- 根目录:
- drivers
- net
- wireless
- ath
- ath9k
- rc.c
/*
* Copyright (c) 2004 Video54 Technologies, Inc.
* Copyright (c) 2004-2011 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/slab.h>
#include <linux/export.h>
#include "ath9k.h"
static const struct ath_rate_table ar5416_11na_ratetable = {
68,
8, /* MCS start */
{
[0] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 6000,
5400, 0, 12 }, /* 6 Mb */
[1] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 9000,
7800, 1, 18 }, /* 9 Mb */
[2] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000,
10000, 2, 24 }, /* 12 Mb */
[3] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000,
13900, 3, 36 }, /* 18 Mb */
[4] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000,
17300, 4, 48 }, /* 24 Mb */
[5] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000,
23000, 5, 72 }, /* 36 Mb */
[6] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000,
27400, 6, 96 }, /* 48 Mb */
[7] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000,
29300, 7, 108 }, /* 54 Mb */
[8] = { RC_HT_SDT_2040, WLAN_RC_PHY_HT_20_SS, 6500,
6400, 0, 0 }, /* 6.5 Mb */
[9] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 13000,
12700, 1, 1 }, /* 13 Mb */
[10] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 19500,
18800, 2, 2 }, /* 19.5 Mb */
[11] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 26000,
25000, 3, 3 }, /* 26 Mb */
[12] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 39000,
36700, 4, 4 }, /* 39 Mb */
[13] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 52000,
48100, 5, 5 }, /* 52 Mb */
[14] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 58500,
53500, 6, 6 }, /* 58.5 Mb */
[15] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 65000,
59000, 7, 7 }, /* 65 Mb */
[16] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS_HGI, 72200,
65400, 7, 7 }, /* 75 Mb */
[17] = { RC_INVALID, WLAN_RC_PHY_HT_20_DS, 13000,
12700, 8, 8 }, /* 13 Mb */
[18] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 26000,
24800, 9, 9 }, /* 26 Mb */
[19] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 39000,
36600, 10, 10 }, /* 39 Mb */
[20] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 52000,
48100, 11, 11 }, /* 52 Mb */
[21] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 78000,
69500, 12, 12 }, /* 78 Mb */
[22] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 104000,
89500, 13, 13 }, /* 104 Mb */
[23] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 117000,
98900, 14, 14 }, /* 117 Mb */
[24] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 130000,
108300, 15, 15 }, /* 130 Mb */
[25] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS_HGI, 144400,
120000, 15, 15 }, /* 144.4 Mb */
[26] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 19500,
17400, 16, 16 }, /* 19.5 Mb */
[27] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 39000,
35100, 17, 17 }, /* 39 Mb */
[28] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 58500,
52600, 18, 18 }, /* 58.5 Mb */
[29] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 78000,
70400, 19, 19 }, /* 78 Mb */
[30] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 117000,
104900, 20, 20 }, /* 117 Mb */
[31] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS_HGI, 130000,
115800, 20, 20 }, /* 130 Mb*/
[32] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 156000,
137200, 21, 21 }, /* 156 Mb */
[33] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 173300,
151100, 21, 21 }, /* 173.3 Mb */
[34] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 175500,
152800, 22, 22 }, /* 175.5 Mb */
[35] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 195000,
168400, 22, 22 }, /* 195 Mb*/
[36] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 195000,
168400, 23, 23 }, /* 195 Mb */
[37] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 216700,
185000, 23, 23 }, /* 216.7 Mb */
[38] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 13500,
13200, 0, 0 }, /* 13.5 Mb*/
[39] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 27500,
25900, 1, 1 }, /* 27.0 Mb*/
[40] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 40500,
38600, 2, 2 }, /* 40.5 Mb*/
[41] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 54000,
49800, 3, 3 }, /* 54 Mb */
[42] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 81500,
72200, 4, 4 }, /* 81 Mb */
[43] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 108000,
92900, 5, 5 }, /* 108 Mb */
[44] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 121500,
102700, 6, 6 }, /* 121.5 Mb*/
[45] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 135000,
112000, 7, 7 }, /* 135 Mb */
[46] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000,
122000, 7, 7 }, /* 150 Mb */
[47] = { RC_INVALID, WLAN_RC_PHY_HT_40_DS, 27000,
25800, 8, 8 }, /* 27 Mb */
[48] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 54000,
49800, 9, 9 }, /* 54 Mb */
[49] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 81000,
71900, 10, 10 }, /* 81 Mb */
[50] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 108000,
92500, 11, 11 }, /* 108 Mb */
[51] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 162000,
130300, 12, 12 }, /* 162 Mb */
[52] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 216000,
162800, 13, 13 }, /* 216 Mb */
[53] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 243000,
178200, 14, 14 }, /* 243 Mb */
[54] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 270000,
192100, 15, 15 }, /* 270 Mb */
[55] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS_HGI, 300000,
207000, 15, 15 }, /* 300 Mb */
[56] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 40500,
36100, 16, 16 }, /* 40.5 Mb */
[57] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 81000,
72900, 17, 17 }, /* 81 Mb */
[58] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 121500,
108300, 18, 18 }, /* 121.5 Mb */
[59] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 162000,
142000, 19, 19 }, /* 162 Mb */
[60] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 243000,
205100, 20, 20 }, /* 243 Mb */
[61] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS_HGI, 270000,
224700, 20, 20 }, /* 270 Mb */
[62] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 324000,
263100, 21, 21 }, /* 324 Mb */
[63] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 360000,
288000, 21, 21 }, /* 360 Mb */
[64] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 364500,
290700, 22, 22 }, /* 364.5 Mb */
[65] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 405000,
317200, 22, 22 }, /* 405 Mb */
[66] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 405000,
317200, 23, 23 }, /* 405 Mb */
[67] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 450000,
346400, 23, 23 }, /* 450 Mb */
},
50, /* probe interval */
WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
