BYTES_PER_WORD + i;
out[j + i] =
swap_bits_in_byte(in[index]);
}
j -= BYTES_PER_WORD;
}
}
static void add_session_id(struct cryp_ctx *ctx)
{
/*
* We never want 0 to be a valid value, since this is the default value
* for the software context.
*/
if (unlikely(atomic_inc_and_test(&session_id)))
atomic_inc(&session_id);
ctx->session_id = atomic_read(&session_id);
}
static irqreturn_t cryp_interrupt_handler(int irq, void *param)
{
struct cryp_ctx *ctx;
int i;
struct cryp_device_data *device_data;
if (param == NULL) {
BUG_ON(!param);
return IRQ_HANDLED;
}
/* The device is coming from the one found in hw_crypt_noxts. */
device_data = (struct cryp_device_data *)param;
ctx = device_data->current_ctx;
if (ctx == NULL) {
BUG_ON(!ctx);
return IRQ_HANDLED;
}
dev_dbg(ctx->device->dev, "[%s] (len: %d) %s, ", __func__, ctx->outlen,
cryp_pending_irq_src(device_data, CRYP_IRQ_SRC_OUTPUT_FIFO) ?
"out" : "in");
if (cryp_pending_irq_src(device_data,
CRYP_IRQ_SRC_OUTPUT_FIFO)) {
if (ctx->outlen / ctx->blocksize > 0) {
for (i = 0; i < ctx->blocksize / 4; i++) {
*(ctx->outdata) = readl_relaxed(
&device_data->base->dout);
ctx->outdata += 4;
ctx->outlen -= 4;
}
if (ctx->outlen == 0) {
cryp_disable_irq_src(device_data,
CRYP_IRQ_SRC_OUTPUT_FIFO);
}
}
} else if (cryp_pending_irq_src(device_data,
CRYP_IRQ_SRC_INPUT_FIFO)) {
if (ctx->datalen / ctx->blocksize > 0) {
for (i = 0 ; i < ctx->blocksize / 4; i++) {
writel_relaxed(ctx->indata,
&device_data->base->din);
ctx->indata += 4;
ctx->datalen -= 4;
}
if (ctx->datalen == 0)
cryp_disable_irq_src(device_data,
CRYP_IRQ_SRC_INPUT_FIFO);
if (ctx->config.algomode == CRYP_ALGO_AES_XTS) {
CRYP_PUT_BITS(&device_data->base->cr,
CRYP_START_ENABLE,
CRYP_CR_START_POS,
CRYP_CR_START_MASK);
cryp_wait_until_done(device_data);
}
}
}
return IRQ_HANDLED;
}
static int mode_is_aes(enum cryp_algo_mode mode)
{
return CRYP_ALGO_AES_ECB == mode ||
CRYP_ALGO_AES_CBC == mode ||
CRYP_ALGO_AES_CTR == mode ||
CRYP_ALGO_AES_XTS == mode;
}
static int cfg_iv(struct cryp_device_data *device_data, u32 left, u32 right,
enum cryp_init_vector_index index)
{
struct cryp_init_vector_value vector_value;
dev_dbg(device_data->dev, "[%s]", __func__);
vector_value.init_value_left = left;
vector_value.init_value_right = right;
return cryp_configure_init_vector(device_data,
index,
vector_value);
}
static int cfg_ivs(struct cryp_device_data *device_data, struct cryp_ctx *ctx)
{
int i;
int status = 0;
int num_of_regs = ctx->blocksize / 8;
u32 iv[AES_BLOCK_SIZE / 4];
dev_dbg(device_data->dev, "[%s]", __func__);
/*
* Since we loop on num_of_regs we need to have a check in case
* someone provides an incorrect blocksize which would force calling
* cfg_iv with i greater than 2 which is an error.
*/
if (num_of_regs > 2) {
dev_err(device_data->dev, "[%s] Incorrect blocksize %d",
__func__, ctx->blocksize);
return -EINVAL;
}
for (i = 0; i < ctx->blocksize / 4; i++)
iv[i] = uint8p_to_uint32_be(ctx->iv + i*4);
for (i = 0; i < num_of_regs; i++) {
status = cfg_iv(device_data, iv[i*2], iv[i*2+1],
(enum cryp_init_vector_index) i);
if (status != 0)
return status;
}
return status;
}
static int set_key(struct cryp_device_data *device_data,
u32 left_key,
u32 right_key,
enum cryp_key_reg_index index)
{
struct cryp_key_value key_value;
int cryp_error;
dev_dbg(device_data->dev, "[%s]", __func__);
key_value.key_value_left = left_key;
key_value.key_value_right = right_key;
cryp_error = cryp_configure_key_values(device_data,
index,
key_value);
if (cryp_error != 0)
dev_err(device_data->dev, "[%s]: "
"cryp_configure_key_values() failed!", __func__);
return cryp_error;
}
static int cfg_keys(struct cryp_ctx *ctx)
{
int i;
int num_of_regs = ctx->keylen / 8;
u32 swapped_key[CRYP_MAX_KEY_SIZE / 4];
int cryp_error = 0;
dev_dbg(ctx->device->dev, "[%s]", __func__);
if (mode_is_aes(ctx->config.algomode)) {
swap_words_in_key_and_bits_in_byte((u8 *)ctx->key,
(u8 *)swapped_key,
ctx->keylen);
} else {
for (i = 0; i < ctx->keylen / 4; i++)
swapped_key[i] = uint8p_to_uint32_be(ctx->key + i*4);
}
for (i = 0; i < num_of_regs; i++) {
cryp_error = set_key(ctx->device,
*(((u32 *)swapped_key)+i*2),
*(((u32 *)swapped_key)+i*2+1),
(enum cryp_key_reg_index) i);
if (cryp_error != 0) {
dev_err(ctx->device->dev, "[%s]: set_key() failed!",
__func__);
return cryp_error;
}
}
return cryp_error;
}
static int cryp_setup_context(struct cryp_ctx *ctx,
struct cryp_device_data *device_data)
{
u32 control_register = CRYP_CR_DEFAULT;
switch (cryp_mode) {
case CRYP_MODE_INTERRUPT:
writel_relaxed(CRYP_IMSC_DEFAULT, &device_data->base->imsc);
break;
