- 根目录:
- drivers
- iio
- imu
- inv_mpu6050
- inv_mpu_core.c
/*
* Copyright (C) 2012 Invensense, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/sysfs.h>
#include <linux/jiffies.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/kfifo.h>
#include <linux/spinlock.h>
#include "inv_mpu_iio.h"
/*
* this is the gyro scale translated from dynamic range plus/minus
* {250, 500, 1000, 2000} to rad/s
*/
static const int gyro_scale_6050[] = {133090, 266181, 532362, 1064724};
/*
* this is the accel scale translated from dynamic range plus/minus
* {2, 4, 8, 16} to m/s^2
*/
static const int accel_scale[] = {598, 1196, 2392, 4785};
static const struct inv_mpu6050_reg_map reg_set_6050 = {
.sample_rate_div = INV_MPU6050_REG_SAMPLE_RATE_DIV,
.lpf = INV_MPU6050_REG_CONFIG,
.user_ctrl = INV_MPU6050_REG_USER_CTRL,
.fifo_en = INV_MPU6050_REG_FIFO_EN,
.gyro_config = INV_MPU6050_REG_GYRO_CONFIG,
.accl_config = INV_MPU6050_REG_ACCEL_CONFIG,
.fifo_count_h = INV_MPU6050_REG_FIFO_COUNT_H,
.fifo_r_w = INV_MPU6050_REG_FIFO_R_W,
.raw_gyro = INV_MPU6050_REG_RAW_GYRO,
.raw_accl = INV_MPU6050_REG_RAW_ACCEL,
.temperature = INV_MPU6050_REG_TEMPERATURE,
.int_enable = INV_MPU6050_REG_INT_ENABLE,
.pwr_mgmt_1 = INV_MPU6050_REG_PWR_MGMT_1,
.pwr_mgmt_2 = INV_MPU6050_REG_PWR_MGMT_2,
};
static const struct inv_mpu6050_chip_config chip_config_6050 = {
.fsr = INV_MPU6050_FSR_2000DPS,
.lpf = INV_MPU6050_FILTER_20HZ,
.fifo_rate = INV_MPU6050_INIT_FIFO_RATE,
.gyro_fifo_enable = false,
.accl_fifo_enable = false,
.accl_fs = INV_MPU6050_FS_02G,
};
static const struct inv_mpu6050_hw hw_info[INV_NUM_PARTS] = {
{
.num_reg = 117,
.name = "MPU6050",
.reg = ®_set_6050,
.config = &chip_config_6050,
},
};
int inv_mpu6050_write_reg(struct inv_mpu6050_state *st, int reg, u8 d)
{
return i2c_smbus_write_i2c_block_data(st->client, reg, 1, &d);
}
int inv_mpu6050_switch_engine(struct inv_mpu6050_state *st, bool en, u32 mask)
{
u8 d, mgmt_1;
int result;
/* switch clock needs to be careful. Only when gyro is on, can
clock source be switched to gyro. Otherwise, it must be set to
internal clock */
if (INV_MPU6050_BIT_PWR_GYRO_STBY == mask) {
result = i2c_smbus_read_i2c_block_data(st->client,
st->reg->pwr_mgmt_1, 1, &mgmt_1);
if (result != 1)
return result;
mgmt_1 &= ~INV_MPU6050_BIT_CLK_MASK;
}
if ((INV_MPU6050_BIT_PWR_GYRO_STBY == mask) && (!en)) {
/* turning off gyro requires switch to internal clock first.
