Kernel  |  3.10

下载     查看原文件
C++程序  |  5418行  |  143.08 KB
/*
 * Copyright (c) 2010 Broadcom Corporation
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

/* Toplevel file. Relies on dhd_linux.c to send commands to the dongle. */

#include <linux/kernel.h>
#include <linux/etherdevice.h>
#include <net/cfg80211.h>
#include <net/netlink.h>

#include <brcmu_utils.h>
#include <defs.h>
#include <brcmu_wifi.h>
#include "dhd.h"
#include "dhd_dbg.h"
#include "tracepoint.h"
#include "fwil_types.h"
#include "p2p.h"
#include "btcoex.h"
#include "wl_cfg80211.h"
#include "fwil.h"

#define BRCMF_SCAN_IE_LEN_MAX		2048
#define BRCMF_PNO_VERSION		2
#define BRCMF_PNO_TIME			30
#define BRCMF_PNO_REPEAT		4
#define BRCMF_PNO_FREQ_EXPO_MAX		3
#define BRCMF_PNO_MAX_PFN_COUNT		16
#define BRCMF_PNO_ENABLE_ADAPTSCAN_BIT	6
#define BRCMF_PNO_HIDDEN_BIT		2
#define BRCMF_PNO_WPA_AUTH_ANY		0xFFFFFFFF
#define BRCMF_PNO_SCAN_COMPLETE		1
#define BRCMF_PNO_SCAN_INCOMPLETE	0

#define BRCMF_IFACE_MAX_CNT		3

#define WPA_OUI				"\x00\x50\xF2"	/* WPA OUI */
#define WPA_OUI_TYPE			1
#define RSN_OUI				"\x00\x0F\xAC"	/* RSN OUI */
#define	WME_OUI_TYPE			2
#define WPS_OUI_TYPE			4

#define VS_IE_FIXED_HDR_LEN		6
#define WPA_IE_VERSION_LEN		2
#define WPA_IE_MIN_OUI_LEN		4
#define WPA_IE_SUITE_COUNT_LEN		2

#define WPA_CIPHER_NONE			0	/* None */
#define WPA_CIPHER_WEP_40		1	/* WEP (40-bit) */
#define WPA_CIPHER_TKIP			2	/* TKIP: default for WPA */
#define WPA_CIPHER_AES_CCM		4	/* AES (CCM) */
#define WPA_CIPHER_WEP_104		5	/* WEP (104-bit) */

#define RSN_AKM_NONE			0	/* None (IBSS) */
#define RSN_AKM_UNSPECIFIED		1	/* Over 802.1x */
#define RSN_AKM_PSK			2	/* Pre-shared Key */
#define RSN_CAP_LEN			2	/* Length of RSN capabilities */
#define RSN_CAP_PTK_REPLAY_CNTR_MASK	0x000C

#define VNDR_IE_CMD_LEN			4	/* length of the set command
						 * string :"add", "del" (+ NUL)
						 */
#define VNDR_IE_COUNT_OFFSET		4
#define VNDR_IE_PKTFLAG_OFFSET		8
#define VNDR_IE_VSIE_OFFSET		12
#define VNDR_IE_HDR_SIZE		12
#define VNDR_IE_PARSE_LIMIT		5

#define	DOT11_MGMT_HDR_LEN		24	/* d11 management header len */
#define	DOT11_BCN_PRB_FIXED_LEN		12	/* beacon/probe fixed length */

#define BRCMF_SCAN_JOIN_ACTIVE_DWELL_TIME_MS	320
#define BRCMF_SCAN_JOIN_PASSIVE_DWELL_TIME_MS	400
#define BRCMF_SCAN_JOIN_PROBE_INTERVAL_MS	20

#define BRCMF_ASSOC_PARAMS_FIXED_SIZE \
	(sizeof(struct brcmf_assoc_params_le) - sizeof(u16))

static bool check_vif_up(struct brcmf_cfg80211_vif *vif)
{
	if (!test_bit(BRCMF_VIF_STATUS_READY, &vif->sme_state)) {
		brcmf_dbg(INFO, "device is not ready : status (%lu)\n",
			  vif->sme_state);
		return false;
	}
	return true;
}

#define CHAN2G(_channel, _freq, _flags) {			\
	.band			= IEEE80211_BAND_2GHZ,		\
	.center_freq		= (_freq),			\
	.hw_value		= (_channel),			\
	.flags			= (_flags),			\
	.max_antenna_gain	= 0,				\
	.max_power		= 30,				\
}

#define CHAN5G(_channel, _flags) {				\
	.band			= IEEE80211_BAND_5GHZ,		\
	.center_freq		= 5000 + (5 * (_channel)),	\
	.hw_value		= (_channel),			\
	.flags			= (_flags),			\
	.max_antenna_gain	= 0,				\
	.max_power		= 30,				\
}

#define RATE_TO_BASE100KBPS(rate)   (((rate) * 10) / 2)
#define RATETAB_ENT(_rateid, _flags) \
	{                                                               \
		.bitrate        = RATE_TO_BASE100KBPS(_rateid),     \
		.hw_value       = (_rateid),                            \
		.flags          = (_flags),                             \
	}

static struct ieee80211_rate __wl_rates[] = {
	RATETAB_ENT(BRCM_RATE_1M, 0),
	RATETAB_ENT(BRCM_RATE_2M, IEEE80211_RATE_SHORT_PREAMBLE),
	RATETAB_ENT(BRCM_RATE_5M5, IEEE80211_RATE_SHORT_PREAMBLE),
	RATETAB_ENT(BRCM_RATE_11M, IEEE80211_RATE_SHORT_PREAMBLE),
	RATETAB_ENT(BRCM_RATE_6M, 0),
	RATETAB_ENT(BRCM_RATE_9M, 0),
	RATETAB_ENT(BRCM_RATE_12M, 0),
	RATETAB_ENT(BRCM_RATE_18M, 0),
	RATETAB_ENT(BRCM_RATE_24M, 0),
	RATETAB_ENT(BRCM_RATE_36M, 0),
	RATETAB_ENT(BRCM_RATE_48M, 0),
	RATETAB_ENT(BRCM_RATE_54M, 0),
};