case CRYP_MODE_DMA:
writel_relaxed(CRYP_DMACR_DEFAULT, &device_data->base->dmacr);
break;
default:
break;
}
if (ctx->updated == 0) {
cryp_flush_inoutfifo(device_data);
if (cfg_keys(ctx) != 0) {
dev_err(ctx->device->dev, "[%s]: cfg_keys failed!",
__func__);
return -EINVAL;
}
if (ctx->iv &&
CRYP_ALGO_AES_ECB != ctx->config.algomode &&
CRYP_ALGO_DES_ECB != ctx->config.algomode &&
CRYP_ALGO_TDES_ECB != ctx->config.algomode) {
if (cfg_ivs(device_data, ctx) != 0)
return -EPERM;
}
cryp_set_configuration(device_data, &ctx->config,
&control_register);
add_session_id(ctx);
} else if (ctx->updated == 1 &&
ctx->session_id != atomic_read(&session_id)) {
cryp_flush_inoutfifo(device_data);
cryp_restore_device_context(device_data, &ctx->dev_ctx);
add_session_id(ctx);
control_register = ctx->dev_ctx.cr;
} else
control_register = ctx->dev_ctx.cr;
writel(control_register |
(CRYP_CRYPEN_ENABLE << CRYP_CR_CRYPEN_POS),
&device_data->base->cr);
return 0;
}
static int cryp_get_device_data(struct cryp_ctx *ctx,
struct cryp_device_data **device_data)
{
int ret;
struct klist_iter device_iterator;
struct klist_node *device_node;
struct cryp_device_data *local_device_data = NULL;
pr_debug(DEV_DBG_NAME " [%s]", __func__);
/* Wait until a device is available */
ret = down_interruptible(&driver_data.device_allocation);
if (ret)
return ret; /* Interrupted */
/* Select a device */
klist_iter_init(&driver_data.device_list, &device_iterator);
device_node = klist_next(&device_iterator);
while (device_node) {
local_device_data = container_of(device_node,
struct cryp_device_data, list_node);
spin_lock(&local_device_data->ctx_lock);
/* current_ctx allocates a device, NULL = unallocated */
if (local_device_data->current_ctx) {
device_node = klist_next(&device_iterator);
} else {
local_device_data->current_ctx = ctx;
ctx->device = local_device_data;
spin_unlock(&local_device_data->ctx_lock);
break;
}
spin_unlock(&local_device_data->ctx_lock);
}
klist_iter_exit(&device_iterator);
if (!device_node) {
/**
* No free device found.
* Since we allocated a device with down_interruptible, this
* should not be able to happen.
* Number of available devices, which are contained in
* device_allocation, is therefore decremented by not doing
* an up(device_allocation).
*/
return -EBUSY;
}
*device_data = local_device_data;
return 0;
}
static void cryp_dma_setup_channel(struct cryp_device_data *device_data,
struct device *dev)
{
dma_cap_zero(device_data->dma.mask);
dma_cap_set(DMA_SLAVE, device_data->dma.mask);
device_data->dma.cfg_mem2cryp = mem_to_engine;
device_data->dma.chan_mem2cryp =
dma_request_channel(device_data->dma.mask,
stedma40_filter,
device_data->dma.cfg_mem2cryp);
device_data->dma.cfg_cryp2mem = engine_to_mem;
device_data->dma.chan_cryp2mem =
dma_request_channel(device_data->dma.mask,
stedma40_filter,
device_data->dma.cfg_cryp2mem);
init_completion(&device_data->dma.cryp_dma_complete);
}
static void cryp_dma_out_callback(void *data)
{
struct cryp_ctx *ctx = (struct cryp_ctx *) data;
dev_dbg(ctx->device->dev, "[%s]: ", __func__);
complete(&ctx->device->dma.cryp_dma_complete);
}
static int cryp_set_dma_transfer(struct cryp_ctx *ctx,
struct scatterlist *sg,
int len,
enum dma_data_direction direction)
{
struct dma_async_tx_descriptor *desc;
struct dma_chan *channel = NULL;
dma_cookie_t cookie;
dev_dbg(ctx->device->dev, "[%s]: ", __func__);
if (unlikely(!IS_ALIGNED((u32)sg, 4))) {
dev_err(ctx->device->dev, "[%s]: Data in sg list isn't "
"aligned! Addr: 0x%08x", __func__, (u32)sg);
return -EFAULT;
}
switch (direction) {
case DMA_TO_DEVICE:
channel = ctx->device->dma.chan_mem2cryp;
ctx->device->dma.sg_src = sg;
ctx->device->dma.sg_src_len = dma_map_sg(channel->device->dev,
ctx->device->dma.sg_src,
ctx->device->dma.nents_src,
direction);
if (!ctx->device->dma.sg_src_len) {
dev_dbg(ctx->device->dev,
"[%s]: Could not map the sg list (TO_DEVICE)",
__func__);
return -EFAULT;
}
dev_dbg(ctx->device->dev, "[%s]: Setting up DMA for buffer "
"(TO_DEVICE)", __func__);
desc = channel->device->device_prep_slave_sg(channel,
ctx->device->dma.sg_src,
ctx->device->dma.sg_src_len,
direction, DMA_CTRL_ACK, NULL);
break;
case DMA_FROM_DEVICE:
channel = ctx->device->dma.chan_cryp2mem;
ctx->device->dma.sg_dst = sg;
ctx->device->dma.sg_dst_len = dma_map_sg(channel->device->dev,
ctx->device->dma.sg_dst,
ctx->device->dma.nents_dst,
direction);
if (!ctx->device->dma.sg_dst_len) {
dev_dbg(ctx->device->dev,
"[%s]: Could not map the sg list (FROM_DEVICE)",
__func__);
return -EFAULT;
}
dev_dbg(ctx->device->dev, "[%s]: Setting up DMA for buffer "