};
/* 4ms frame limit not used for NG mode. The values filled
* for HT are the 64K max aggregate limit */
static const struct ath_rate_table ar5416_11ng_ratetable = {
72,
12, /* MCS start */
{
[0] = { RC_ALL, WLAN_RC_PHY_CCK, 1000,
900, 0, 2 }, /* 1 Mb */
[1] = { RC_ALL, WLAN_RC_PHY_CCK, 2000,
1900, 1, 4 }, /* 2 Mb */
[2] = { RC_ALL, WLAN_RC_PHY_CCK, 5500,
4900, 2, 11 }, /* 5.5 Mb */
[3] = { RC_ALL, WLAN_RC_PHY_CCK, 11000,
8100, 3, 22 }, /* 11 Mb */
[4] = { RC_INVALID, WLAN_RC_PHY_OFDM, 6000,
5400, 4, 12 }, /* 6 Mb */
[5] = { RC_INVALID, WLAN_RC_PHY_OFDM, 9000,
7800, 5, 18 }, /* 9 Mb */
[6] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000,
10100, 6, 24 }, /* 12 Mb */
[7] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000,
14100, 7, 36 }, /* 18 Mb */
[8] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000,
17700, 8, 48 }, /* 24 Mb */
[9] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000,
23700, 9, 72 }, /* 36 Mb */
[10] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000,
27400, 10, 96 }, /* 48 Mb */
[11] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000,
30900, 11, 108 }, /* 54 Mb */
[12] = { RC_INVALID, WLAN_RC_PHY_HT_20_SS, 6500,
6400, 0, 0 }, /* 6.5 Mb */
[13] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 13000,
12700, 1, 1 }, /* 13 Mb */
[14] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 19500,
18800, 2, 2 }, /* 19.5 Mb*/
[15] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 26000,
25000, 3, 3 }, /* 26 Mb */
[16] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 39000,
36700, 4, 4 }, /* 39 Mb */
[17] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 52000,
48100, 5, 5 }, /* 52 Mb */
[18] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 58500,
53500, 6, 6 }, /* 58.5 Mb */
[19] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 65000,
59000, 7, 7 }, /* 65 Mb */
[20] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS_HGI, 72200,
65400, 7, 7 }, /* 65 Mb*/
[21] = { RC_INVALID, WLAN_RC_PHY_HT_20_DS, 13000,
12700, 8, 8 }, /* 13 Mb */
[22] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 26000,
24800, 9, 9 }, /* 26 Mb */
[23] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 39000,
36600, 10, 10 }, /* 39 Mb */
[24] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 52000,
48100, 11, 11 }, /* 52 Mb */
[25] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 78000,
69500, 12, 12 }, /* 78 Mb */
[26] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 104000,
89500, 13, 13 }, /* 104 Mb */
[27] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 117000,
98900, 14, 14 }, /* 117 Mb */
[28] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 130000,
108300, 15, 15 }, /* 130 Mb */
[29] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS_HGI, 144400,
120000, 15, 15 }, /* 144.4 Mb */
[30] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 19500,
17400, 16, 16 }, /* 19.5 Mb */
[31] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 39000,
35100, 17, 17 }, /* 39 Mb */
[32] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 58500,
52600, 18, 18 }, /* 58.5 Mb */
[33] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 78000,
70400, 19, 19 }, /* 78 Mb */
[34] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 117000,
104900, 20, 20 }, /* 117 Mb */
[35] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS_HGI, 130000,
115800, 20, 20 }, /* 130 Mb */
[36] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 156000,
137200, 21, 21 }, /* 156 Mb */
[37] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 173300,
151100, 21, 21 }, /* 173.3 Mb */
[38] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 175500,
152800, 22, 22 }, /* 175.5 Mb */
[39] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 195000,
168400, 22, 22 }, /* 195 Mb */
[40] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 195000,
168400, 23, 23 }, /* 195 Mb */
[41] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 216700,
185000, 23, 23 }, /* 216.7 Mb */
[42] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 13500,
13200, 0, 0 }, /* 13.5 Mb */
[43] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 27500,
25900, 1, 1 }, /* 27.0 Mb */
[44] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 40500,
38600, 2, 2 }, /* 40.5 Mb */
[45] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 54000,
49800, 3, 3 }, /* 54 Mb */
[46] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 81500,
72200, 4, 4 }, /* 81 Mb */
[47] = { RC_HT_S_40 , WLAN_RC_PHY_HT_40_SS, 108000,
92900, 5, 5 }, /* 108 Mb */
[48] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 121500,
102700, 6, 6 }, /* 121.5 Mb */
[49] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 135000,
112000, 7, 7 }, /* 135 Mb */
[50] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000,
122000, 7, 7 }, /* 150 Mb */
[51] = { RC_INVALID, WLAN_RC_PHY_HT_40_DS, 27000,
25800, 8, 8 }, /* 27 Mb */
[52] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 54000,
49800, 9, 9 }, /* 54 Mb */
[53] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 81000,
71900, 10, 10 }, /* 81 Mb */
[54] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 108000,
92500, 11, 11 }, /* 108 Mb */
[55] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 162000,
130300, 12, 12 }, /* 162 Mb */
[56] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 216000,
162800, 13, 13 }, /* 216 Mb */
[57] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 243000,
178200, 14, 14 }, /* 243 Mb */
[58] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 270000,
192100, 15, 15 }, /* 270 Mb */
[59] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS_HGI, 300000,
207000, 15, 15 }, /* 300 Mb */
[60] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 40500,
36100, 16, 16 }, /* 40.5 Mb */
[61] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 81000,
72900, 17, 17 }, /* 81 Mb */
[62] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 121500,
108300, 18, 18 }, /* 121.5 Mb */
[63] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 162000,
142000, 19, 19 }, /* 162 Mb */
[64] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 243000,
205100, 20, 20 }, /* 243 Mb */
[65] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS_HGI, 270000,
224700, 20, 20 }, /* 270 Mb */
[66] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 324000,
263100, 21, 21 }, /* 324 Mb */
[67] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 360000,
288000, 21, 21 }, /* 360 Mb */
[68] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 364500,
290700, 22, 22 }, /* 364.5 Mb */
[69] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 405000,
317200, 22, 22 }, /* 405 Mb */
[70] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 405000,
317200, 23, 23 }, /* 405 Mb */
[71] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 450000,
346400, 23, 23 }, /* 450 Mb */