#define wl_a_rates		(__wl_rates + 4)
#define wl_a_rates_size	8
#define wl_g_rates		(__wl_rates + 0)
#define wl_g_rates_size	12

static struct ieee80211_channel __wl_2ghz_channels[] = {
	CHAN2G(1, 2412, 0),
	CHAN2G(2, 2417, 0),
	CHAN2G(3, 2422, 0),
	CHAN2G(4, 2427, 0),
	CHAN2G(5, 2432, 0),
	CHAN2G(6, 2437, 0),
	CHAN2G(7, 2442, 0),
	CHAN2G(8, 2447, 0),
	CHAN2G(9, 2452, 0),
	CHAN2G(10, 2457, 0),
	CHAN2G(11, 2462, 0),
	CHAN2G(12, 2467, 0),
	CHAN2G(13, 2472, 0),
	CHAN2G(14, 2484, 0),
};

static struct ieee80211_channel __wl_5ghz_a_channels[] = {
	CHAN5G(34, 0), CHAN5G(36, 0),
	CHAN5G(38, 0), CHAN5G(40, 0),
	CHAN5G(42, 0), CHAN5G(44, 0),
	CHAN5G(46, 0), CHAN5G(48, 0),
	CHAN5G(52, 0), CHAN5G(56, 0),
	CHAN5G(60, 0), CHAN5G(64, 0),
	CHAN5G(100, 0), CHAN5G(104, 0),
	CHAN5G(108, 0), CHAN5G(112, 0),
	CHAN5G(116, 0), CHAN5G(120, 0),
	CHAN5G(124, 0), CHAN5G(128, 0),
	CHAN5G(132, 0), CHAN5G(136, 0),
	CHAN5G(140, 0), CHAN5G(149, 0),
	CHAN5G(153, 0), CHAN5G(157, 0),
	CHAN5G(161, 0), CHAN5G(165, 0),
	CHAN5G(184, 0), CHAN5G(188, 0),
	CHAN5G(192, 0), CHAN5G(196, 0),
	CHAN5G(200, 0), CHAN5G(204, 0),
	CHAN5G(208, 0), CHAN5G(212, 0),
	CHAN5G(216, 0),
};

static struct ieee80211_supported_band __wl_band_2ghz = {
	.band = IEEE80211_BAND_2GHZ,
	.channels = __wl_2ghz_channels,
	.n_channels = ARRAY_SIZE(__wl_2ghz_channels),
	.bitrates = wl_g_rates,
	.n_bitrates = wl_g_rates_size,
};

static struct ieee80211_supported_band __wl_band_5ghz_a = {
	.band = IEEE80211_BAND_5GHZ,
	.channels = __wl_5ghz_a_channels,
	.n_channels = ARRAY_SIZE(__wl_5ghz_a_channels),
	.bitrates = wl_a_rates,
	.n_bitrates = wl_a_rates_size,
};

/* This is to override regulatory domains defined in cfg80211 module (reg.c)
 * By default world regulatory domain defined in reg.c puts the flags
 * NL80211_RRF_PASSIVE_SCAN and NL80211_RRF_NO_IBSS for 5GHz channels (for
 * 36..48 and 149..165). With respect to these flags, wpa_supplicant doesn't
 * start p2p operations on 5GHz channels. All the changes in world regulatory
 * domain are to be done here.
 */
static const struct ieee80211_regdomain brcmf_regdom = {
	.n_reg_rules = 4,
	.alpha2 =  "99",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
		/* If any */
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only
		 */
		REG_RULE(2484-10, 2484+10, 20, 6, 20, 0),
		/* IEEE 802.11a, channel 36..64 */
		REG_RULE(5150-10, 5350+10, 40, 6, 20, 0),
		/* IEEE 802.11a, channel 100..165 */
		REG_RULE(5470-10, 5850+10, 40, 6, 20, 0), }
};

static const u32 __wl_cipher_suites[] = {
	WLAN_CIPHER_SUITE_WEP40,
	WLAN_CIPHER_SUITE_WEP104,
	WLAN_CIPHER_SUITE_TKIP,
	WLAN_CIPHER_SUITE_CCMP,
	WLAN_CIPHER_SUITE_AES_CMAC,
};

/* Vendor specific ie. id = 221, oui and type defines exact ie */
struct brcmf_vs_tlv {
	u8 id;
	u8 len;
	u8 oui[3];
	u8 oui_type;
};

struct parsed_vndr_ie_info {
	u8 *ie_ptr;
	u32 ie_len;	/* total length including id & length field */
	struct brcmf_vs_tlv vndrie;
};

struct parsed_vndr_ies {
	u32 count;
	struct parsed_vndr_ie_info ie_info[VNDR_IE_PARSE_LIMIT];
};

/* Quarter dBm units to mW
 * Table starts at QDBM_OFFSET, so the first entry is mW for qdBm=153
 * Table is offset so the last entry is largest mW value that fits in
 * a u16.
 */

#define QDBM_OFFSET 153		/* Offset for first entry */
#define QDBM_TABLE_LEN 40	/* Table size */

/* Smallest mW value that will round up to the first table entry, QDBM_OFFSET.
 * Value is ( mW(QDBM_OFFSET - 1) + mW(QDBM_OFFSET) ) / 2
 */
#define QDBM_TABLE_LOW_BOUND 6493	/* Low bound */

/* Largest mW value that will round down to the last table entry,
 * QDBM_OFFSET + QDBM_TABLE_LEN-1.
 * Value is ( mW(QDBM_OFFSET + QDBM_TABLE_LEN - 1) +
 * mW(QDBM_OFFSET + QDBM_TABLE_LEN) ) / 2.
 */
#define QDBM_TABLE_HIGH_BOUND 64938	/* High bound */

static const u16 nqdBm_to_mW_map[QDBM_TABLE_LEN] = {
/* qdBm:	+0	+1	+2	+3	+4	+5	+6	+7 */
/* 153: */ 6683, 7079, 7499, 7943, 8414, 8913, 9441, 10000,
/* 161: */ 10593, 11220, 11885, 12589, 13335, 14125, 14962, 15849,
/* 169: */ 16788, 17783, 18836, 19953, 21135, 22387, 23714, 25119,
/* 177: */ 26607, 28184, 29854, 31623, 33497, 35481, 37584, 39811,
/* 185: */ 42170, 44668, 47315, 50119, 53088, 56234, 59566, 63096
};

static u16 brcmf_qdbm_to_mw(u8 qdbm)
{
	uint factor = 1;
	int idx = qdbm - QDBM_OFFSET;

	if (idx >= QDBM_TABLE_LEN)
		/* clamp to max u16 mW value */
		return 0xFFFF;

	/* scale the qdBm index up to the range of the table 0-40
	 * where an offset of 40 qdBm equals a factor of 10 mW.
	 */
	while (idx < 0) {
		idx += 40;
		factor *= 10;
	}