"(FROM_DEVICE)", __func__);
desc = channel->device->device_prep_slave_sg(channel,
ctx->device->dma.sg_dst,
ctx->device->dma.sg_dst_len,
direction,
DMA_CTRL_ACK |
DMA_PREP_INTERRUPT, NULL);
desc->callback = cryp_dma_out_callback;
desc->callback_param = ctx;
break;
default:
dev_dbg(ctx->device->dev, "[%s]: Invalid DMA direction",
__func__);
return -EFAULT;
}
cookie = desc->tx_submit(desc);
dma_async_issue_pending(channel);
return 0;
}
static void cryp_dma_done(struct cryp_ctx *ctx)
{
struct dma_chan *chan;
dev_dbg(ctx->device->dev, "[%s]: ", __func__);
chan = ctx->device->dma.chan_mem2cryp;
chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
dma_unmap_sg(chan->device->dev, ctx->device->dma.sg_src,
ctx->device->dma.sg_src_len, DMA_TO_DEVICE);
chan = ctx->device->dma.chan_cryp2mem;
chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
dma_unmap_sg(chan->device->dev, ctx->device->dma.sg_dst,
ctx->device->dma.sg_dst_len, DMA_FROM_DEVICE);
}
static int cryp_dma_write(struct cryp_ctx *ctx, struct scatterlist *sg,
int len)
{
int error = cryp_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
dev_dbg(ctx->device->dev, "[%s]: ", __func__);
if (error) {
dev_dbg(ctx->device->dev, "[%s]: cryp_set_dma_transfer() "
"failed", __func__);
return error;
}
return len;
}
static int cryp_dma_read(struct cryp_ctx *ctx, struct scatterlist *sg, int len)
{
int error = cryp_set_dma_transfer(ctx, sg, len, DMA_FROM_DEVICE);
if (error) {
dev_dbg(ctx->device->dev, "[%s]: cryp_set_dma_transfer() "
"failed", __func__);
return error;
}
return len;
}
static void cryp_polling_mode(struct cryp_ctx *ctx,
struct cryp_device_data *device_data)
{
int len = ctx->blocksize / BYTES_PER_WORD;
int remaining_length = ctx->datalen;
u32 *indata = (u32 *)ctx->indata;
u32 *outdata = (u32 *)ctx->outdata;
while (remaining_length > 0) {
writesl(&device_data->base->din, indata, len);
indata += len;
remaining_length -= (len * BYTES_PER_WORD);
cryp_wait_until_done(device_data);
readsl(&device_data->base->dout, outdata, len);
outdata += len;
cryp_wait_until_done(device_data);
}
}
static int cryp_disable_power(struct device *dev,
struct cryp_device_data *device_data,
bool save_device_context)
{
int ret = 0;
dev_dbg(dev, "[%s]", __func__);
spin_lock(&device_data->power_state_spinlock);
if (!device_data->power_state)
goto out;
spin_lock(&device_data->ctx_lock);
if (save_device_context && device_data->current_ctx) {
cryp_save_device_context(device_data,
&device_data->current_ctx->dev_ctx,
cryp_mode);
device_data->restore_dev_ctx = true;
}
spin_unlock(&device_data->ctx_lock);
clk_disable(device_data->clk);
ret = regulator_disable(device_data->pwr_regulator);
if (ret)
dev_err(dev, "[%s]: "
"regulator_disable() failed!",
__func__);
device_data->power_state = false;
out:
spin_unlock(&device_data->power_state_spinlock);
return ret;
}
static int cryp_enable_power(
struct device *dev,
struct cryp_device_data *device_data,
bool restore_device_context)
{
int ret = 0;
dev_dbg(dev, "[%s]", __func__);
spin_lock(&device_data->power_state_spinlock);
if (!device_data->power_state) {
ret = regulator_enable(device_data->pwr_regulator);
if (ret) {
dev_err(dev, "[%s]: regulator_enable() failed!",
__func__);
goto out;
}
ret = clk_enable(device_data->clk);
if (ret) {
dev_err(dev, "[%s]: clk_enable() failed!",
__func__);
regulator_disable(device_data->pwr_regulator);
goto out;
}
device_data->power_state = true;
}
if (device_data->restore_dev_ctx) {
spin_lock(&device_data->ctx_lock);
if (restore_device_context && device_data->current_ctx) {
device_data->restore_dev_ctx = false;
cryp_restore_device_context(device_data,
&device_data->current_ctx->dev_ctx);
}
spin_unlock(&device_data->ctx_lock);
}
out:
spin_unlock(&device_data->power_state_spinlock);
return ret;
}
static int hw_crypt_noxts(struct cryp_ctx *ctx,
struct cryp_device_data *device_data)
{
int ret = 0;
const u8 *indata = ctx->indata;
u8 *outdata = ctx->outdata;
u32 datalen = ctx->datalen;
u32 outlen = datalen;
pr_debug(DEV_DBG_NAME " [%s]", __func__);
ctx->outlen = ctx->datalen;
if (unlikely(!IS_ALIGNED((u32)indata, 4))) {
pr_debug(DEV_DBG_NAME " [%s]: Data isn't aligned! Addr: "
"0x%08x", __func__, (u32)indata);
return -EINVAL;
}
ret = cryp_setup_context(ctx, device_data);
if (ret)
goto out;
if (cryp_mode == CRYP_MODE_INTERRUPT) {
cryp_enable_irq_src(device_data, CRYP_IRQ_SRC_INPUT_FIFO |
CRYP_IRQ_SRC_OUTPUT_FIFO);
/*
* ctx->outlen is decremented in the cryp_interrupt_handler
* function. We had to add cpu_relax() (barrier) to make sure
* that gcc didn't optimze away this variable.