},
50, /* probe interval */
WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
};
static const struct ath_rate_table ar5416_11a_ratetable = {
8,
0,
{
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
5400, 0, 12},
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
7800, 1, 18},
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
10000, 2, 24},
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
13900, 3, 36},
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
17300, 4, 48},
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
23000, 5, 72},
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
27400, 6, 96},
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
29300, 7, 108},
},
50, /* probe interval */
0, /* Phy rates allowed initially */
};
static const struct ath_rate_table ar5416_11g_ratetable = {
12,
0,
{
{ RC_L_SDT, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
900, 0, 2},
{ RC_L_SDT, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
1900, 1, 4},
{ RC_L_SDT, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
4900, 2, 11},
{ RC_L_SDT, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
8100, 3, 22},
{ RC_INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
5400, 4, 12},
{ RC_INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
7800, 5, 18},
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
10000, 6, 24},
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
13900, 7, 36},
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
17300, 8, 48},
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
23000, 9, 72},
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
27400, 10, 96},
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
29300, 11, 108},
},
50, /* probe interval */
0, /* Phy rates allowed initially */
};
static int ath_rc_get_rateindex(struct ath_rate_priv *ath_rc_priv,
struct ieee80211_tx_rate *rate)
{
const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
int rix, i, idx = 0;
if (!(rate->flags & IEEE80211_TX_RC_MCS))
return rate->idx;
for (i = 0; i < ath_rc_priv->max_valid_rate; i++) {
idx = ath_rc_priv->valid_rate_index[i];
if (WLAN_RC_PHY_HT(rate_table->info[idx].phy) &&
rate_table->info[idx].ratecode == rate->idx)
break;
}
rix = idx;
if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
rix++;
return rix;
}
static void ath_rc_sort_validrates(struct ath_rate_priv *ath_rc_priv)
{
const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
u8 i, j, idx, idx_next;
for (i = ath_rc_priv->max_valid_rate - 1; i > 0; i--) {
for (j = 0; j <= i-1; j++) {
idx = ath_rc_priv->valid_rate_index[j];
idx_next = ath_rc_priv->valid_rate_index[j+1];
if (rate_table->info[idx].ratekbps >
rate_table->info[idx_next].ratekbps) {
ath_rc_priv->valid_rate_index[j] = idx_next;
ath_rc_priv->valid_rate_index[j+1] = idx;
}
}
}
}
static inline
int ath_rc_get_nextvalid_txrate(const struct ath_rate_table *rate_table,
struct ath_rate_priv *ath_rc_priv,
u8 cur_valid_txrate,
u8 *next_idx)
{
u8 i;
for (i = 0; i < ath_rc_priv->max_valid_rate - 1; i++) {
if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
*next_idx = ath_rc_priv->valid_rate_index[i+1];
return 1;
}
}
/* No more valid rates */
*next_idx = 0;
return 0;
}
/* Return true only for single stream */
static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw)
{
if (WLAN_RC_PHY_HT(phy) && !(capflag & WLAN_RC_HT_FLAG))
return 0;
if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG))
return 0;
if (WLAN_RC_PHY_TS(phy) && !(capflag & WLAN_RC_TS_FLAG))
return 0;
if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG))
return 0;
if (!ignore_cw && WLAN_RC_PHY_HT(phy))
if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG))
return 0;
return 1;
}
static inline int
ath_rc_get_lower_rix(struct ath_rate_priv *ath_rc_priv,
u8 cur_valid_txrate, u8 *next_idx)
{
int8_t i;
for (i = 1; i < ath_rc_priv->max_valid_rate ; i++) {
if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
*next_idx = ath_rc_priv->valid_rate_index[i-1];
return 1;
}
}
return 0;
}
static u8 ath_rc_init_validrates(struct ath_rate_priv *ath_rc_priv)
{
const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
u8 i, hi = 0;
for (i = 0; i < rate_table->rate_cnt; i++) {
if (rate_table->info[i].rate_flags & RC_LEGACY) {
u32 phy = rate_table->info[i].phy;
u8 valid_rate_count = 0;
if (!ath_rc_valid_phyrate(phy, ath_rc_priv->ht_cap, 0))
continue;
valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy];
ath_rc_priv->valid_phy_rateidx[phy][valid_rate_count] = i;
ath_rc_priv->valid_phy_ratecnt[phy] += 1;
ath_rc_priv->valid_rate_index[i] = true;
hi = i;
}
}
return hi;
}
static inline bool ath_rc_check_legacy(u8 rate, u8 dot11rate, u16 rate_flags,
u32 phy, u32 capflag)
{
if (rate != dot11rate || WLAN_RC_PHY_HT(phy))
return false;
if ((rate_flags & WLAN_RC_CAP_MODE(capflag)) != WLAN_RC_CAP_MODE(capflag))
return false;
if (!(rate_flags & WLAN_RC_CAP_STREAM(capflag)))
return false;
return true;
}
static inline bool ath_rc_check_ht(u8 rate, u8 dot11rate, u16 rate_flags,
u32 phy, u32 capflag)
{
if (rate != dot11rate || !WLAN_RC_PHY_HT(phy))
return false;
if (!WLAN_RC_PHY_HT_VALID(rate_flags, capflag))
return false;
if (!(rate_flags & WLAN_RC_CAP_STREAM(capflag)))
return false;
return true;
}
static u8 ath_rc_setvalid_rates(struct ath_rate_priv *ath_rc_priv, bool legacy)
{
const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
struct ath_rateset *rateset;
u32 phy, capflag = ath_rc_priv->ht_cap;
u16 rate_flags;
u8 i, j, hi = 0, rate, dot11rate, valid_rate_count;
if (legacy)
rateset = &ath_rc_priv->neg_rates;
else
rateset = &ath_rc_priv->neg_ht_rates;
for (i = 0; i < rateset->rs_nrates; i++) {
for (j = 0; j < rate_table->rate_cnt; j++) {
phy = rate_table->info[j].phy;
rate_flags = rate_table->info[j].rate_flags;
rate = rateset->rs_rates[i];
dot11rate = rate_table->info[j].dot11rate;
if (legacy &&
!ath_rc_check_legacy(rate, dot11rate,
rate_flags, phy, capflag))
continue;
if (!legacy &&
!ath_rc_check_ht(rate, dot11rate,
rate_flags, phy, capflag))
continue;
if (!ath_rc_valid_phyrate(phy, capflag, 0))
continue;
valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy];
ath_rc_priv->valid_phy_rateidx[phy][valid_rate_count] = j;
ath_rc_priv->valid_phy_ratecnt[phy] += 1;
ath_rc_priv->valid_rate_index[j] = true;
hi = max(hi, j);
}
}
return hi;
}
static u8 ath_rc_get_highest_rix(struct ath_rate_priv *ath_rc_priv,
int *is_probing)
{
const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
u32 best_thruput, this_thruput, now_msec;
u8 rate, next_rate, best_rate, maxindex, minindex;
int8_t index = 0;
now_msec = jiffies_to_msecs(jiffies);
*is_probing = 0;
best_thruput = 0;
maxindex = ath_rc_priv->max_valid_rate-1;
minindex = 0;
best_rate = minindex;
/*
* Try the higher rate first. It will reduce memory moving time
* if we have very good channel characteristics.