Then turn off gyro engine */
mgmt_1 |= INV_CLK_INTERNAL;
result = inv_mpu6050_write_reg(st, st->reg->pwr_mgmt_1, mgmt_1);
if (result)
return result;
}
result = i2c_smbus_read_i2c_block_data(st->client,
st->reg->pwr_mgmt_2, 1, &d);
if (result != 1)
return result;
if (en)
d &= ~mask;
else
d |= mask;
result = inv_mpu6050_write_reg(st, st->reg->pwr_mgmt_2, d);
if (result)
return result;
if (en) {
/* Wait for output stablize */
msleep(INV_MPU6050_TEMP_UP_TIME);
if (INV_MPU6050_BIT_PWR_GYRO_STBY == mask) {
/* switch internal clock to PLL */
mgmt_1 |= INV_CLK_PLL;
result = inv_mpu6050_write_reg(st,
st->reg->pwr_mgmt_1, mgmt_1);
if (result)
return result;
}
}
return 0;
}
int inv_mpu6050_set_power_itg(struct inv_mpu6050_state *st, bool power_on)
{
int result;
if (power_on)
result = inv_mpu6050_write_reg(st, st->reg->pwr_mgmt_1, 0);
else
result = inv_mpu6050_write_reg(st, st->reg->pwr_mgmt_1,
INV_MPU6050_BIT_SLEEP);
if (result)
return result;
if (power_on)
msleep(INV_MPU6050_REG_UP_TIME);
return 0;
}
/**
* inv_mpu6050_init_config() - Initialize hardware, disable FIFO.
*
* Initial configuration:
* FSR: ± 2000DPS
* DLPF: 20Hz
* FIFO rate: 50Hz
* Clock source: Gyro PLL
*/
static int inv_mpu6050_init_config(struct iio_dev *indio_dev)
{
int result;
u8 d;
struct inv_mpu6050_state *st = iio_priv(indio_dev);
result = inv_mpu6050_set_power_itg(st, true);
if (result)
return result;
d = (INV_MPU6050_FSR_2000DPS << INV_MPU6050_GYRO_CONFIG_FSR_SHIFT);
result = inv_mpu6050_write_reg(st, st->reg->gyro_config, d);
if (result)
return result;
d = INV_MPU6050_FILTER_20HZ;
result = inv_mpu6050_write_reg(st, st->reg->lpf, d);
if (result)
return result;
d = INV_MPU6050_ONE_K_HZ / INV_MPU6050_INIT_FIFO_RATE - 1;
result = inv_mpu6050_write_reg(st, st->reg->sample_rate_div, d);
if (result)
return result;
d = (INV_MPU6050_FS_02G << INV_MPU6050_ACCL_CONFIG_FSR_SHIFT);
result = inv_mpu6050_write_reg(st, st->reg->accl_config, d);
if (result)
return result;
memcpy(&st->chip_config, hw_info[st->chip_type].config,
sizeof(struct inv_mpu6050_chip_config));
result = inv_mpu6050_set_power_itg(st, false);
return result;
}
static int inv_mpu6050_sensor_show(struct inv_mpu6050_state *st, int reg,
int axis, int *val)
{
int ind, result;
__be16 d;
ind = (axis - IIO_MOD_X) * 2;
result = i2c_smbus_read_i2c_block_data(st->client, reg + ind, 2,
(u8 *)&d);
if (result != 2)
return -EINVAL;
*val = (short)be16_to_cpup(&d);
return IIO_VAL_INT;
}
static int inv_mpu6050_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val,
int *val2,
long mask) {
struct inv_mpu6050_state *st = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_RAW:
{
int ret, result;
ret = IIO_VAL_INT;
result = 0;
mutex_lock(&indio_dev->mlock);
if (!st->chip_config.enable) {
result = inv_mpu6050_set_power_itg(st, true);
if (result)
goto error_read_raw;
}
/* when enable is on, power is already on */
switch (chan->type) {
case IIO_ANGL_VEL:
if (!st->chip_config.gyro_fifo_enable ||
!st->chip_config.enable) {
result = inv_mpu6050_switch_engine(st, true,
INV_MPU6050_BIT_PWR_GYRO_STBY);
if (result)
goto error_read_raw;
}
ret = inv_mpu6050_sensor_show(st, st->reg->raw_gyro,
chan->channel2, val);