*/
while (ctx->outlen > 0)
cpu_relax();
} else if (cryp_mode == CRYP_MODE_POLLING ||
cryp_mode == CRYP_MODE_DMA) {
/*
* The reason for having DMA in this if case is that if we are
* running cryp_mode = 2, then we separate DMA routines for
* handling cipher/plaintext > blocksize, except when
* running the normal CRYPTO_ALG_TYPE_CIPHER, then we still use
* the polling mode. Overhead of doing DMA setup eats up the
* benefits using it.
*/
cryp_polling_mode(ctx, device_data);
} else {
dev_err(ctx->device->dev, "[%s]: Invalid operation mode!",
__func__);
ret = -EPERM;
goto out;
}
cryp_save_device_context(device_data, &ctx->dev_ctx, cryp_mode);
ctx->updated = 1;
out:
ctx->indata = indata;
ctx->outdata = outdata;
ctx->datalen = datalen;
ctx->outlen = outlen;
return ret;
}
static int get_nents(struct scatterlist *sg, int nbytes)
{
int nents = 0;
while (nbytes > 0) {
nbytes -= sg->length;
sg = scatterwalk_sg_next(sg);
nents++;
}
return nents;
}
static int ablk_dma_crypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
struct cryp_device_data *device_data;
int bytes_written = 0;
int bytes_read = 0;
int ret;
pr_debug(DEV_DBG_NAME " [%s]", __func__);
ctx->datalen = areq->nbytes;
ctx->outlen = areq->nbytes;
ret = cryp_get_device_data(ctx, &device_data);
if (ret)
return ret;
ret = cryp_setup_context(ctx, device_data);
if (ret)
goto out;
/* We have the device now, so store the nents in the dma struct. */
ctx->device->dma.nents_src = get_nents(areq->src, ctx->datalen);
ctx->device->dma.nents_dst = get_nents(areq->dst, ctx->outlen);
/* Enable DMA in- and output. */
cryp_configure_for_dma(device_data, CRYP_DMA_ENABLE_BOTH_DIRECTIONS);
bytes_written = cryp_dma_write(ctx, areq->src, ctx->datalen);
bytes_read = cryp_dma_read(ctx, areq->dst, bytes_written);
wait_for_completion(&ctx->device->dma.cryp_dma_complete);
cryp_dma_done(ctx);
cryp_save_device_context(device_data, &ctx->dev_ctx, cryp_mode);
ctx->updated = 1;
out:
spin_lock(&device_data->ctx_lock);
device_data->current_ctx = NULL;
ctx->device = NULL;
spin_unlock(&device_data->ctx_lock);
/*
* The down_interruptible part for this semaphore is called in
* cryp_get_device_data.
*/
up(&driver_data.device_allocation);
if (unlikely(bytes_written != bytes_read))
return -EPERM;
return 0;
}
static int ablk_crypt(struct ablkcipher_request *areq)
{
struct ablkcipher_walk walk;
struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
struct cryp_device_data *device_data;
unsigned long src_paddr;
unsigned long dst_paddr;
int ret;
int nbytes;
pr_debug(DEV_DBG_NAME " [%s]", __func__);
ret = cryp_get_device_data(ctx, &device_data);
if (ret)
goto out;
ablkcipher_walk_init(&walk, areq->dst, areq->src, areq->nbytes);
ret = ablkcipher_walk_phys(areq, &walk);
if (ret) {
pr_err(DEV_DBG_NAME "[%s]: ablkcipher_walk_phys() failed!",
__func__);
goto out;
}
while ((nbytes = walk.nbytes) > 0) {
ctx->iv = walk.iv;
src_paddr = (page_to_phys(walk.src.page) + walk.src.offset);
ctx->indata = phys_to_virt(src_paddr);
dst_paddr = (page_to_phys(walk.dst.page) + walk.dst.offset);
ctx->outdata = phys_to_virt(dst_paddr);
ctx->datalen = nbytes - (nbytes % ctx->blocksize);
ret = hw_crypt_noxts(ctx, device_data);
if (ret)
goto out;
nbytes -= ctx->datalen;
ret = ablkcipher_walk_done(areq, &walk, nbytes);
if (ret)
goto out;
}
ablkcipher_walk_complete(&walk);
out:
/* Release the device */
spin_lock(&device_data->ctx_lock);
device_data->current_ctx = NULL;
ctx->device = NULL;
spin_unlock(&device_data->ctx_lock);
/*
* The down_interruptible part for this semaphore is called in
* cryp_get_device_data.