*/
for (index = maxindex; index >= minindex ; index--) {
u8 per_thres;
rate = ath_rc_priv->valid_rate_index[index];
if (rate > ath_rc_priv->rate_max_phy)
continue;
/*
* For TCP the average collision rate is around 11%,
* so we ignore PERs less than this. This is to
* prevent the rate we are currently using (whose
* PER might be in the 10-15 range because of TCP
* collisions) looking worse than the next lower
* rate whose PER has decayed close to 0. If we
* used to next lower rate, its PER would grow to
* 10-15 and we would be worse off then staying
* at the current rate.
*/
per_thres = ath_rc_priv->per[rate];
if (per_thres < 12)
per_thres = 12;
this_thruput = rate_table->info[rate].user_ratekbps *
(100 - per_thres);
if (best_thruput <= this_thruput) {
best_thruput = this_thruput;
best_rate = rate;
}
}
rate = best_rate;
/*
* Must check the actual rate (ratekbps) to account for
* non-monoticity of 11g's rate table
*/
if (rate >= ath_rc_priv->rate_max_phy) {
rate = ath_rc_priv->rate_max_phy;
/* Probe the next allowed phy state */
if (ath_rc_get_nextvalid_txrate(rate_table,
ath_rc_priv, rate, &next_rate) &&
(now_msec - ath_rc_priv->probe_time >
rate_table->probe_interval) &&
(ath_rc_priv->hw_maxretry_pktcnt >= 1)) {
rate = next_rate;
ath_rc_priv->probe_rate = rate;
ath_rc_priv->probe_time = now_msec;
ath_rc_priv->hw_maxretry_pktcnt = 0;
*is_probing = 1;
}
}
if (rate > (ath_rc_priv->rate_table_size - 1))
rate = ath_rc_priv->rate_table_size - 1;
if (RC_TS_ONLY(rate_table->info[rate].rate_flags) &&
(ath_rc_priv->ht_cap & WLAN_RC_TS_FLAG))
return rate;
if (RC_DS_OR_LATER(rate_table->info[rate].rate_flags) &&
(ath_rc_priv->ht_cap & (WLAN_RC_DS_FLAG | WLAN_RC_TS_FLAG)))
return rate;
if (RC_SS_OR_LEGACY(rate_table->info[rate].rate_flags))
return rate;
/* This should not happen */
WARN_ON_ONCE(1);
rate = ath_rc_priv->valid_rate_index[0];
return rate;
}
static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table,
struct ieee80211_tx_rate *rate,
struct ieee80211_tx_rate_control *txrc,
u8 tries, u8 rix, int rtsctsenable)
{
rate->count = tries;
rate->idx = rate_table->info[rix].ratecode;
if (txrc->rts || rtsctsenable)
rate->flags |= IEEE80211_TX_RC_USE_RTS_CTS;
if (WLAN_RC_PHY_HT(rate_table->info[rix].phy)) {
rate->flags |= IEEE80211_TX_RC_MCS;
if (WLAN_RC_PHY_40(rate_table->info[rix].phy) &&
conf_is_ht40(&txrc->hw->conf))
rate->flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;
if (WLAN_RC_PHY_SGI(rate_table->info[rix].phy))
rate->flags |= IEEE80211_TX_RC_SHORT_GI;
}
}
static void ath_rc_rate_set_rtscts(struct ath_softc *sc,
const struct ath_rate_table *rate_table,
struct ieee80211_tx_info *tx_info)
{
struct ieee80211_bss_conf *bss_conf;
if (!tx_info->control.vif)
return;
/*
* For legacy frames, mac80211 takes care of CTS protection.
*/
if (!(tx_info->control.rates[0].flags & IEEE80211_TX_RC_MCS))
return;
bss_conf = &tx_info->control.vif->bss_conf;
if (!bss_conf->basic_rates)
return;
/*
* For now, use the lowest allowed basic rate for HT frames.