if (!st->chip_config.gyro_fifo_enable ||
!st->chip_config.enable) {
result = inv_mpu6050_switch_engine(st, false,
INV_MPU6050_BIT_PWR_GYRO_STBY);
if (result)
goto error_read_raw;
}
break;
case IIO_ACCEL:
if (!st->chip_config.accl_fifo_enable ||
!st->chip_config.enable) {
result = inv_mpu6050_switch_engine(st, true,
INV_MPU6050_BIT_PWR_ACCL_STBY);
if (result)
goto error_read_raw;
}
ret = inv_mpu6050_sensor_show(st, st->reg->raw_accl,
chan->channel2, val);
if (!st->chip_config.accl_fifo_enable ||
!st->chip_config.enable) {
result = inv_mpu6050_switch_engine(st, false,
INV_MPU6050_BIT_PWR_ACCL_STBY);
if (result)
goto error_read_raw;
}
break;
case IIO_TEMP:
/* wait for stablization */
msleep(INV_MPU6050_SENSOR_UP_TIME);
inv_mpu6050_sensor_show(st, st->reg->temperature,
IIO_MOD_X, val);
break;
default:
ret = -EINVAL;
break;
}
error_read_raw:
if (!st->chip_config.enable)
result |= inv_mpu6050_set_power_itg(st, false);
mutex_unlock(&indio_dev->mlock);
if (result)
return result;
return ret;
}
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_ANGL_VEL:
*val = 0;
*val2 = gyro_scale_6050[st->chip_config.fsr];
return IIO_VAL_INT_PLUS_NANO;
case IIO_ACCEL:
*val = 0;
*val2 = accel_scale[st->chip_config.accl_fs];
return IIO_VAL_INT_PLUS_MICRO;
case IIO_TEMP:
*val = 0;
*val2 = INV_MPU6050_TEMP_SCALE;
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_OFFSET:
switch (chan->type) {
case IIO_TEMP:
*val = INV_MPU6050_TEMP_OFFSET;
return IIO_VAL_INT;
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int inv_mpu6050_write_fsr(struct inv_mpu6050_state *st, int fsr)
{
int result;
u8 d;
if (fsr < 0 || fsr > INV_MPU6050_MAX_GYRO_FS_PARAM)
return -EINVAL;
if (fsr == st->chip_config.fsr)
return 0;
d = (fsr << INV_MPU6050_GYRO_CONFIG_FSR_SHIFT);
result = inv_mpu6050_write_reg(st, st->reg->gyro_config, d);
if (result)
return result;
st->chip_config.fsr = fsr;
return 0;
}
static int inv_mpu6050_write_accel_fs(struct inv_mpu6050_state *st, int fs)
{
int result;
u8 d;
if (fs < 0 || fs > INV_MPU6050_MAX_ACCL_FS_PARAM)
return -EINVAL;
if (fs == st->chip_config.accl_fs)
return 0;
d = (fs << INV_MPU6050_ACCL_CONFIG_FSR_SHIFT);
result = inv_mpu6050_write_reg(st, st->reg->accl_config, d);
if (result)
return result;
st->chip_config.accl_fs = fs;
return 0;
}
static int inv_mpu6050_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val,
int val2,
long mask) {
struct inv_mpu6050_state *st = iio_priv(indio_dev);
int result;
mutex_lock(&indio_dev->mlock);
/* we should only update scale when the chip is disabled, i.e.,
not running */
if (st->chip_config.enable) {
result = -EBUSY;
goto error_write_raw;
}
result = inv_mpu6050_set_power_itg(st, true);
if (result)
goto error_write_raw;
switch (mask) {
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_ANGL_VEL:
result = inv_mpu6050_write_fsr(st, val);
break;
case IIO_ACCEL:
result = inv_mpu6050_write_accel_fs(st, val);
break;
default:
result = -EINVAL;
break;
}
break;
default:
result = -EINVAL;
break;
}
error_write_raw:
result |= inv_mpu6050_set_power_itg(st, false);
mutex_unlock(&indio_dev->mlock);
return result;
}
/**
* inv_mpu6050_set_lpf() - set low pass filer based on fifo rate.