	/* return the mW value scaled down to the correct factor of 10,
	 * adding in factor/2 to get proper rounding.
	 */
	return (nqdBm_to_mW_map[idx] + factor / 2) / factor;
}

static u8 brcmf_mw_to_qdbm(u16 mw)
{
	u8 qdbm;
	int offset;
	uint mw_uint = mw;
	uint boundary;

	/* handle boundary case */
	if (mw_uint <= 1)
		return 0;

	offset = QDBM_OFFSET;

	/* move mw into the range of the table */
	while (mw_uint < QDBM_TABLE_LOW_BOUND) {
		mw_uint *= 10;
		offset -= 40;
	}

	for (qdbm = 0; qdbm < QDBM_TABLE_LEN - 1; qdbm++) {
		boundary = nqdBm_to_mW_map[qdbm] + (nqdBm_to_mW_map[qdbm + 1] -
						    nqdBm_to_mW_map[qdbm]) / 2;
		if (mw_uint < boundary)
			break;
	}

	qdbm += (u8) offset;

	return qdbm;
}

u16 channel_to_chanspec(struct brcmu_d11inf *d11inf,
			struct ieee80211_channel *ch)
{
	struct brcmu_chan ch_inf;

	ch_inf.chnum = ieee80211_frequency_to_channel(ch->center_freq);
	ch_inf.bw = BRCMU_CHAN_BW_20;
	d11inf->encchspec(&ch_inf);

	return ch_inf.chspec;
}

/* Traverse a string of 1-byte tag/1-byte length/variable-length value
 * triples, returning a pointer to the substring whose first element
 * matches tag
 */
struct brcmf_tlv *brcmf_parse_tlvs(void *buf, int buflen, uint key)
{
	struct brcmf_tlv *elt;
	int totlen;

	elt = (struct brcmf_tlv *)buf;
	totlen = buflen;

	/* find tagged parameter */
	while (totlen >= TLV_HDR_LEN) {
		int len = elt->len;

		/* validate remaining totlen */
		if ((elt->id == key) && (totlen >= (len + TLV_HDR_LEN)))
			return elt;

		elt = (struct brcmf_tlv *)((u8 *)elt + (len + TLV_HDR_LEN));
		totlen -= (len + TLV_HDR_LEN);
	}

	return NULL;
}

/* Is any of the tlvs the expected entry? If
 * not update the tlvs buffer pointer/length.
 */
static bool
brcmf_tlv_has_ie(u8 *ie, u8 **tlvs, u32 *tlvs_len,
		 u8 *oui, u32 oui_len, u8 type)
{
	/* If the contents match the OUI and the type */
	if (ie[TLV_LEN_OFF] >= oui_len + 1 &&
	    !memcmp(&ie[TLV_BODY_OFF], oui, oui_len) &&
	    type == ie[TLV_BODY_OFF + oui_len]) {
		return true;
	}

	if (tlvs == NULL)
		return false;
	/* point to the next ie */
	ie += ie[TLV_LEN_OFF] + TLV_HDR_LEN;
	/* calculate the length of the rest of the buffer */
	*tlvs_len -= (int)(ie - *tlvs);
	/* update the pointer to the start of the buffer */
	*tlvs = ie;

	return false;
}

static struct brcmf_vs_tlv *
brcmf_find_wpaie(u8 *parse, u32 len)
{
	struct brcmf_tlv *ie;

	while ((ie = brcmf_parse_tlvs(parse, len, WLAN_EID_VENDOR_SPECIFIC))) {
		if (brcmf_tlv_has_ie((u8 *)ie, &parse, &len,
				     WPA_OUI, TLV_OUI_LEN, WPA_OUI_TYPE))
			return (struct brcmf_vs_tlv *)ie;
	}
	return NULL;
}

static struct brcmf_vs_tlv *
brcmf_find_wpsie(u8 *parse, u32 len)
{
	struct brcmf_tlv *ie;

	while ((ie = brcmf_parse_tlvs(parse, len, WLAN_EID_VENDOR_SPECIFIC))) {
		if (brcmf_tlv_has_ie((u8 *)ie, &parse, &len,
				     WPA_OUI, TLV_OUI_LEN, WPS_OUI_TYPE))
			return (struct brcmf_vs_tlv *)ie;
	}
	return NULL;
}


static void convert_key_from_CPU(struct brcmf_wsec_key *key,
				 struct brcmf_wsec_key_le *key_le)
{
	key_le->index = cpu_to_le32(key->index);
	key_le->len = cpu_to_le32(key->len);
	key_le->algo = cpu_to_le32(key->algo);
	key_le->flags = cpu_to_le32(key->flags);
	key_le->rxiv.hi = cpu_to_le32(key->rxiv.hi);
	key_le->rxiv.lo = cpu_to_le16(key->rxiv.lo);
	key_le->iv_initialized = cpu_to_le32(key->iv_initialized);
	memcpy(key_le->data, key->data, sizeof(key->data));
	memcpy(key_le->ea, key->ea, sizeof(key->ea));
}

static int
send_key_to_dongle(struct net_device *ndev, struct brcmf_wsec_key *key)
{
	int err;
	struct brcmf_wsec_key_le key_le;

	convert_key_from_CPU(key, &key_le);

	brcmf_netdev_wait_pend8021x(ndev);

	err = brcmf_fil_bsscfg_data_set(netdev_priv(ndev), "wsec_key", &key_le,
					sizeof(key_le));

	if (err)
		brcmf_err("wsec_key error (%d)\n", err);
	return err;
}

static s32
brcmf_configure_arp_offload(struct brcmf_if *ifp, bool enable)
{
	s32 err;
	u32 mode;

	if (enable)
		mode = BRCMF_ARP_OL_AGENT | BRCMF_ARP_OL_PEER_AUTO_REPLY;
	else
		mode = 0;