*/
tx_info->control.rts_cts_rate_idx = __ffs(bss_conf->basic_rates);
}
static void ath_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
struct ieee80211_tx_rate_control *txrc)
{
struct ath_softc *sc = priv;
struct ath_rate_priv *ath_rc_priv = priv_sta;
const struct ath_rate_table *rate_table;
struct sk_buff *skb = txrc->skb;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
struct ieee80211_tx_rate *rates = tx_info->control.rates;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
__le16 fc = hdr->frame_control;
u8 try_per_rate, i = 0, rix;
int is_probe = 0;
if (rate_control_send_low(sta, priv_sta, txrc))
return;
/*
* For Multi Rate Retry we use a different number of
* retry attempt counts. This ends up looking like this:
*
* MRR[0] = 4
* MRR[1] = 4
* MRR[2] = 4
* MRR[3] = 8
*
*/
try_per_rate = 4;
rate_table = ath_rc_priv->rate_table;
rix = ath_rc_get_highest_rix(ath_rc_priv, &is_probe);
if (conf_is_ht(&sc->hw->conf) &&
(sta->ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING))
tx_info->flags |= IEEE80211_TX_CTL_LDPC;
if (conf_is_ht(&sc->hw->conf) &&
(sta->ht_cap.cap & IEEE80211_HT_CAP_TX_STBC))
tx_info->flags |= (1 << IEEE80211_TX_CTL_STBC_SHIFT);
if (is_probe) {
/*
* Set one try for probe rates. For the
* probes don't enable RTS.
*/
ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
1, rix, 0);
/*
* Get the next tried/allowed rate.
* No RTS for the next series after the probe rate.
*/
ath_rc_get_lower_rix(ath_rc_priv, rix, &rix);
ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
try_per_rate, rix, 0);
tx_info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
} else {
/*
* Set the chosen rate. No RTS for first series entry.
*/
ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
try_per_rate, rix, 0);
}
for ( ; i < 4; i++) {
/*
* Use twice the number of tries for the last MRR segment.
*/
if (i + 1 == 4)
try_per_rate = 8;
ath_rc_get_lower_rix(ath_rc_priv, rix, &rix);
/*
* All other rates in the series have RTS enabled.
*/
ath_rc_rate_set_series(rate_table, &rates[i], txrc,
try_per_rate, rix, 1);
}
/*
* NB:Change rate series to enable aggregation when operating
* at lower MCS rates. When first rate in series is MCS2
* in HT40 @ 2.4GHz, series should look like:
*
* {MCS2, MCS1, MCS0, MCS0}.
*
* When first rate in series is MCS3 in HT20 @ 2.4GHz, series should
* look like:
*
* {MCS3, MCS2, MCS1, MCS1}
*
* So, set fourth rate in series to be same as third one for
* above conditions.
*/
if ((sc->hw->conf.chandef.chan->band == IEEE80211_BAND_2GHZ) &&
(conf_is_ht(&sc->hw->conf))) {
u8 dot11rate = rate_table->info[rix].dot11rate;
u8 phy = rate_table->info[rix].phy;
if (i == 4 &&
((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) ||
(dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) {
rates[3].idx = rates[2].idx;
rates[3].flags = rates[2].flags;
}
}
/*
* Force hardware to use computed duration for next
* fragment by disabling multi-rate retry, which
* updates duration based on the multi-rate duration table.
*
* FIXME: Fix duration
*/
if (ieee80211_has_morefrags(fc) ||
(le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) {
rates[1].count = rates[2].count = rates[3].count = 0;
rates[1].idx = rates[2].idx = rates[3].idx = 0;
rates[0].count = ATH_TXMAXTRY;
}
ath_rc_rate_set_rtscts(sc, rate_table, tx_info);
}
static void ath_rc_update_per(struct ath_softc *sc,
const struct ath_rate_table *rate_table,
struct ath_rate_priv *ath_rc_priv,
struct ieee80211_tx_info *tx_info,
int tx_rate, int xretries, int retries,
u32 now_msec)
{
int count, n_bad_frames;
u8 last_per;
static const u32 nretry_to_per_lookup[10] = {
100 * 0 / 1,
100 * 1 / 4,
100 * 1 / 2,
100 * 3 / 4,
100 * 4 / 5,
100 * 5 / 6,
100 * 6 / 7,
100 * 7 / 8,
100 * 8 / 9,
100 * 9 / 10
};
last_per = ath_rc_priv->per[tx_rate];
n_bad_frames = tx_info->status.ampdu_len - tx_info->status.ampdu_ack_len;
if (xretries) {
if (xretries == 1) {
ath_rc_priv->per[tx_rate] += 30;
if (ath_rc_priv->per[tx_rate] > 100)
ath_rc_priv->per[tx_rate] = 100;
} else {
/* xretries == 2 */
count = ARRAY_SIZE(nretry_to_per_lookup);
if (retries >= count)
retries = count - 1;
/* new_PER = 7/8*old_PER + 1/8*(currentPER) */
ath_rc_priv->per[tx_rate] =
(u8)(last_per - (last_per >> 3) + (100 >> 3));
}
/* xretries == 1 or 2 */
if (ath_rc_priv->probe_rate == tx_rate)
ath_rc_priv->probe_rate = 0;
} else { /* xretries == 0 */
count = ARRAY_SIZE(nretry_to_per_lookup);
if (retries >= count)
retries = count - 1;
if (n_bad_frames) {
/* new_PER = 7/8*old_PER + 1/8*(currentPER)
* Assuming that n_frames is not 0. The current PER
* from the retries is 100 * retries / (retries+1),
* since the first retries attempts failed, and the
* next one worked. For the one that worked,
* n_bad_frames subframes out of n_frames wored,
* so the PER for that part is
* 100 * n_bad_frames / n_frames, and it contributes
* 100 * n_bad_frames / (n_frames * (retries+1)) to
* the above PER. The expression below is a
* simplified version of the sum of these two terms.
*/
if (tx_info->status.ampdu_len > 0) {
int n_frames, n_bad_tries;
u8 cur_per, new_per;
n_bad_tries = retries * tx_info->status.ampdu_len +
n_bad_frames;
n_frames = tx_info->status.ampdu_len * (retries + 1);
cur_per = (100 * n_bad_tries / n_frames) >> 3;
new_per = (u8)(last_per - (last_per >> 3) + cur_per);
ath_rc_priv->per[tx_rate] = new_per;
}
} else {
ath_rc_priv->per[tx_rate] =
(u8)(last_per - (last_per >> 3) +
(nretry_to_per_lookup[retries] >> 3));
}
/*
* If we got at most one retry then increase the max rate if
* this was a probe. Otherwise, ignore the probe.