*
* Based on the Nyquist principle, the sampling rate must
* exceed twice of the bandwidth of the signal, or there
* would be alising. This function basically search for the
* correct low pass parameters based on the fifo rate, e.g,
* sampling frequency.
*/
static int inv_mpu6050_set_lpf(struct inv_mpu6050_state *st, int rate)
{
const int hz[] = {188, 98, 42, 20, 10, 5};
const int d[] = {INV_MPU6050_FILTER_188HZ, INV_MPU6050_FILTER_98HZ,
INV_MPU6050_FILTER_42HZ, INV_MPU6050_FILTER_20HZ,
INV_MPU6050_FILTER_10HZ, INV_MPU6050_FILTER_5HZ};
int i, h, result;
u8 data;
h = (rate >> 1);
i = 0;
while ((h < hz[i]) && (i < ARRAY_SIZE(d) - 1))
i++;
data = d[i];
result = inv_mpu6050_write_reg(st, st->reg->lpf, data);
if (result)
return result;
st->chip_config.lpf = data;
return 0;
}
/**
* inv_mpu6050_fifo_rate_store() - Set fifo rate.
*/
static ssize_t inv_mpu6050_fifo_rate_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
s32 fifo_rate;
u8 d;
int result;
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct inv_mpu6050_state *st = iio_priv(indio_dev);
if (kstrtoint(buf, 10, &fifo_rate))
return -EINVAL;
if (fifo_rate < INV_MPU6050_MIN_FIFO_RATE ||
fifo_rate > INV_MPU6050_MAX_FIFO_RATE)
return -EINVAL;
if (fifo_rate == st->chip_config.fifo_rate)
return count;
mutex_lock(&indio_dev->mlock);
if (st->chip_config.enable) {
result = -EBUSY;
goto fifo_rate_fail;
}
result = inv_mpu6050_set_power_itg(st, true);
if (result)
goto fifo_rate_fail;
d = INV_MPU6050_ONE_K_HZ / fifo_rate - 1;
result = inv_mpu6050_write_reg(st, st->reg->sample_rate_div, d);
if (result)
goto fifo_rate_fail;
st->chip_config.fifo_rate = fifo_rate;
result = inv_mpu6050_set_lpf(st, fifo_rate);
if (result)
goto fifo_rate_fail;
fifo_rate_fail:
result |= inv_mpu6050_set_power_itg(st, false);
mutex_unlock(&indio_dev->mlock);
if (result)
return result;
return count;
}
/**
* inv_fifo_rate_show() - Get the current sampling rate.
*/
static ssize_t inv_fifo_rate_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct inv_mpu6050_state *st = iio_priv(dev_to_iio_dev(dev));
return sprintf(buf, "%d\n", st->chip_config.fifo_rate);
}
/**
* inv_attr_show() - calling this function will show current
* parameters.
*/
static ssize_t inv_attr_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct inv_mpu6050_state *st = iio_priv(dev_to_iio_dev(dev));
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
s8 *m;
switch (this_attr->address) {
/* In MPU6050, the two matrix are the same because gyro and accel
are integrated in one chip */
case ATTR_GYRO_MATRIX:
case ATTR_ACCL_MATRIX:
m = st->plat_data.orientation;
return sprintf(buf, "%d, %d, %d; %d, %d, %d; %d, %d, %d\n",
m[0], m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8]);
default:
return -EINVAL;
}
}
/**
* inv_mpu6050_validate_trigger() - validate_trigger callback for invensense
* MPU6050 device.
* @indio_dev: The IIO device
* @trig: The new trigger
*
* Returns: 0 if the 'trig' matches the trigger registered by the MPU6050
* device, -EINVAL otherwise.
