- 根目录:
- drivers
- net
- wireless
- ath
- ath9k
- eeprom.c
/*
* Copyright (c) 2008-2011 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "hw.h"
void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
{
REG_WRITE(ah, reg, val);
if (ah->config.analog_shiftreg)
udelay(100);
}
void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
u32 shift, u32 val)
{
u32 regVal;
regVal = REG_READ(ah, reg) & ~mask;
regVal |= (val << shift) & mask;
REG_WRITE(ah, reg, regVal);
if (ah->config.analog_shiftreg)
udelay(100);
}
int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
int16_t targetLeft, int16_t targetRight)
{
int16_t rv;
if (srcRight == srcLeft) {
rv = targetLeft;
} else {
rv = (int16_t) (((target - srcLeft) * targetRight +
(srcRight - target) * targetLeft) /
(srcRight - srcLeft));
}
return rv;
}
bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
u16 *indexL, u16 *indexR)
{
u16 i;
if (target <= pList[0]) {
*indexL = *indexR = 0;
return true;
}
if (target >= pList[listSize - 1]) {
*indexL = *indexR = (u16) (listSize - 1);
return true;
}
for (i = 0; i < listSize - 1; i++) {
if (pList[i] == target) {
*indexL = *indexR = i;
return true;
}
if (target < pList[i + 1]) {
*indexL = i;
*indexR = (u16) (i + 1);
return false;
}
}
return false;
}
void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
int eep_start_loc, int size)
{
int i = 0, j, addr;
u32 addrdata[8];
u32 data[8];
for (addr = 0; addr < size; addr++) {
addrdata[i] = AR5416_EEPROM_OFFSET +
((addr + eep_start_loc) << AR5416_EEPROM_S);
i++;
if (i == 8) {
REG_READ_MULTI(ah, addrdata, data, i);
for (j = 0; j < i; j++) {
*eep_data = data[j];
eep_data++;
}
i = 0;
}
}
if (i != 0) {
REG_READ_MULTI(ah, addrdata, data, i);
for (j = 0; j < i; j++) {
*eep_data = data[j];
eep_data++;
}
}
}
static bool ath9k_hw_nvram_read_blob(struct ath_hw *ah, u32 off,
u16 *data)
{
u16 *blob_data;
if (off * sizeof(u16) > ah->eeprom_blob->size)
return false;
blob_data = (u16 *)ah->eeprom_blob->data;
*data = blob_data[off];
return true;
}
bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
{
struct ath_common *common = ath9k_hw_common(ah);
bool ret;
if (ah->eeprom_blob)
ret = ath9k_hw_nvram_read_blob(ah, off, data);
else
ret = common->bus_ops->eeprom_read(common, off, data);
if (!ret)
ath_dbg(common, EEPROM,
"unable to read eeprom region at offset %u\n", off);
return ret;
}
void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
u8 *pVpdList, u16 numIntercepts,
u8 *pRetVpdList)
{
u16 i, k;
u8 currPwr = pwrMin;
u16 idxL = 0, idxR = 0;
for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
numIntercepts, &(idxL),
&(idxR));
if (idxR < 1)
idxR = 1;
if (idxL == numIntercepts - 1)
idxL = (u16) (numIntercepts - 2);
if (pPwrList[idxL] == pPwrList[idxR])
k = pVpdList[idxL];
else
k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
(pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
(pPwrList[idxR] - pPwrList[idxL]));
pRetVpdList[i] = (u8) k;
currPwr += 2;
}
}
void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
struct ath9k_channel *chan,
struct cal_target_power_leg *powInfo,
u16 numChannels,
struct cal_target_power_leg *pNewPower,
u16 numRates, bool isExtTarget)
{
struct chan_centers centers;
u16 clo, chi;
int i;
int matchIndex = -1, lowIndex = -1;
u16 freq;
ath9k_hw_get_channel_centers(ah, chan, ¢ers);
freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
IS_CHAN_2GHZ(chan))) {
matchIndex = 0;
} else {
for (i = 0; (i < numChannels) &&
(powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
IS_CHAN_2GHZ(chan))) {
matchIndex = i;
break;
} else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
IS_CHAN_2GHZ(chan)) && i > 0 &&
freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
IS_CHAN_2GHZ(chan))) {
lowIndex = i - 1;
break;
}
}
if ((matchIndex == -1) && (lowIndex == -1))
matchIndex = i - 1;
}
if (matchIndex != -1) {
*pNewPower = powInfo[matchIndex];
} else {
clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
IS_CHAN_2GHZ(chan));
chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
IS_CHAN_2GHZ(chan));
for (i = 0; i < numRates; i++) {
pNewPower->tPow2x[i] =