*/
if (ath_rc_priv->probe_rate && ath_rc_priv->probe_rate == tx_rate) {
if (retries > 0 || 2 * n_bad_frames > tx_info->status.ampdu_len) {
/*
* Since we probed with just a single attempt,
* any retries means the probe failed. Also,
* if the attempt worked, but more than half
* the subframes were bad then also consider
* the probe a failure.
*/
ath_rc_priv->probe_rate = 0;
} else {
u8 probe_rate = 0;
ath_rc_priv->rate_max_phy =
ath_rc_priv->probe_rate;
probe_rate = ath_rc_priv->probe_rate;
if (ath_rc_priv->per[probe_rate] > 30)
ath_rc_priv->per[probe_rate] = 20;
ath_rc_priv->probe_rate = 0;
/*
* Since this probe succeeded, we allow the next
* probe twice as soon. This allows the maxRate
* to move up faster if the probes are
* successful.
*/
ath_rc_priv->probe_time =
now_msec - rate_table->probe_interval / 2;
}
}
if (retries > 0) {
/*
* Don't update anything. We don't know if
* this was because of collisions or poor signal.
*/
ath_rc_priv->hw_maxretry_pktcnt = 0;
} else {
/*
* It worked with no retries. First ignore bogus (small)
* rssi_ack values.
*/
if (tx_rate == ath_rc_priv->rate_max_phy &&
ath_rc_priv->hw_maxretry_pktcnt < 255) {
ath_rc_priv->hw_maxretry_pktcnt++;
}
}
}
}
static void ath_rc_update_ht(struct ath_softc *sc,
struct ath_rate_priv *ath_rc_priv,
struct ieee80211_tx_info *tx_info,
int tx_rate, int xretries, int retries)
{
u32 now_msec = jiffies_to_msecs(jiffies);
int rate;
u8 last_per;
const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
int size = ath_rc_priv->rate_table_size;
if ((tx_rate < 0) || (tx_rate > rate_table->rate_cnt))
return;
last_per = ath_rc_priv->per[tx_rate];
/* Update PER first */
ath_rc_update_per(sc, rate_table, ath_rc_priv,
tx_info, tx_rate, xretries,
retries, now_msec);
/*
* If this rate looks bad (high PER) then stop using it for
* a while (except if we are probing).
*/
if (ath_rc_priv->per[tx_rate] >= 55 && tx_rate > 0 &&
rate_table->info[tx_rate].ratekbps <=
rate_table->info[ath_rc_priv->rate_max_phy].ratekbps) {
ath_rc_get_lower_rix(ath_rc_priv, (u8)tx_rate,
&ath_rc_priv->rate_max_phy);
/* Don't probe for a little while. */
ath_rc_priv->probe_time = now_msec;
}
/* Make sure the rates below this have lower PER */
/* Monotonicity is kept only for rates below the current rate. */
if (ath_rc_priv->per[tx_rate] < last_per) {
for (rate = tx_rate - 1; rate >= 0; rate--) {
if (ath_rc_priv->per[rate] >
ath_rc_priv->per[rate+1]) {
ath_rc_priv->per[rate] =
ath_rc_priv->per[rate+1];
}
}
}
/* Maintain monotonicity for rates above the current rate */
for (rate = tx_rate; rate < size - 1; rate++) {
if (ath_rc_priv->per[rate+1] <
ath_rc_priv->per[rate])
ath_rc_priv->per[rate+1] =
ath_rc_priv->per[rate];
}
/* Every so often, we reduce the thresholds
* and PER (different for CCK and OFDM). */
if (now_msec - ath_rc_priv->per_down_time >=
rate_table->probe_interval) {
for (rate = 0; rate < size; rate++) {
ath_rc_priv->per[rate] =
7 * ath_rc_priv->per[rate] / 8;
}
ath_rc_priv->per_down_time = now_msec;
}
ath_debug_stat_retries(ath_rc_priv, tx_rate, xretries, retries,
ath_rc_priv->per[tx_rate]);
}
static void ath_rc_tx_status(struct ath_softc *sc,
struct ath_rate_priv *ath_rc_priv,
struct sk_buff *skb)
{
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
struct ieee80211_tx_rate *rates = tx_info->status.rates;
struct ieee80211_tx_rate *rate;
int final_ts_idx = 0, xretries = 0, long_retry = 0;
u8 flags;
u32 i = 0, rix;
for (i = 0; i < sc->hw->max_rates; i++) {
rate = &tx_info->status.rates[i];
if (rate->idx < 0 || !rate->count)
break;
final_ts_idx = i;
long_retry = rate->count - 1;
}
if (!(tx_info->flags & IEEE80211_TX_STAT_ACK))
xretries = 1;
/*
* If the first rate is not the final index, there
* are intermediate rate failures to be processed.