*/
up(&driver_data.device_allocation);
return ret;
}
static int aes_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
const u8 *key, unsigned int keylen)
{
struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
u32 *flags = &cipher->base.crt_flags;
pr_debug(DEV_DBG_NAME " [%s]", __func__);
switch (keylen) {
case AES_KEYSIZE_128:
ctx->config.keysize = CRYP_KEY_SIZE_128;
break;
case AES_KEYSIZE_192:
ctx->config.keysize = CRYP_KEY_SIZE_192;
break;
case AES_KEYSIZE_256:
ctx->config.keysize = CRYP_KEY_SIZE_256;
break;
default:
pr_err(DEV_DBG_NAME "[%s]: Unknown keylen!", __func__);
*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
return -EINVAL;
}
memcpy(ctx->key, key, keylen);
ctx->keylen = keylen;
ctx->updated = 0;
return 0;
}
static int des_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
const u8 *key, unsigned int keylen)
{
struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
u32 *flags = &cipher->base.crt_flags;
u32 tmp[DES_EXPKEY_WORDS];
int ret;
pr_debug(DEV_DBG_NAME " [%s]", __func__);
if (keylen != DES_KEY_SIZE) {
*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
pr_debug(DEV_DBG_NAME " [%s]: CRYPTO_TFM_RES_BAD_KEY_LEN",
__func__);
return -EINVAL;
}
ret = des_ekey(tmp, key);
if (unlikely(ret == 0) && (*flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
*flags |= CRYPTO_TFM_RES_WEAK_KEY;
pr_debug(DEV_DBG_NAME " [%s]: CRYPTO_TFM_REQ_WEAK_KEY",
__func__);
return -EINVAL;
}
memcpy(ctx->key, key, keylen);
ctx->keylen = keylen;
ctx->updated = 0;
return 0;
}
static int des3_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
const u8 *key, unsigned int keylen)
{
struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
u32 *flags = &cipher->base.crt_flags;
const u32 *K = (const u32 *)key;
u32 tmp[DES3_EDE_EXPKEY_WORDS];
int i, ret;
pr_debug(DEV_DBG_NAME " [%s]", __func__);
if (keylen != DES3_EDE_KEY_SIZE) {
*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
pr_debug(DEV_DBG_NAME " [%s]: CRYPTO_TFM_RES_BAD_KEY_LEN",
__func__);
return -EINVAL;
}
/* Checking key interdependency for weak key detection. */
if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
!((K[2] ^ K[4]) | (K[3] ^ K[5]))) &&
(*flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
*flags |= CRYPTO_TFM_RES_WEAK_KEY;
pr_debug(DEV_DBG_NAME " [%s]: CRYPTO_TFM_REQ_WEAK_KEY",
__func__);
return -EINVAL;
}
for (i = 0; i < 3; i++) {
ret = des_ekey(tmp, key + i*DES_KEY_SIZE);
if (unlikely(ret == 0) && (*flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
*flags |= CRYPTO_TFM_RES_WEAK_KEY;
pr_debug(DEV_DBG_NAME " [%s]: "
"CRYPTO_TFM_REQ_WEAK_KEY", __func__);
return -EINVAL;
}
}
memcpy(ctx->key, key, keylen);
ctx->keylen = keylen;
ctx->updated = 0;
return 0;
}
static int cryp_blk_encrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
pr_debug(DEV_DBG_NAME " [%s]", __func__);
ctx->config.algodir = CRYP_ALGORITHM_ENCRYPT;
/*
* DMA does not work for DES due to a hw bug */
if (cryp_mode == CRYP_MODE_DMA && mode_is_aes(ctx->config.algomode))
return ablk_dma_crypt(areq);
/* For everything except DMA, we run the non DMA version. */
return ablk_crypt(areq);
}
static int cryp_blk_decrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
pr_debug(DEV_DBG_NAME " [%s]", __func__);
ctx->config.algodir = CRYP_ALGORITHM_DECRYPT;
/* DMA does not work for DES due to a hw bug */
if (cryp_mode == CRYP_MODE_DMA && mode_is_aes(ctx->config.algomode))
return ablk_dma_crypt(areq);
/* For everything except DMA, we run the non DMA version. */
return ablk_crypt(areq);
}
struct cryp_algo_template {
enum cryp_algo_mode algomode;
struct crypto_alg crypto;
};
static int cryp_cra_init(struct crypto_tfm *tfm)
{
struct cryp_ctx *ctx = crypto_tfm_ctx(tfm);
struct crypto_alg *alg = tfm->__crt_alg;
struct cryp_algo_template *cryp_alg = container_of(alg,
struct cryp_algo_template,
crypto);
ctx->config.algomode = cryp_alg->algomode;
ctx->blocksize = crypto_tfm_alg_blocksize(tfm);
return 0;
}
static struct cryp_algo_template cryp_algs[] = {
{
.algomode = CRYP_ALGO_AES_ECB,
.crypto = {
.cra_name = "aes",
.cra_driver_name = "aes-ux500",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct cryp_ctx),
.cra_alignmask = 3,
.cra_type = &crypto_ablkcipher_type,
.cra_init = cryp_cra_init,
.cra_module = THIS_MODULE,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = aes_ablkcipher_setkey,
.encrypt = cryp_blk_encrypt,
.decrypt = cryp_blk_decrypt
}
}
}
},
{
.algomode = CRYP_ALGO_AES_ECB,
.crypto = {
.cra_name = "ecb(aes)",
.cra_driver_name = "ecb-aes-ux500",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct cryp_ctx),
.cra_alignmask = 3,
.cra_type = &crypto_ablkcipher_type,
.cra_init = cryp_cra_init,
.cra_module = THIS_MODULE,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = aes_ablkcipher_setkey,
.encrypt = cryp_blk_encrypt,
.decrypt = cryp_blk_decrypt,
}
}
}
},
{
.algomode = CRYP_ALGO_AES_CBC,
.crypto = {
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-ux500",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct cryp_ctx),
.cra_alignmask = 3,