*/
static int inv_mpu6050_validate_trigger(struct iio_dev *indio_dev,
struct iio_trigger *trig)
{
struct inv_mpu6050_state *st = iio_priv(indio_dev);
if (st->trig != trig)
return -EINVAL;
return 0;
}
#define INV_MPU6050_CHAN(_type, _channel2, _index) \
{ \
.type = _type, \
.modified = 1, \
.channel2 = _channel2, \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.scan_index = _index, \
.scan_type = { \
.sign = 's', \
.realbits = 16, \
.storagebits = 16, \
.shift = 0 , \
.endianness = IIO_BE, \
}, \
}
static const struct iio_chan_spec inv_mpu_channels[] = {
IIO_CHAN_SOFT_TIMESTAMP(INV_MPU6050_SCAN_TIMESTAMP),
/*
* Note that temperature should only be via polled reading only,
* not the final scan elements output.
*/
{
.type = IIO_TEMP,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW)
| BIT(IIO_CHAN_INFO_OFFSET)
| BIT(IIO_CHAN_INFO_SCALE),
.scan_index = -1,
},
INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_X, INV_MPU6050_SCAN_GYRO_X),
INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Y, INV_MPU6050_SCAN_GYRO_Y),
INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Z, INV_MPU6050_SCAN_GYRO_Z),
INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_X, INV_MPU6050_SCAN_ACCL_X),
INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Y, INV_MPU6050_SCAN_ACCL_Y),
INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Z, INV_MPU6050_SCAN_ACCL_Z),
};
/* constant IIO attribute */
static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("10 20 50 100 200 500");
static IIO_DEV_ATTR_SAMP_FREQ(S_IRUGO | S_IWUSR, inv_fifo_rate_show,
inv_mpu6050_fifo_rate_store);
static IIO_DEVICE_ATTR(in_gyro_matrix, S_IRUGO, inv_attr_show, NULL,
ATTR_GYRO_MATRIX);
static IIO_DEVICE_ATTR(in_accel_matrix, S_IRUGO, inv_attr_show, NULL,
ATTR_ACCL_MATRIX);
static struct attribute *inv_attributes[] = {
&iio_dev_attr_in_gyro_matrix.dev_attr.attr,
&iio_dev_attr_in_accel_matrix.dev_attr.attr,
&iio_dev_attr_sampling_frequency.dev_attr.attr,
&iio_const_attr_sampling_frequency_available.dev_attr.attr,
NULL,
};
static const struct attribute_group inv_attribute_group = {
.attrs = inv_attributes
};
static const struct iio_info mpu_info = {
.driver_module = THIS_MODULE,
.read_raw = &inv_mpu6050_read_raw,
.write_raw = &inv_mpu6050_write_raw,
.attrs = &inv_attribute_group,
.validate_trigger = inv_mpu6050_validate_trigger,
};
/**
* inv_check_and_setup_chip() - check and setup chip.
*/
static int inv_check_and_setup_chip(struct inv_mpu6050_state *st,
const struct i2c_device_id *id)
{
int result;
st->chip_type = INV_MPU6050;
st->hw = &hw_info[st->chip_type];
st->reg = hw_info[st->chip_type].reg;
/* reset to make sure previous state are not there */
result = inv_mpu6050_write_reg(st, st->reg->pwr_mgmt_1,
INV_MPU6050_BIT_H_RESET);
if (result)
return result;
msleep(INV_MPU6050_POWER_UP_TIME);
/* toggle power state. After reset, the sleep bit could be on
or off depending on the OTP settings. Toggling power would
make it in a definite state as well as making the hardware
state align with the software state */
result = inv_mpu6050_set_power_itg(st, false);
if (result)
return result;
result = inv_mpu6050_set_power_itg(st, true);
if (result)
return result;
result = inv_mpu6050_switch_engine(st, false,
INV_MPU6050_BIT_PWR_ACCL_STBY);
if (result)
return result;
result = inv_mpu6050_switch_engine(st, false,
INV_MPU6050_BIT_PWR_GYRO_STBY);
if (result)
return result;
return 0;
}
/**
* inv_mpu_probe() - probe function.
* @client: i2c client.
* @id: i2c device id.
*
* Returns 0 on success, a negative error code otherwise.