*/
if (final_ts_idx != 0) {
for (i = 0; i < final_ts_idx ; i++) {
if (rates[i].count != 0 && (rates[i].idx >= 0)) {
flags = rates[i].flags;
/* If HT40 and we have switched mode from
* 40 to 20 => don't update */
if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
!(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
return;
rix = ath_rc_get_rateindex(ath_rc_priv, &rates[i]);
ath_rc_update_ht(sc, ath_rc_priv, tx_info,
rix, xretries ? 1 : 2,
rates[i].count);
}
}
}
flags = rates[final_ts_idx].flags;
/* If HT40 and we have switched mode from 40 to 20 => don't update */
if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
!(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
return;
rix = ath_rc_get_rateindex(ath_rc_priv, &rates[final_ts_idx]);
ath_rc_update_ht(sc, ath_rc_priv, tx_info, rix, xretries, long_retry);
ath_debug_stat_rc(ath_rc_priv, rix);
}
static const
struct ath_rate_table *ath_choose_rate_table(struct ath_softc *sc,
enum ieee80211_band band,
bool is_ht)
{
switch(band) {
case IEEE80211_BAND_2GHZ:
if (is_ht)
return &ar5416_11ng_ratetable;
return &ar5416_11g_ratetable;
case IEEE80211_BAND_5GHZ:
if (is_ht)
return &ar5416_11na_ratetable;
return &ar5416_11a_ratetable;
default:
return NULL;
}
}
static void ath_rc_init(struct ath_softc *sc,
struct ath_rate_priv *ath_rc_priv)
{
const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
struct ath_rateset *rateset = &ath_rc_priv->neg_rates;
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
u8 i, j, k, hi = 0, hthi = 0;
ath_rc_priv->rate_table_size = RATE_TABLE_SIZE;
for (i = 0 ; i < ath_rc_priv->rate_table_size; i++) {
ath_rc_priv->per[i] = 0;
ath_rc_priv->valid_rate_index[i] = 0;
}
for (i = 0; i < WLAN_RC_PHY_MAX; i++) {
for (j = 0; j < RATE_TABLE_SIZE; j++)
ath_rc_priv->valid_phy_rateidx[i][j] = 0;
ath_rc_priv->valid_phy_ratecnt[i] = 0;
}
if (!rateset->rs_nrates) {
hi = ath_rc_init_validrates(ath_rc_priv);
} else {
hi = ath_rc_setvalid_rates(ath_rc_priv, true);
if (ath_rc_priv->ht_cap & WLAN_RC_HT_FLAG)
hthi = ath_rc_setvalid_rates(ath_rc_priv, false);
hi = max(hi, hthi);
}
ath_rc_priv->rate_table_size = hi + 1;
ath_rc_priv->rate_max_phy = 0;
WARN_ON(ath_rc_priv->rate_table_size > RATE_TABLE_SIZE);
for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) {
for (j = 0; j < ath_rc_priv->valid_phy_ratecnt[i]; j++) {
ath_rc_priv->valid_rate_index[k++] =
ath_rc_priv->valid_phy_rateidx[i][j];
}
if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, 1) ||
!ath_rc_priv->valid_phy_ratecnt[i])
continue;
ath_rc_priv->rate_max_phy = ath_rc_priv->valid_phy_rateidx[i][j-1];
}
WARN_ON(ath_rc_priv->rate_table_size > RATE_TABLE_SIZE);
WARN_ON(k > RATE_TABLE_SIZE);
ath_rc_priv->max_valid_rate = k;
ath_rc_sort_validrates(ath_rc_priv);
ath_rc_priv->rate_max_phy = (k > 4) ?
ath_rc_priv->valid_rate_index[k-4] :
ath_rc_priv->valid_rate_index[k-1];
ath_dbg(common, CONFIG, "RC Initialized with capabilities: 0x%x\n",
ath_rc_priv->ht_cap);
}
static u8 ath_rc_build_ht_caps(struct ath_softc *sc, struct ieee80211_sta *sta)
{
u8 caps = 0;
if (sta->ht_cap.ht_supported) {
caps = WLAN_RC_HT_FLAG;
if (sta->ht_cap.mcs.rx_mask[1] && sta->ht_cap.mcs.rx_mask[2])
caps |= WLAN_RC_TS_FLAG | WLAN_RC_DS_FLAG;
else if (sta->ht_cap.mcs.rx_mask[1])
caps |= WLAN_RC_DS_FLAG;
if (sta->bandwidth >= IEEE80211_STA_RX_BW_40) {
caps |= WLAN_RC_40_FLAG;
if (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40)
caps |= WLAN_RC_SGI_FLAG;
} else {
if (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20)
caps |= WLAN_RC_SGI_FLAG;
}
}
return caps;
}
static bool ath_tx_aggr_check(struct ath_softc *sc, struct ieee80211_sta *sta,
u8 tidno)
{
struct ath_node *an = (struct ath_node *)sta->drv_priv;
struct ath_atx_tid *txtid;
if (!sta->ht_cap.ht_supported)
return false;
txtid = ATH_AN_2_TID(an, tidno);
return !txtid->active;
}
/***********************************/
/* mac80211 Rate Control callbacks */
/***********************************/
static void ath_tx_status(void *priv, struct ieee80211_supported_band *sband,
struct ieee80211_sta *sta, void *priv_sta,
struct sk_buff *skb)
{
struct ath_softc *sc = priv;
struct ath_rate_priv *ath_rc_priv = priv_sta;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
__le16 fc = hdr->frame_control;
if (!priv_sta || !ieee80211_is_data(fc))
return;
/* This packet was aggregated but doesn't carry status info */
if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) &&
!(tx_info->flags & IEEE80211_TX_STAT_AMPDU))
return;
if (tx_info->flags & IEEE80211_TX_STAT_TX_FILTERED)
return;
ath_rc_tx_status(sc, ath_rc_priv, skb);
/* Check if aggregation has to be enabled for this tid */
if (conf_is_ht(&sc->hw->conf) &&
!(skb->protocol == cpu_to_be16(ETH_P_PAE))) {
if (ieee80211_is_data_qos(fc) &&
skb_get_queue_mapping(skb) != IEEE80211_AC_VO) {
u8 *qc, tid;
qc = ieee80211_get_qos_ctl(hdr);
tid = qc[0] & 0xf;
if(ath_tx_aggr_check(sc, sta, tid))
ieee80211_start_tx_ba_session(sta, tid, 0);
}
}
}
static void ath_rate_init(void *priv, struct ieee80211_supported_band *sband,