.cra_type = &crypto_ablkcipher_type,
.cra_init = cryp_cra_init,
.cra_module = THIS_MODULE,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = aes_ablkcipher_setkey,
.encrypt = cryp_blk_encrypt,
.decrypt = cryp_blk_decrypt,
.ivsize = AES_BLOCK_SIZE,
}
}
}
},
{
.algomode = CRYP_ALGO_AES_CTR,
.crypto = {
.cra_name = "ctr(aes)",
.cra_driver_name = "ctr-aes-ux500",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct cryp_ctx),
.cra_alignmask = 3,
.cra_type = &crypto_ablkcipher_type,
.cra_init = cryp_cra_init,
.cra_module = THIS_MODULE,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = aes_ablkcipher_setkey,
.encrypt = cryp_blk_encrypt,
.decrypt = cryp_blk_decrypt,
.ivsize = AES_BLOCK_SIZE,
}
}
}
},
{
.algomode = CRYP_ALGO_DES_ECB,
.crypto = {
.cra_name = "des",
.cra_driver_name = "des-ux500",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct cryp_ctx),
.cra_alignmask = 3,
.cra_type = &crypto_ablkcipher_type,
.cra_init = cryp_cra_init,
.cra_module = THIS_MODULE,
.cra_u = {
.ablkcipher = {
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.setkey = des_ablkcipher_setkey,
.encrypt = cryp_blk_encrypt,
.decrypt = cryp_blk_decrypt
}
}
}
},
{
.algomode = CRYP_ALGO_TDES_ECB,
.crypto = {
.cra_name = "des3_ede",
.cra_driver_name = "des3_ede-ux500",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct cryp_ctx),
.cra_alignmask = 3,
.cra_type = &crypto_ablkcipher_type,
.cra_init = cryp_cra_init,
.cra_module = THIS_MODULE,
.cra_u = {
.ablkcipher = {
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.setkey = des_ablkcipher_setkey,
.encrypt = cryp_blk_encrypt,
.decrypt = cryp_blk_decrypt
}
}
}
},
{
.algomode = CRYP_ALGO_DES_ECB,
.crypto = {
.cra_name = "ecb(des)",
.cra_driver_name = "ecb-des-ux500",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct cryp_ctx),
.cra_alignmask = 3,
.cra_type = &crypto_ablkcipher_type,
.cra_init = cryp_cra_init,
.cra_module = THIS_MODULE,
.cra_u = {
.ablkcipher = {
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.setkey = des_ablkcipher_setkey,
.encrypt = cryp_blk_encrypt,
.decrypt = cryp_blk_decrypt,
}
}
}
},
{
.algomode = CRYP_ALGO_TDES_ECB,
.crypto = {
.cra_name = "ecb(des3_ede)",
.cra_driver_name = "ecb-des3_ede-ux500",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct cryp_ctx),
.cra_alignmask = 3,
.cra_type = &crypto_ablkcipher_type,
.cra_init = cryp_cra_init,
.cra_module = THIS_MODULE,
.cra_u = {
.ablkcipher = {
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.setkey = des3_ablkcipher_setkey,
.encrypt = cryp_blk_encrypt,
.decrypt = cryp_blk_decrypt,
}
}
}
},
{
.algomode = CRYP_ALGO_DES_CBC,
.crypto = {
.cra_name = "cbc(des)",
.cra_driver_name = "cbc-des-ux500",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct cryp_ctx),
.cra_alignmask = 3,
.cra_type = &crypto_ablkcipher_type,
.cra_init = cryp_cra_init,
.cra_module = THIS_MODULE,
.cra_u = {
.ablkcipher = {
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.setkey = des_ablkcipher_setkey,
.encrypt = cryp_blk_encrypt,
.decrypt = cryp_blk_decrypt,
}
}
}
},
{
.algomode = CRYP_ALGO_TDES_CBC,
.crypto = {
.cra_name = "cbc(des3_ede)",
.cra_driver_name = "cbc-des3_ede-ux500",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct cryp_ctx),
.cra_alignmask = 3,
.cra_type = &crypto_ablkcipher_type,
.cra_init = cryp_cra_init,
.cra_module = THIS_MODULE,
.cra_u = {
.ablkcipher = {
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.setkey = des3_ablkcipher_setkey,
.encrypt = cryp_blk_encrypt,
.decrypt = cryp_blk_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
}
}
}
}
};
/**
* cryp_algs_register_all -
*/
static int cryp_algs_register_all(void)
{
int ret;
int i;
int count;
pr_debug("[%s]", __func__);
for (i = 0; i < ARRAY_SIZE(cryp_algs); i++) {
ret = crypto_register_alg(&cryp_algs[i].crypto);
if (ret) {
count = i;
pr_err("[%s] alg registration failed",
cryp_algs[i].crypto.cra_driver_name);
goto unreg;
}
}
return 0;
unreg:
for (i = 0; i < count; i++)
crypto_unregister_alg(&cryp_algs[i].crypto);
return ret;
}
/**
* cryp_algs_unregister_all -
*/
static void cryp_algs_unregister_all(void)
{
int i;
pr_debug(DEV_DBG_NAME " [%s]", __func__);
for (i = 0; i < ARRAY_SIZE(cryp_algs); i++)
crypto_unregister_alg(&cryp_algs[i].crypto);
}
static int ux500_cryp_probe(struct platform_device *pdev)
{
int ret;
int cryp_error = 0;
struct resource *res = NULL;
struct resource *res_irq = NULL;
struct cryp_device_data *device_data;
struct cryp_protection_config prot = {
.privilege_access = CRYP_STATE_ENABLE
};
struct device *dev = &pdev->dev;
dev_dbg(dev, "[%s]", __func__);
device_data = kzalloc(sizeof(struct cryp_device_data), GFP_ATOMIC);
if (!device_data) {
dev_err(dev, "[%s]: kzalloc() failed!", __func__);
ret = -ENOMEM;
goto out;
}
device_data->dev = dev;
device_data->current_ctx = NULL;
/* Grab the DMA configuration from platform data. */
mem_to_engine = &((struct cryp_platform_data *)
dev->platform_data)->mem_to_engine;
engine_to_mem = &((struct cryp_platform_data *)