	/* Try to set and enable ARP offload feature, this may fail, then it  */
	/* is simply not supported and err 0 will be returned                 */
	err = brcmf_fil_iovar_int_set(ifp, "arp_ol", mode);
	if (err) {
		brcmf_dbg(TRACE, "failed to set ARP offload mode to 0x%x, err = %d\n",
			  mode, err);
		err = 0;
	} else {
		err = brcmf_fil_iovar_int_set(ifp, "arpoe", enable);
		if (err) {
			brcmf_dbg(TRACE, "failed to configure (%d) ARP offload err = %d\n",
				  enable, err);
			err = 0;
		} else
			brcmf_dbg(TRACE, "successfully configured (%d) ARP offload to 0x%x\n",
				  enable, mode);
	}

	return err;
}

static struct wireless_dev *brcmf_cfg80211_add_iface(struct wiphy *wiphy,
						     const char *name,
						     enum nl80211_iftype type,
						     u32 *flags,
						     struct vif_params *params)
{
	brcmf_dbg(TRACE, "enter: %s type %d\n", name, type);
	switch (type) {
	case NL80211_IFTYPE_ADHOC:
	case NL80211_IFTYPE_STATION:
	case NL80211_IFTYPE_AP:
	case NL80211_IFTYPE_AP_VLAN:
	case NL80211_IFTYPE_WDS:
	case NL80211_IFTYPE_MONITOR:
	case NL80211_IFTYPE_MESH_POINT:
		return ERR_PTR(-EOPNOTSUPP);
	case NL80211_IFTYPE_P2P_CLIENT:
	case NL80211_IFTYPE_P2P_GO:
	case NL80211_IFTYPE_P2P_DEVICE:
		return brcmf_p2p_add_vif(wiphy, name, type, flags, params);
	case NL80211_IFTYPE_UNSPECIFIED:
	default:
		return ERR_PTR(-EINVAL);
	}
}

void brcmf_set_mpc(struct brcmf_if *ifp, int mpc)
{
	s32 err = 0;

	if (check_vif_up(ifp->vif)) {
		err = brcmf_fil_iovar_int_set(ifp, "mpc", mpc);
		if (err) {
			brcmf_err("fail to set mpc\n");
			return;
		}
		brcmf_dbg(INFO, "MPC : %d\n", mpc);
	}
}

s32 brcmf_notify_escan_complete(struct brcmf_cfg80211_info *cfg,
				struct brcmf_if *ifp, bool aborted,
				bool fw_abort)
{
	struct brcmf_scan_params_le params_le;
	struct cfg80211_scan_request *scan_request;
	s32 err = 0;

	brcmf_dbg(SCAN, "Enter\n");

	/* clear scan request, because the FW abort can cause a second call */
	/* to this functon and might cause a double cfg80211_scan_done      */
	scan_request = cfg->scan_request;
	cfg->scan_request = NULL;

	if (timer_pending(&cfg->escan_timeout))
		del_timer_sync(&cfg->escan_timeout);

	if (fw_abort) {
		/* Do a scan abort to stop the driver's scan engine */
		brcmf_dbg(SCAN, "ABORT scan in firmware\n");
		memset(&params_le, 0, sizeof(params_le));
		memset(params_le.bssid, 0xFF, ETH_ALEN);
		params_le.bss_type = DOT11_BSSTYPE_ANY;
		params_le.scan_type = 0;
		params_le.channel_num = cpu_to_le32(1);
		params_le.nprobes = cpu_to_le32(1);
		params_le.active_time = cpu_to_le32(-1);
		params_le.passive_time = cpu_to_le32(-1);
		params_le.home_time = cpu_to_le32(-1);
		/* Scan is aborted by setting channel_list[0] to -1 */
		params_le.channel_list[0] = cpu_to_le16(-1);
		/* E-Scan (or anyother type) can be aborted by SCAN */
		err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SCAN,
					     &params_le, sizeof(params_le));
		if (err)
			brcmf_err("Scan abort  failed\n");
	}
	/*
	 * e-scan can be initiated by scheduled scan
	 * which takes precedence.
	 */
	if (cfg->sched_escan) {
		brcmf_dbg(SCAN, "scheduled scan completed\n");
		cfg->sched_escan = false;
		if (!aborted)
			cfg80211_sched_scan_results(cfg_to_wiphy(cfg));
		brcmf_set_mpc(ifp, 1);
	} else if (scan_request) {
		brcmf_dbg(SCAN, "ESCAN Completed scan: %s\n",
			  aborted ? "Aborted" : "Done");
		cfg80211_scan_done(scan_request, aborted);
		brcmf_set_mpc(ifp, 1);
	}
	if (!test_and_clear_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status))
		brcmf_dbg(SCAN, "Scan complete, probably P2P scan\n");

	return err;
}

static
int brcmf_cfg80211_del_iface(struct wiphy *wiphy, struct wireless_dev *wdev)
{
	struct brcmf_cfg80211_info *cfg = wiphy_priv(wiphy);
	struct net_device *ndev = wdev->netdev;

	/* vif event pending in firmware */
	if (brcmf_cfg80211_vif_event_armed(cfg))
		return -EBUSY;

	if (ndev) {
		if (test_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status) &&
		    cfg->escan_info.ifp == netdev_priv(ndev))
			brcmf_notify_escan_complete(cfg, netdev_priv(ndev),
						    true, true);

		brcmf_fil_iovar_int_set(netdev_priv(ndev), "mpc", 1);
	}

	switch (wdev->iftype) {
	case NL80211_IFTYPE_ADHOC:
	case NL80211_IFTYPE_STATION:
	case NL80211_IFTYPE_AP:
	case NL80211_IFTYPE_AP_VLAN:
	case NL80211_IFTYPE_WDS:
	case NL80211_IFTYPE_MONITOR:
	case NL80211_IFTYPE_MESH_POINT:
		return -EOPNOTSUPP;
	case NL80211_IFTYPE_P2P_CLIENT:
	case NL80211_IFTYPE_P2P_GO:
	case NL80211_IFTYPE_P2P_DEVICE:
		return brcmf_p2p_del_vif(wiphy, wdev);
	case NL80211_IFTYPE_UNSPECIFIED:
	default:
		return -EINVAL;
	}
	return -EOPNOTSUPP;
}

static s32
brcmf_cfg80211_change_iface(struct wiphy *wiphy, struct net_device *ndev,
			 enum nl80211_iftype type, u32 *flags,
			 struct vif_params *params)
{
	struct brcmf_cfg80211_info *cfg = wiphy_priv(wiphy);
	struct brcmf_if *ifp = netdev_priv(ndev);
	struct brcmf_cfg80211_vif *vif = ifp->vif;
	s32 infra = 0;
	s32 ap = 0;
	s32 err = 0;

	brcmf_dbg(TRACE, "Enter, ndev=%p, type=%d\n", ndev, type);