struct ieee80211_sta *sta, void *priv_sta)
{
struct ath_softc *sc = priv;
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
struct ath_rate_priv *ath_rc_priv = priv_sta;
int i, j = 0;
for (i = 0; i < sband->n_bitrates; i++) {
if (sta->supp_rates[sband->band] & BIT(i)) {
ath_rc_priv->neg_rates.rs_rates[j]
= (sband->bitrates[i].bitrate * 2) / 10;
j++;
}
}
ath_rc_priv->neg_rates.rs_nrates = j;
if (sta->ht_cap.ht_supported) {
for (i = 0, j = 0; i < 77; i++) {
if (sta->ht_cap.mcs.rx_mask[i/8] & (1<<(i%8)))
ath_rc_priv->neg_ht_rates.rs_rates[j++] = i;
if (j == ATH_RATE_MAX)
break;
}
ath_rc_priv->neg_ht_rates.rs_nrates = j;
}
ath_rc_priv->rate_table = ath_choose_rate_table(sc, sband->band,
sta->ht_cap.ht_supported);
if (!ath_rc_priv->rate_table) {
ath_err(common, "No rate table chosen\n");
return;
}
ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta);
ath_rc_init(sc, priv_sta);
}
static void ath_rate_update(void *priv, struct ieee80211_supported_band *sband,
struct ieee80211_sta *sta, void *priv_sta,
u32 changed)
{
struct ath_softc *sc = priv;
struct ath_rate_priv *ath_rc_priv = priv_sta;
if (changed & IEEE80211_RC_BW_CHANGED) {
ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta);
ath_rc_init(sc, priv_sta);
ath_dbg(ath9k_hw_common(sc->sc_ah), CONFIG,
"Operating HT Bandwidth changed to: %d\n",
cfg80211_get_chandef_type(&sc->hw->conf.chandef));
}
}
#if defined(CONFIG_MAC80211_DEBUGFS) && defined(CONFIG_ATH9K_DEBUGFS)
void ath_debug_stat_rc(struct ath_rate_priv *rc, int final_rate)
{
struct ath_rc_stats *stats;
stats = &rc->rcstats[final_rate];
stats->success++;
}
void ath_debug_stat_retries(struct ath_rate_priv *rc, int rix,
int xretries, int retries, u8 per)
{
struct ath_rc_stats *stats = &rc->rcstats[rix];
stats->xretries += xretries;
stats->retries += retries;
stats->per = per;
}
static ssize_t read_file_rcstat(struct file *file, char __user *user_buf,
size_t count, loff_t *ppos)
{
struct ath_rate_priv *rc = file->private_data;
char *buf;
unsigned int len = 0, max;
int rix;
ssize_t retval;
if (rc->rate_table == NULL)
return 0;
max = 80 + rc->rate_table_size * 1024 + 1;
buf = kmalloc(max, GFP_KERNEL);
if (buf == NULL)
return -ENOMEM;
len += sprintf(buf, "%6s %6s %6s "
"%10s %10s %10s %10s\n",
"HT", "MCS", "Rate",
"Success", "Retries", "XRetries", "PER");
for (rix = 0; rix < rc->max_valid_rate; rix++) {
u8 i = rc->valid_rate_index[rix];
u32 ratekbps = rc->rate_table->info[i].ratekbps;
struct ath_rc_stats *stats = &rc->rcstats[i];
char mcs[5];
char htmode[5];
int used_mcs = 0, used_htmode = 0;
if (WLAN_RC_PHY_HT(rc->rate_table->info[i].phy)) {
used_mcs = snprintf(mcs, 5, "%d",
rc->rate_table->info[i].ratecode);
if (WLAN_RC_PHY_40(rc->rate_table->info[i].phy))
used_htmode = snprintf(htmode, 5, "HT40");
else if (WLAN_RC_PHY_20(rc->rate_table->info[i].phy))
used_htmode = snprintf(htmode, 5, "HT20");
else
used_htmode = snprintf(htmode, 5, "????");
}
mcs[used_mcs] = '\0';
htmode[used_htmode] = '\0';
len += snprintf(buf + len, max - len,
"%6s %6s %3u.%d: "
"%10u %10u %10u %10u\n",
htmode,
mcs,
ratekbps / 1000,
(ratekbps % 1000) / 100,
stats->success,
stats->retries,
stats->xretries,
stats->per);
}
if (len > max)
len = max;
retval = simple_read_from_buffer(user_buf, count, ppos, buf, len);
kfree(buf);
return retval;
}
static const struct file_operations fops_rcstat = {
.read = read_file_rcstat,
.open = simple_open,
.owner = THIS_MODULE
};
static void ath_rate_add_sta_debugfs(void *priv, void *priv_sta,
struct dentry *dir)
{
struct ath_rate_priv *rc = priv_sta;
rc->debugfs_rcstats = debugfs_create_file("rc_stats", S_IRUGO,
dir, rc, &fops_rcstat);
}
static void ath_rate_remove_sta_debugfs(void *priv, void *priv_sta)
{
struct ath_rate_priv *rc = priv_sta;
debugfs_remove(rc->debugfs_rcstats);
}
#endif /* CONFIG_MAC80211_DEBUGFS && CONFIG_ATH9K_DEBUGFS */
static void *ath_rate_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
{
return hw->priv;
}
static void ath_rate_free(void *priv)
{
return;
}
static void *ath_rate_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
{
return kzalloc(sizeof(struct ath_rate_priv), gfp);
}
static void ath_rate_free_sta(void *priv, struct ieee80211_sta *sta,
void *priv_sta)
{
struct ath_rate_priv *rate_priv = priv_sta;
kfree(rate_priv);
}
static struct rate_control_ops ath_rate_ops = {
.module = NULL,
.name = "ath9k_rate_control",
.tx_status = ath_tx_status,
.get_rate = ath_get_rate,
.rate_init = ath_rate_init,
.rate_update = ath_rate_update,
.alloc = ath_rate_alloc,
.free = ath_rate_free,
.alloc_sta = ath_rate_alloc_sta,
.free_sta = ath_rate_free_sta,
#if defined(CONFIG_MAC80211_DEBUGFS) && defined(CONFIG_ATH9K_DEBUGFS)
.add_sta_debugfs = ath_rate_add_sta_debugfs,
.remove_sta_debugfs = ath_rate_remove_sta_debugfs,
#endif
};
int ath_rate_control_register(void)
{
return ieee80211_rate_control_register(&ath_rate_ops);
}
void ath_rate_control_unregister(void)
{
ieee80211_rate_control_unregister(&ath_rate_ops);
}