(u8)ath9k_hw_interpolate(freq, clo, chi,
powInfo[lowIndex].tPow2x[i],
powInfo[lowIndex + 1].tPow2x[i]);
}
}
}
void ath9k_hw_get_target_powers(struct ath_hw *ah,
struct ath9k_channel *chan,
struct cal_target_power_ht *powInfo,
u16 numChannels,
struct cal_target_power_ht *pNewPower,
u16 numRates, bool isHt40Target)
{
struct chan_centers centers;
u16 clo, chi;
int i;
int matchIndex = -1, lowIndex = -1;
u16 freq;
ath9k_hw_get_channel_centers(ah, chan, ¢ers);
freq = isHt40Target ? centers.synth_center : centers.ctl_center;
if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
matchIndex = 0;
} else {
for (i = 0; (i < numChannels) &&
(powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
IS_CHAN_2GHZ(chan))) {
matchIndex = i;
break;
} else
if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
IS_CHAN_2GHZ(chan)) && i > 0 &&
freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
IS_CHAN_2GHZ(chan))) {
lowIndex = i - 1;
break;
}
}
if ((matchIndex == -1) && (lowIndex == -1))
matchIndex = i - 1;
}
if (matchIndex != -1) {
*pNewPower = powInfo[matchIndex];
} else {
clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
IS_CHAN_2GHZ(chan));
chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
IS_CHAN_2GHZ(chan));
for (i = 0; i < numRates; i++) {
pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
clo, chi,
powInfo[lowIndex].tPow2x[i],
powInfo[lowIndex + 1].tPow2x[i]);
}
}
}
u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
bool is2GHz, int num_band_edges)
{
u16 twiceMaxEdgePower = MAX_RATE_POWER;
int i;
for (i = 0; (i < num_band_edges) &&
(pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
break;
} else if ((i > 0) &&
(freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
is2GHz))) {
if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
is2GHz) < freq &&
CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
twiceMaxEdgePower =
CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
}
break;
}
}
return twiceMaxEdgePower;
}
u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
u8 antenna_reduction)
{
u16 reduction = antenna_reduction;
/*
* Reduce scaled Power by number of chains active
* to get the per chain tx power level.
*/
switch (ar5416_get_ntxchains(ah->txchainmask)) {
case 1:
break;
case 2:
reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
break;
case 3:
reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
break;
}
if (power_limit > reduction)
power_limit -= reduction;
else
power_limit = 0;
return power_limit;
}
void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
{
struct ath_common *common = ath9k_hw_common(ah);
struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
switch (ar5416_get_ntxchains(ah->txchainmask)) {
case 1:
break;
case 2:
regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
break;
case 3:
regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
break;
default:
ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
break;
}
}
void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
struct ath9k_channel *chan,
void *pRawDataSet,
u8 *bChans, u16 availPiers,
u16 tPdGainOverlap,
u16 *pPdGainBoundaries, u8 *pPDADCValues,
u16 numXpdGains)
{
int i, j, k;
int16_t ss;
u16 idxL = 0, idxR = 0, numPiers;
static u8 vpdTableL[AR5416_NUM_PD_GAINS]
[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
static u8 vpdTableR[AR5416_NUM_PD_GAINS]
[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
static u8 vpdTableI[AR5416_NUM_PD_GAINS]
[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
u8 minPwrT4[AR5416_NUM_PD_GAINS];
u8 maxPwrT4[AR5416_NUM_PD_GAINS];
int16_t vpdStep;
int16_t tmpVal;
u16 sizeCurrVpdTable, maxIndex, tgtIndex;
bool match;
int16_t minDelta = 0;
struct chan_centers centers;
int pdgain_boundary_default;
struct cal_data_per_freq *data_def = pRawDataSet;
struct cal_data_per_freq_4k *data_4k = pRawDataSet;
struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
int intercepts;
if (AR_SREV_9287(ah))
intercepts = AR9287_PD_GAIN_ICEPTS;
else
intercepts = AR5416_PD_GAIN_ICEPTS;
memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
ath9k_hw_get_channel_centers(ah, chan, ¢ers);