	switch (type) {
	case NL80211_IFTYPE_MONITOR:
	case NL80211_IFTYPE_WDS:
		brcmf_err("type (%d) : currently we do not support this type\n",
			  type);
		return -EOPNOTSUPP;
	case NL80211_IFTYPE_ADHOC:
		vif->mode = WL_MODE_IBSS;
		infra = 0;
		break;
	case NL80211_IFTYPE_STATION:
		/* Ignore change for p2p IF. Unclear why supplicant does this */
		if ((vif->wdev.iftype == NL80211_IFTYPE_P2P_CLIENT) ||
		    (vif->wdev.iftype == NL80211_IFTYPE_P2P_GO)) {
			brcmf_dbg(TRACE, "Ignoring cmd for p2p if\n");
			/* WAR: It is unexpected to get a change of VIF for P2P
			 * IF, but it happens. The request can not be handled
			 * but returning EPERM causes a crash. Returning 0
			 * without setting ieee80211_ptr->iftype causes trace
			 * (WARN_ON) but it works with wpa_supplicant
			 */
			return 0;
		}
		vif->mode = WL_MODE_BSS;
		infra = 1;
		break;
	case NL80211_IFTYPE_AP:
	case NL80211_IFTYPE_P2P_GO:
		vif->mode = WL_MODE_AP;
		ap = 1;
		break;
	default:
		err = -EINVAL;
		goto done;
	}

	if (ap) {
		if (type == NL80211_IFTYPE_P2P_GO) {
			brcmf_dbg(INFO, "IF Type = P2P GO\n");
			err = brcmf_p2p_ifchange(cfg, BRCMF_FIL_P2P_IF_GO);
		}
		if (!err) {
			set_bit(BRCMF_VIF_STATUS_AP_CREATING, &vif->sme_state);
			brcmf_dbg(INFO, "IF Type = AP\n");
		}
	} else {
		err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_INFRA, infra);
		if (err) {
			brcmf_err("WLC_SET_INFRA error (%d)\n", err);
			err = -EAGAIN;
			goto done;
		}
		brcmf_dbg(INFO, "IF Type = %s\n", (vif->mode == WL_MODE_IBSS) ?
			  "Adhoc" : "Infra");
	}
	ndev->ieee80211_ptr->iftype = type;

done:
	brcmf_dbg(TRACE, "Exit\n");

	return err;
}

static void brcmf_escan_prep(struct brcmf_cfg80211_info *cfg,
			     struct brcmf_scan_params_le *params_le,
			     struct cfg80211_scan_request *request)
{
	u32 n_ssids;
	u32 n_channels;
	s32 i;
	s32 offset;
	u16 chanspec;
	char *ptr;
	struct brcmf_ssid_le ssid_le;

	memset(params_le->bssid, 0xFF, ETH_ALEN);
	params_le->bss_type = DOT11_BSSTYPE_ANY;
	params_le->scan_type = 0;
	params_le->channel_num = 0;
	params_le->nprobes = cpu_to_le32(-1);
	params_le->active_time = cpu_to_le32(-1);
	params_le->passive_time = cpu_to_le32(-1);
	params_le->home_time = cpu_to_le32(-1);
	memset(&params_le->ssid_le, 0, sizeof(params_le->ssid_le));

	/* if request is null exit so it will be all channel broadcast scan */
	if (!request)
		return;

	n_ssids = request->n_ssids;
	n_channels = request->n_channels;
	/* Copy channel array if applicable */
	brcmf_dbg(SCAN, "### List of channelspecs to scan ### %d\n",
		  n_channels);
	if (n_channels > 0) {
		for (i = 0; i < n_channels; i++) {
			chanspec = channel_to_chanspec(&cfg->d11inf,
						       request->channels[i]);
			brcmf_dbg(SCAN, "Chan : %d, Channel spec: %x\n",
				  request->channels[i]->hw_value, chanspec);
			params_le->channel_list[i] = cpu_to_le16(chanspec);
		}
	} else {
		brcmf_dbg(SCAN, "Scanning all channels\n");
	}
	/* Copy ssid array if applicable */
	brcmf_dbg(SCAN, "### List of SSIDs to scan ### %d\n", n_ssids);
	if (n_ssids > 0) {
		offset = offsetof(struct brcmf_scan_params_le, channel_list) +
				n_channels * sizeof(u16);
		offset = roundup(offset, sizeof(u32));
		ptr = (char *)params_le + offset;
		for (i = 0; i < n_ssids; i++) {
			memset(&ssid_le, 0, sizeof(ssid_le));
			ssid_le.SSID_len =
					cpu_to_le32(request->ssids[i].ssid_len);
			memcpy(ssid_le.SSID, request->ssids[i].ssid,
			       request->ssids[i].ssid_len);
			if (!ssid_le.SSID_len)
				brcmf_dbg(SCAN, "%d: Broadcast scan\n", i);
			else
				brcmf_dbg(SCAN, "%d: scan for  %s size =%d\n",
					  i, ssid_le.SSID, ssid_le.SSID_len);
			memcpy(ptr, &ssid_le, sizeof(ssid_le));
			ptr += sizeof(ssid_le);
		}
	} else {
		brcmf_dbg(SCAN, "Broadcast scan %p\n", request->ssids);
		if ((request->ssids) && request->ssids->ssid_len) {
			brcmf_dbg(SCAN, "SSID %s len=%d\n",
				  params_le->ssid_le.SSID,
				  request->ssids->ssid_len);
			params_le->ssid_le.SSID_len =
				cpu_to_le32(request->ssids->ssid_len);
			memcpy(&params_le->ssid_le.SSID, request->ssids->ssid,
				request->ssids->ssid_len);
		}
	}
	/* Adding mask to channel numbers */
	params_le->channel_num =
		cpu_to_le32((n_ssids << BRCMF_SCAN_PARAMS_NSSID_SHIFT) |
			(n_channels & BRCMF_SCAN_PARAMS_COUNT_MASK));
}

static s32
brcmf_run_escan(struct brcmf_cfg80211_info *cfg, struct brcmf_if *ifp,
		struct cfg80211_scan_request *request, u16 action)
{
	s32 params_size = BRCMF_SCAN_PARAMS_FIXED_SIZE +
			  offsetof(struct brcmf_escan_params_le, params_le);
	struct brcmf_escan_params_le *params;
	s32 err = 0;

	brcmf_dbg(SCAN, "E-SCAN START\n");

	if (request != NULL) {
		/* Allocate space for populating ssids in struct */
		params_size += sizeof(u32) * ((request->n_channels + 1) / 2);