dev->platform_data)->engine_to_mem;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(dev, "[%s]: platform_get_resource() failed",
__func__);
ret = -ENODEV;
goto out_kfree;
}
res = request_mem_region(res->start, resource_size(res), pdev->name);
if (res == NULL) {
dev_err(dev, "[%s]: request_mem_region() failed",
__func__);
ret = -EBUSY;
goto out_kfree;
}
device_data->base = ioremap(res->start, resource_size(res));
if (!device_data->base) {
dev_err(dev, "[%s]: ioremap failed!", __func__);
ret = -ENOMEM;
goto out_free_mem;
}
spin_lock_init(&device_data->ctx_lock);
spin_lock_init(&device_data->power_state_spinlock);
/* Enable power for CRYP hardware block */
device_data->pwr_regulator = regulator_get(&pdev->dev, "v-ape");
if (IS_ERR(device_data->pwr_regulator)) {
dev_err(dev, "[%s]: could not get cryp regulator", __func__);
ret = PTR_ERR(device_data->pwr_regulator);
device_data->pwr_regulator = NULL;
goto out_unmap;
}
/* Enable the clk for CRYP hardware block */
device_data->clk = clk_get(&pdev->dev, NULL);
if (IS_ERR(device_data->clk)) {
dev_err(dev, "[%s]: clk_get() failed!", __func__);
ret = PTR_ERR(device_data->clk);
goto out_regulator;
}
/* Enable device power (and clock) */
ret = cryp_enable_power(device_data->dev, device_data, false);
if (ret) {
dev_err(dev, "[%s]: cryp_enable_power() failed!", __func__);
goto out_clk;
}
cryp_error = cryp_check(device_data);
if (cryp_error != 0) {
dev_err(dev, "[%s]: cryp_init() failed!", __func__);
ret = -EINVAL;
goto out_power;
}
cryp_error = cryp_configure_protection(device_data, &prot);
if (cryp_error != 0) {
dev_err(dev, "[%s]: cryp_configure_protection() failed!",
__func__);
ret = -EINVAL;
goto out_power;
}
res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!res_irq) {
dev_err(dev, "[%s]: IORESOURCE_IRQ unavailable",
__func__);
ret = -ENODEV;
goto out_power;
}
ret = request_irq(res_irq->start,
cryp_interrupt_handler,
0,
"cryp1",
device_data);
if (ret) {
dev_err(dev, "[%s]: Unable to request IRQ", __func__);
goto out_power;
}
if (cryp_mode == CRYP_MODE_DMA)
cryp_dma_setup_channel(device_data, dev);
platform_set_drvdata(pdev, device_data);
/* Put the new device into the device list... */
klist_add_tail(&device_data->list_node, &driver_data.device_list);
/* ... and signal that a new device is available. */
up(&driver_data.device_allocation);
atomic_set(&session_id, 1);
ret = cryp_algs_register_all();
if (ret) {
dev_err(dev, "[%s]: cryp_algs_register_all() failed!",
__func__);
goto out_power;
}
return 0;
out_power:
cryp_disable_power(device_data->dev, device_data, false);
out_clk:
clk_put(device_data->clk);
out_regulator:
regulator_put(device_data->pwr_regulator);
out_unmap:
iounmap(device_data->base);
out_free_mem:
release_mem_region(res->start, resource_size(res));
out_kfree:
kfree(device_data);
out:
return ret;
}
static int ux500_cryp_remove(struct platform_device *pdev)
{
struct resource *res = NULL;
struct resource *res_irq = NULL;
struct cryp_device_data *device_data;
dev_dbg(&pdev->dev, "[%s]", __func__);
device_data = platform_get_drvdata(pdev);
if (!device_data) {
dev_err(&pdev->dev, "[%s]: platform_get_drvdata() failed!",
__func__);
return -ENOMEM;
}
/* Try to decrease the number of available devices. */
if (down_trylock(&driver_data.device_allocation))
return -EBUSY;
/* Check that the device is free */
spin_lock(&device_data->ctx_lock);
/* current_ctx allocates a device, NULL = unallocated */
if (device_data->current_ctx) {
/* The device is busy */
spin_unlock(&device_data->ctx_lock);
/* Return the device to the pool. */
up(&driver_data.device_allocation);
return -EBUSY;
}
spin_unlock(&device_data->ctx_lock);
/* Remove the device from the list */
if (klist_node_attached(&device_data->list_node))
klist_remove(&device_data->list_node);
/* If this was the last device, remove the services */
if (list_empty(&driver_data.device_list.k_list))
cryp_algs_unregister_all();
res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!res_irq)
dev_err(&pdev->dev, "[%s]: IORESOURCE_IRQ, unavailable",
__func__);
else {
disable_irq(res_irq->start);
free_irq(res_irq->start, device_data);
}
if (cryp_disable_power(&pdev->dev, device_data, false))
dev_err(&pdev->dev, "[%s]: cryp_disable_power() failed",
__func__);
clk_put(device_data->clk);
regulator_put(device_data->pwr_regulator);
iounmap(device_data->base);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res)
release_mem_region(res->start, res->end - res->start + 1);
kfree(device_data);
return 0;
}
static void ux500_cryp_shutdown(struct platform_device *pdev)
{
struct resource *res_irq = NULL;
struct cryp_device_data *device_data;
dev_dbg(&pdev->dev, "[%s]", __func__);
device_data = platform_get_drvdata(pdev);
if (!device_data) {
dev_err(&pdev->dev, "[%s]: platform_get_drvdata() failed!",
__func__);
return;
}
/* Check that the device is free */
spin_lock(&device_data->ctx_lock);
/* current_ctx allocates a device, NULL = unallocated */
if (!device_data->current_ctx) {
if (down_trylock(&driver_data.device_allocation))
dev_dbg(&pdev->dev, "[%s]: Cryp still in use!"