*/
static int inv_mpu_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct inv_mpu6050_state *st;
struct iio_dev *indio_dev;
int result;
if (!i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_READ_I2C_BLOCK |
I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {
result = -ENOSYS;
goto out_no_free;
}
indio_dev = iio_device_alloc(sizeof(*st));
if (indio_dev == NULL) {
result = -ENOMEM;
goto out_no_free;
}
st = iio_priv(indio_dev);
st->client = client;
st->plat_data = *(struct inv_mpu6050_platform_data
*)dev_get_platdata(&client->dev);
/* power is turned on inside check chip type*/
result = inv_check_and_setup_chip(st, id);
if (result)
goto out_free;
result = inv_mpu6050_init_config(indio_dev);
if (result) {
dev_err(&client->dev,
"Could not initialize device.\n");
goto out_free;
}
i2c_set_clientdata(client, indio_dev);
indio_dev->dev.parent = &client->dev;
indio_dev->name = id->name;
indio_dev->channels = inv_mpu_channels;
indio_dev->num_channels = ARRAY_SIZE(inv_mpu_channels);
indio_dev->info = &mpu_info;
indio_dev->modes = INDIO_BUFFER_TRIGGERED;
result = iio_triggered_buffer_setup(indio_dev,
inv_mpu6050_irq_handler,
inv_mpu6050_read_fifo,
NULL);
if (result) {
dev_err(&st->client->dev, "configure buffer fail %d\n",
result);
goto out_free;
}
result = inv_mpu6050_probe_trigger(indio_dev);
if (result) {
dev_err(&st->client->dev, "trigger probe fail %d\n", result);
goto out_unreg_ring;
}
INIT_KFIFO(st->timestamps);
spin_lock_init(&st->time_stamp_lock);
result = iio_device_register(indio_dev);
if (result) {
dev_err(&st->client->dev, "IIO register fail %d\n", result);
goto out_remove_trigger;
}
return 0;
out_remove_trigger:
inv_mpu6050_remove_trigger(st);
out_unreg_ring:
iio_triggered_buffer_cleanup(indio_dev);
out_free:
iio_device_free(indio_dev);
out_no_free:
return result;
}
static int inv_mpu_remove(struct i2c_client *client)
{
struct iio_dev *indio_dev = i2c_get_clientdata(client);
struct inv_mpu6050_state *st = iio_priv(indio_dev);
iio_device_unregister(indio_dev);
inv_mpu6050_remove_trigger(st);
iio_triggered_buffer_cleanup(indio_dev);
iio_device_free(indio_dev);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int inv_mpu_resume(struct device *dev)
{
return inv_mpu6050_set_power_itg(
iio_priv(i2c_get_clientdata(to_i2c_client(dev))), true);
}
static int inv_mpu_suspend(struct device *dev)
{
return inv_mpu6050_set_power_itg(
iio_priv(i2c_get_clientdata(to_i2c_client(dev))), false);
}
static SIMPLE_DEV_PM_OPS(inv_mpu_pmops, inv_mpu_suspend, inv_mpu_resume);
#define INV_MPU6050_PMOPS (&inv_mpu_pmops)
#else
#define INV_MPU6050_PMOPS NULL
#endif /* CONFIG_PM_SLEEP */
/*
* device id table is used to identify what device can be
* supported by this driver
*/
static const struct i2c_device_id inv_mpu_id[] = {
{"mpu6050", INV_MPU6050},
{}
};
MODULE_DEVICE_TABLE(i2c, inv_mpu_id);
static struct i2c_driver inv_mpu_driver = {
.probe = inv_mpu_probe,
.remove = inv_mpu_remove,
.id_table = inv_mpu_id,
.driver = {
.owner = THIS_MODULE,
.name = "inv-mpu6050",
.pm = INV_MPU6050_PMOPS,
},
};
module_i2c_driver(inv_mpu_driver);
MODULE_AUTHOR("Invensense Corporation");
MODULE_DESCRIPTION("Invensense device MPU6050 driver");
MODULE_LICENSE("GPL");