		/* Allocate space for populating ssids in struct */
		params_size += sizeof(struct brcmf_ssid) * request->n_ssids;
	}

	params = kzalloc(params_size, GFP_KERNEL);
	if (!params) {
		err = -ENOMEM;
		goto exit;
	}
	BUG_ON(params_size + sizeof("escan") >= BRCMF_DCMD_MEDLEN);
	brcmf_escan_prep(cfg, &params->params_le, request);
	params->version = cpu_to_le32(BRCMF_ESCAN_REQ_VERSION);
	params->action = cpu_to_le16(action);
	params->sync_id = cpu_to_le16(0x1234);

	err = brcmf_fil_iovar_data_set(ifp, "escan", params, params_size);
	if (err) {
		if (err == -EBUSY)
			brcmf_dbg(INFO, "system busy : escan canceled\n");
		else
			brcmf_err("error (%d)\n", err);
	}

	kfree(params);
exit:
	return err;
}

static s32
brcmf_do_escan(struct brcmf_cfg80211_info *cfg, struct wiphy *wiphy,
	       struct brcmf_if *ifp, struct cfg80211_scan_request *request)
{
	s32 err;
	u32 passive_scan;
	struct brcmf_scan_results *results;
	struct escan_info *escan = &cfg->escan_info;

	brcmf_dbg(SCAN, "Enter\n");
	escan->ifp = ifp;
	escan->wiphy = wiphy;
	escan->escan_state = WL_ESCAN_STATE_SCANNING;
	passive_scan = cfg->active_scan ? 0 : 1;
	err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_PASSIVE_SCAN,
				    passive_scan);
	if (err) {
		brcmf_err("error (%d)\n", err);
		return err;
	}
	brcmf_set_mpc(ifp, 0);
	results = (struct brcmf_scan_results *)cfg->escan_info.escan_buf;
	results->version = 0;
	results->count = 0;
	results->buflen = WL_ESCAN_RESULTS_FIXED_SIZE;

	err = escan->run(cfg, ifp, request, WL_ESCAN_ACTION_START);
	if (err)
		brcmf_set_mpc(ifp, 1);
	return err;
}

static s32
brcmf_cfg80211_escan(struct wiphy *wiphy, struct brcmf_cfg80211_vif *vif,
		     struct cfg80211_scan_request *request,
		     struct cfg80211_ssid *this_ssid)
{
	struct brcmf_if *ifp = vif->ifp;
	struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
	struct cfg80211_ssid *ssids;
	struct brcmf_cfg80211_scan_req *sr = &cfg->scan_req_int;
	u32 passive_scan;
	bool escan_req;
	bool spec_scan;
	s32 err;
	u32 SSID_len;

	brcmf_dbg(SCAN, "START ESCAN\n");

	if (test_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status)) {
		brcmf_err("Scanning already: status (%lu)\n", cfg->scan_status);
		return -EAGAIN;
	}
	if (test_bit(BRCMF_SCAN_STATUS_ABORT, &cfg->scan_status)) {
		brcmf_err("Scanning being aborted: status (%lu)\n",
			  cfg->scan_status);
		return -EAGAIN;
	}
	if (test_bit(BRCMF_SCAN_STATUS_SUPPRESS, &cfg->scan_status)) {
		brcmf_err("Scanning suppressed: status (%lu)\n",
			  cfg->scan_status);
		return -EAGAIN;
	}
	if (test_bit(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state)) {
		brcmf_err("Connecting: status (%lu)\n", ifp->vif->sme_state);
		return -EAGAIN;
	}

	/* If scan req comes for p2p0, send it over primary I/F */
	if (vif == cfg->p2p.bss_idx[P2PAPI_BSSCFG_DEVICE].vif)
		vif = cfg->p2p.bss_idx[P2PAPI_BSSCFG_PRIMARY].vif;

	/* Arm scan timeout timer */
	mod_timer(&cfg->escan_timeout, jiffies +
			WL_ESCAN_TIMER_INTERVAL_MS * HZ / 1000);

	escan_req = false;
	if (request) {
		/* scan bss */
		ssids = request->ssids;
		escan_req = true;
	} else {
		/* scan in ibss */
		/* we don't do escan in ibss */
		ssids = this_ssid;
	}

	cfg->scan_request = request;
	set_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status);
	if (escan_req) {
		cfg->escan_info.run = brcmf_run_escan;
		err = brcmf_p2p_scan_prep(wiphy, request, vif);
		if (err)
			goto scan_out;

		err = brcmf_do_escan(cfg, wiphy, vif->ifp, request);
		if (err)
			goto scan_out;
	} else {
		brcmf_dbg(SCAN, "ssid \"%s\", ssid_len (%d)\n",
			  ssids->ssid, ssids->ssid_len);
		memset(&sr->ssid_le, 0, sizeof(sr->ssid_le));
		SSID_len = min_t(u8, sizeof(sr->ssid_le.SSID), ssids->ssid_len);
		sr->ssid_le.SSID_len = cpu_to_le32(0);
		spec_scan = false;
		if (SSID_len) {
			memcpy(sr->ssid_le.SSID, ssids->ssid, SSID_len);
			sr->ssid_le.SSID_len = cpu_to_le32(SSID_len);
			spec_scan = true;
		} else
			brcmf_dbg(SCAN, "Broadcast scan\n");

		passive_scan = cfg->active_scan ? 0 : 1;
		err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_PASSIVE_SCAN,
					    passive_scan);
		if (err) {
			brcmf_err("WLC_SET_PASSIVE_SCAN error (%d)\n", err);
			goto scan_out;
		}
		brcmf_set_mpc(ifp, 0);
		err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SCAN,
					     &sr->ssid_le, sizeof(sr->ssid_le));
		if (err) {
			if (err == -EBUSY)
				brcmf_dbg(INFO, "BUSY: scan for \"%s\" canceled\n",
					  sr->ssid_le.SSID);
			else
				brcmf_err("WLC_SCAN error (%d)\n", err);

			brcmf_set_mpc(ifp, 1);
			goto scan_out;
		}
	}

	return 0;

scan_out:
	clear_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status);
	if (timer_pending(&cfg->escan_timeout))
		del_timer_sync(&cfg->escan_timeout);
	cfg->scan_request = NULL;
	return err;
}

static s32
brcmf_cfg80211_scan(struct wiphy *wiphy, struct cfg80211_scan_request *request)
{
	struct brcmf_cfg80211_vif *vif;
	s32 err = 0;

	brcmf_dbg(TRACE, "Enter\n");
	vif = container_of(request->wdev, struct brcmf_cfg80211_vif, wdev);
	if (!check_vif_up(vif))
		return -EIO;

	err = brcmf_cfg80211_escan(wiphy, vif, request, NULL);