"Shutting down anyway...", __func__);
/**
* (Allocate the device)
* Need to set this to non-null (dummy) value,
* to avoid usage if context switching.
*/
device_data->current_ctx++;
}
spin_unlock(&device_data->ctx_lock);
/* Remove the device from the list */
if (klist_node_attached(&device_data->list_node))
klist_remove(&device_data->list_node);
/* If this was the last device, remove the services */
if (list_empty(&driver_data.device_list.k_list))
cryp_algs_unregister_all();
res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!res_irq)
dev_err(&pdev->dev, "[%s]: IORESOURCE_IRQ, unavailable",
__func__);
else {
disable_irq(res_irq->start);
free_irq(res_irq->start, device_data);
}
if (cryp_disable_power(&pdev->dev, device_data, false))
dev_err(&pdev->dev, "[%s]: cryp_disable_power() failed",
__func__);
}
static int ux500_cryp_suspend(struct device *dev)
{
int ret;
struct platform_device *pdev = to_platform_device(dev);
struct cryp_device_data *device_data;
struct resource *res_irq;
struct cryp_ctx *temp_ctx = NULL;
dev_dbg(dev, "[%s]", __func__);
/* Handle state? */
device_data = platform_get_drvdata(pdev);
if (!device_data) {
dev_err(dev, "[%s]: platform_get_drvdata() failed!", __func__);
return -ENOMEM;
}
res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!res_irq)
dev_err(dev, "[%s]: IORESOURCE_IRQ, unavailable", __func__);
else
disable_irq(res_irq->start);
spin_lock(&device_data->ctx_lock);
if (!device_data->current_ctx)
device_data->current_ctx++;
spin_unlock(&device_data->ctx_lock);
if (device_data->current_ctx == ++temp_ctx) {
if (down_interruptible(&driver_data.device_allocation))
dev_dbg(dev, "[%s]: down_interruptible() failed",
__func__);
ret = cryp_disable_power(dev, device_data, false);
} else
ret = cryp_disable_power(dev, device_data, true);
if (ret)
dev_err(dev, "[%s]: cryp_disable_power()", __func__);
return ret;
}
static int ux500_cryp_resume(struct device *dev)
{
int ret = 0;
struct platform_device *pdev = to_platform_device(dev);
struct cryp_device_data *device_data;
struct resource *res_irq;
struct cryp_ctx *temp_ctx = NULL;
dev_dbg(dev, "[%s]", __func__);
device_data = platform_get_drvdata(pdev);
if (!device_data) {
dev_err(dev, "[%s]: platform_get_drvdata() failed!", __func__);
return -ENOMEM;
}
spin_lock(&device_data->ctx_lock);
if (device_data->current_ctx == ++temp_ctx)
device_data->current_ctx = NULL;
spin_unlock(&device_data->ctx_lock);
if (!device_data->current_ctx)
up(&driver_data.device_allocation);
else
ret = cryp_enable_power(dev, device_data, true);
if (ret)
dev_err(dev, "[%s]: cryp_enable_power() failed!", __func__);
else {
res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (res_irq)
enable_irq(res_irq->start);
}
return ret;
}
static SIMPLE_DEV_PM_OPS(ux500_cryp_pm, ux500_cryp_suspend, ux500_cryp_resume);
static struct platform_driver cryp_driver = {
.probe = ux500_cryp_probe,
.remove = ux500_cryp_remove,
.shutdown = ux500_cryp_shutdown,
.driver = {
.owner = THIS_MODULE,
.name = "cryp1",
.pm = &ux500_cryp_pm,
}
};
static int __init ux500_cryp_mod_init(void)
{
pr_debug("[%s] is called!", __func__);
klist_init(&driver_data.device_list, NULL, NULL);
/* Initialize the semaphore to 0 devices (locked state) */
sema_init(&driver_data.device_allocation, 0);
return platform_driver_register(&cryp_driver);
}
static void __exit ux500_cryp_mod_fini(void)
{
pr_debug("[%s] is called!", __func__);
platform_driver_unregister(&cryp_driver);
return;
}
module_init(ux500_cryp_mod_init);
module_exit(ux500_cryp_mod_fini);
module_param(cryp_mode, int, 0);
MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 CRYP crypto engine.");
MODULE_ALIAS("aes-all");
MODULE_ALIAS("des-all");
MODULE_LICENSE("GPL");