for (numPiers = 0; numPiers < availPiers; numPiers++) {
if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
break;
}
match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
IS_CHAN_2GHZ(chan)),
bChans, numPiers, &idxL, &idxR);
if (match) {
if (AR_SREV_9287(ah)) {
/* FIXME: array overrun? */
for (i = 0; i < numXpdGains; i++) {
minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
maxPwrT4[i] = data_9287[idxL].pwrPdg[i][4];
ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
data_9287[idxL].pwrPdg[i],
data_9287[idxL].vpdPdg[i],
intercepts,
vpdTableI[i]);
}
} else if (eeprom_4k) {
for (i = 0; i < numXpdGains; i++) {
minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
maxPwrT4[i] = data_4k[idxL].pwrPdg[i][4];
ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
data_4k[idxL].pwrPdg[i],
data_4k[idxL].vpdPdg[i],
intercepts,
vpdTableI[i]);
}
} else {
for (i = 0; i < numXpdGains; i++) {
minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
maxPwrT4[i] = data_def[idxL].pwrPdg[i][4];
ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
data_def[idxL].pwrPdg[i],
data_def[idxL].vpdPdg[i],
intercepts,
vpdTableI[i]);
}
}
} else {
for (i = 0; i < numXpdGains; i++) {
if (AR_SREV_9287(ah)) {
pVpdL = data_9287[idxL].vpdPdg[i];
pPwrL = data_9287[idxL].pwrPdg[i];
pVpdR = data_9287[idxR].vpdPdg[i];
pPwrR = data_9287[idxR].pwrPdg[i];
} else if (eeprom_4k) {
pVpdL = data_4k[idxL].vpdPdg[i];
pPwrL = data_4k[idxL].pwrPdg[i];
pVpdR = data_4k[idxR].vpdPdg[i];
pPwrR = data_4k[idxR].pwrPdg[i];
} else {
pVpdL = data_def[idxL].vpdPdg[i];
pPwrL = data_def[idxL].pwrPdg[i];
pVpdR = data_def[idxR].vpdPdg[i];
pPwrR = data_def[idxR].pwrPdg[i];
}
minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
maxPwrT4[i] =
min(pPwrL[intercepts - 1],
pPwrR[intercepts - 1]);
ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
pPwrL, pVpdL,
intercepts,
vpdTableL[i]);
ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
pPwrR, pVpdR,
intercepts,
vpdTableR[i]);
for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
vpdTableI[i][j] =
(u8)(ath9k_hw_interpolate((u16)
FREQ2FBIN(centers.
synth_center,
IS_CHAN_2GHZ
(chan)),
bChans[idxL], bChans[idxR],
vpdTableL[i][j], vpdTableR[i][j]));
}
}
}
k = 0;
for (i = 0; i < numXpdGains; i++) {
if (i == (numXpdGains - 1))
pPdGainBoundaries[i] =
(u16)(maxPwrT4[i] / 2);
else
pPdGainBoundaries[i] =
(u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
pPdGainBoundaries[i] =
min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
minDelta = 0;
if (i == 0) {
if (AR_SREV_9280_20_OR_LATER(ah))
ss = (int16_t)(0 - (minPwrT4[i] / 2));
else
ss = 0;
} else {
ss = (int16_t)((pPdGainBoundaries[i - 1] -
(minPwrT4[i] / 2)) -
tPdGainOverlap + 1 + minDelta);
}
vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
ss++;
}
sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
(minPwrT4[i] / 2));
maxIndex = (tgtIndex < sizeCurrVpdTable) ?
tgtIndex : sizeCurrVpdTable;
while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
pPDADCValues[k++] = vpdTableI[i][ss++];
}
vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
vpdTableI[i][sizeCurrVpdTable - 2]);
vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
if (tgtIndex >= maxIndex) {
while ((ss <= tgtIndex) &&
(k < (AR5416_NUM_PDADC_VALUES - 1))) {
tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
(ss - maxIndex + 1) * vpdStep));
pPDADCValues[k++] = (u8)((tmpVal > 255) ?
255 : tmpVal);
ss++;
}
}
}
if (eeprom_4k)
pdgain_boundary_default = 58;
else
pdgain_boundary_default = pPdGainBoundaries[i - 1];
while (i < AR5416_PD_GAINS_IN_MASK) {
pPdGainBoundaries[i] = pdgain_boundary_default;
i++;
}
while (k < AR5416_NUM_PDADC_VALUES) {
pPDADCValues[k] = pPDADCValues[k - 1];
k++;
}
}
int ath9k_hw_eeprom_init(struct ath_hw *ah)
{
int status;
if (AR_SREV_9300_20_OR_LATER(ah))
ah->eep_ops = &eep_ar9300_ops;
else if (AR_SREV_9287(ah)) {
ah->eep_ops = &eep_ar9287_ops;
} else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
ah->eep_ops = &eep_4k_ops;
} else {
ah->eep_ops = &eep_def_ops;
}
if (!ah->eep_ops->fill_eeprom(ah))
return -EIO;
status = ah->eep_ops->check_eeprom(ah);
return status;
}