	if (err)
		brcmf_err("scan error (%d)\n", err);

	brcmf_dbg(TRACE, "Exit\n");
	return err;
}

static s32 brcmf_set_rts(struct net_device *ndev, u32 rts_threshold)
{
	s32 err = 0;

	err = brcmf_fil_iovar_int_set(netdev_priv(ndev), "rtsthresh",
				      rts_threshold);
	if (err)
		brcmf_err("Error (%d)\n", err);

	return err;
}

static s32 brcmf_set_frag(struct net_device *ndev, u32 frag_threshold)
{
	s32 err = 0;

	err = brcmf_fil_iovar_int_set(netdev_priv(ndev), "fragthresh",
				      frag_threshold);
	if (err)
		brcmf_err("Error (%d)\n", err);

	return err;
}

static s32 brcmf_set_retry(struct net_device *ndev, u32 retry, bool l)
{
	s32 err = 0;
	u32 cmd = (l ? BRCMF_C_SET_LRL : BRCMF_C_SET_SRL);

	err = brcmf_fil_cmd_int_set(netdev_priv(ndev), cmd, retry);
	if (err) {
		brcmf_err("cmd (%d) , error (%d)\n", cmd, err);
		return err;
	}
	return err;
}

static s32 brcmf_cfg80211_set_wiphy_params(struct wiphy *wiphy, u32 changed)
{
	struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
	struct net_device *ndev = cfg_to_ndev(cfg);
	struct brcmf_if *ifp = netdev_priv(ndev);
	s32 err = 0;

	brcmf_dbg(TRACE, "Enter\n");
	if (!check_vif_up(ifp->vif))
		return -EIO;

	if (changed & WIPHY_PARAM_RTS_THRESHOLD &&
	    (cfg->conf->rts_threshold != wiphy->rts_threshold)) {
		cfg->conf->rts_threshold = wiphy->rts_threshold;
		err = brcmf_set_rts(ndev, cfg->conf->rts_threshold);
		if (!err)
			goto done;
	}
	if (changed & WIPHY_PARAM_FRAG_THRESHOLD &&
	    (cfg->conf->frag_threshold != wiphy->frag_threshold)) {
		cfg->conf->frag_threshold = wiphy->frag_threshold;
		err = brcmf_set_frag(ndev, cfg->conf->frag_threshold);
		if (!err)
			goto done;
	}
	if (changed & WIPHY_PARAM_RETRY_LONG
	    && (cfg->conf->retry_long != wiphy->retry_long)) {
		cfg->conf->retry_long = wiphy->retry_long;
		err = brcmf_set_retry(ndev, cfg->conf->retry_long, true);
		if (!err)
			goto done;
	}
	if (changed & WIPHY_PARAM_RETRY_SHORT
	    && (cfg->conf->retry_short != wiphy->retry_short)) {
		cfg->conf->retry_short = wiphy->retry_short;
		err = brcmf_set_retry(ndev, cfg->conf->retry_short, false);
		if (!err)
			goto done;
	}

done:
	brcmf_dbg(TRACE, "Exit\n");
	return err;
}

static void brcmf_init_prof(struct brcmf_cfg80211_profile *prof)
{
	memset(prof, 0, sizeof(*prof));
}

static void brcmf_link_down(struct brcmf_cfg80211_vif *vif)
{
	struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(vif->wdev.wiphy);
	s32 err = 0;

	brcmf_dbg(TRACE, "Enter\n");

	if (test_bit(BRCMF_VIF_STATUS_CONNECTED, &vif->sme_state)) {
		brcmf_dbg(INFO, "Call WLC_DISASSOC to stop excess roaming\n ");
		err = brcmf_fil_cmd_data_set(vif->ifp,
					     BRCMF_C_DISASSOC, NULL, 0);
		if (err)
			brcmf_err("WLC_DISASSOC failed (%d)\n", err);
		clear_bit(BRCMF_VIF_STATUS_CONNECTED, &vif->sme_state);
	}
	clear_bit(BRCMF_VIF_STATUS_CONNECTING, &vif->sme_state);
	clear_bit(BRCMF_SCAN_STATUS_SUPPRESS, &cfg->scan_status);
	brcmf_btcoex_set_mode(vif, BRCMF_BTCOEX_ENABLED, 0);
	brcmf_dbg(TRACE, "Exit\n");
}

static s32
brcmf_cfg80211_join_ibss(struct wiphy *wiphy, struct net_device *ndev,
		      struct cfg80211_ibss_params *params)
{
	struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
	struct brcmf_if *ifp = netdev_priv(ndev);
	struct brcmf_cfg80211_profile *profile = &ifp->vif->profile;
	struct brcmf_join_params join_params;
	size_t join_params_size = 0;
	s32 err = 0;
	s32 wsec = 0;
	s32 bcnprd;
	u16 chanspec;

	brcmf_dbg(TRACE, "Enter\n");
	if (!check_vif_up(ifp->vif))
		return -EIO;

	if (params->ssid)
		brcmf_dbg(CONN, "SSID: %s\n", params->ssid);
	else {
		brcmf_dbg(CONN, "SSID: NULL, Not supported\n");
		return -EOPNOTSUPP;
	}

	set_bit(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state);

	if (params->bssid)
		brcmf_dbg(CONN, "BSSID: %pM\n", params->bssid);
	else
		brcmf_dbg(CONN, "No BSSID specified\n");

	if (params->chandef.chan)
		brcmf_dbg(CONN, "channel: %d\n",
			  params->chandef.chan->center_freq);
	else
		brcmf_dbg(CONN, "no channel specified\n");

	if (params->channel_fixed)
		brcmf_dbg(CONN, "fixed channel required\n");
	else
		brcmf_dbg(CONN, "no fixed channel required\n");

	if (params->ie && params->ie_len)
		brcmf_dbg(CONN, "ie len: %d\n", params->ie_len);
	else
		brcmf_dbg(CONN, "no ie specified\n");

	if (params->beacon_interval)
		brcmf_dbg(CONN, "beacon interval: %d\n",
			  params->beacon_interval);
	else
		brcmf_dbg(CONN, "no beacon interval specified\n");

	if (params->basic_rates)
		brcmf_dbg(CONN, "basic rates: %08X\n", params->basic_rates);
	else
		brcmf_dbg(CONN, "no basic rates specified\n");

	if (params->privacy)
		brcmf_dbg(CONN, "privacy required\n");
	else
		brcmf_dbg(CONN, "no privacy required\n");

	/* Configure Privacy for starter */
	if (params->privacy)
		wsec |= WEP_ENABLED;

	err = brcmf_fil_iovar_int_set(ifp, "wsec", wsec);
	if (err) {
		brcmf_err("wsec failed (%d)\n", err);
		goto done;
	}

	/* Configure Beacon Interval for starter */
	if (params->beacon_interval)
		bcnprd = params->beacon_interval;
	else
		bcnprd = 100;

	err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_BCNPRD, bcnprd);
	if (err) {
		brcmf_err("WLC_SET_BCNPRD failed (%d)\n", err);
		goto done;
	}

	/* Configure required join parameter */
	memset(&join_params, 0, sizeof(struct brcmf_join_params));

	/* SSID */
	profile->ssid.SSID_len = min_t(u32, params->ssid_len, 32);
	memcpy(profile->ssid.SSID, params->ssid, profile->ssid.SSID_len);
	memcpy(join_params.ssid_le.SSID, params->ssid, profile->ssid.SSID_len);
	join_params.ssid_le.SSID_len = cpu_to_le32(profile->ssid.SSID_len);
	join_params_size = sizeof(join_params.ssid_le);

	/* BSSID */
	if (params->bssid) {
		memcpy(join_params.params_le.bssid, params->bssid, ETH_ALEN);
		join_params_size = sizeof(join_params.ssid_le) +
				   BRCMF_ASSOC_PARAMS_FIXED_SIZE;
		memcpy(profile->bssid, params->bssid, ETH_ALEN);
	} else {
		memset(join_params.params_le.bssid, 0xFF, ETH_ALEN);
		memset(profile->bssid, 0, ETH_ALEN);
	}

	/* Channel */
	if (params->chandef.chan) {
		u32 target_channel;

		cfg->channel =
			ieee80211_frequency_to_channel(
				params->chandef.chan->center_freq);
		if (params->channel_fixed) {
			/* adding chanspec */
			chanspec = channel_to_chanspec(&cfg->d11inf,
						       params->chandef.chan);
			join_params.params_le.chanspec_list[0] =
				cpu_to_le16(chanspec);
			join_params.params_le.chanspec_num = cpu_to_le32(1);
			join_params_size += sizeof(join_params.params_le);
		}

		/* set channel for starter */
		target_channel = cfg->channel;
		err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_CHANNEL,
					    target_channel);
		if (err) {
			brcmf_err("WLC_SET_CHANNEL failed (%d)\n", err);
			goto done;
		}
	} else
		cfg->channel = 0;

	cfg->ibss_starter = false;


	err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_SSID,
				     &join_params, join_params_size);
	if (err) {
		brcmf_err("WLC_SET_SSID failed (%d)\n", err);
		goto done;
	}

done:
	if (err)
		clear_bit(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state);
	brcmf_dbg(TRACE, "Exit\n");
	return err;
}

static s32
brcmf_cfg80211_leave_ibss(struct wiphy *wiphy, struct net_device *ndev)
{
	struct brcmf_if *ifp = netdev_priv(ndev);
	s32 err = 0;

	brcmf_dbg(TRACE, "Enter\n");
	if (!check_vif_up(ifp->vif))
		return -EIO;

	brcmf_link_down(ifp->vif);

	brcmf_dbg(TRACE, "Exit\n");

	return err;
}

static s32 brcmf_set_wpa_version(struct net_device *ndev,
				 struct cfg80211_connect_params *sme)
{
	struct brcmf_cfg80211_profile *profile = ndev_to_prof(ndev);
	struct brcmf_cfg80211_security *sec;
	s32 val = 0;
	s32 err = 0;

	if (sme->crypto.wpa_versions & NL80211_WPA_VERSION_1)
		val = WPA_AUTH_PSK | WPA_AUTH_UNSPECIFIED;
	else if (sme->crypto.wpa_versions & NL80211_WPA_VERSION_2)
		val = WPA2_AUTH_PSK | WPA2_AUTH_UNSPECIFIED;
	else
		val = WPA_AUTH_DISABLED;
	brcmf_dbg(CONN, "setting wpa_auth to 0x%0x\n", val);
	err = brcmf_fil_bsscfg_int_set(netdev_priv(ndev), "wpa_auth", val);
	if (err) {
		brcmf_err("set wpa_auth failed (%d)\n", err);
		return err;
	}
	sec = &profile->sec;
	sec->wpa_versions = sme->crypto.wpa_versions;
	return err;
}

static s32 brcmf_set_auth_type(struct net_device *ndev,
			       struct cfg80211_connect_params *sme)
{
	struct brcmf_cfg80211_profile *profile = ndev_to_prof(ndev);
	struct brcmf_cfg80211_security *sec;
	s32 val = 0;
	s32 err = 0;

	switch (sme->auth_type) {
	case NL80211_AUTHTYPE_OPEN_SYSTEM:
		val = 0;
		brcmf_dbg(CONN, "open system\n");
		break;
	case NL80211_AUTHTYPE_SHARED_KEY:
		val = 1;
		brcmf_dbg(CONN, "shared key\n");
		break;
	case NL80211_AUTHTYPE_AUTOMATIC:
		val = 2;
		brcmf_dbg(CONN, "automatic\n");
		break;
	case NL80211_AUTHTYPE_NETWORK_EAP:
		brcmf_dbg(CONN, "network eap\n");
	default:
		val = 2;
		brcmf_err("invalid auth type (%d)\n", sme->auth_type);
		break;
	}

	err = brcmf_fil_bsscfg_int_set(netdev_priv(ndev), "auth", val);
	if (err) {
		brcmf_err("set auth failed (%d)\n", err);
		return err;
	}
	sec = &profile->sec;
	sec->auth_type = sme->auth_type;
	return err;
}

static s32
brcmf_set_set_cipher(struct net_device *ndev,
		     struct cfg80211_connect_params *sme)
{
	struct brcmf_cfg80211_profile *profile = ndev_to_prof(ndev);
	struct brcmf_cfg80211_security *sec;
	s32 pval = 0;
	s32 gval = 0;
	s32 err = 0;

	if (sme->crypto.n_ciphers_pairwise) {
		switch (sme->crypto.ciphers_pairwise[0]) {
		case WLAN_CIPHER_SUITE_WEP40:
		case WLAN_CIPHER_SUITE_WEP104:
			pval = WEP_ENABLED;
			break;
		case WLAN_CIPHER_SUITE_TKIP:
			pval = TKIP_ENABLED;
			break;
		case WLAN_CIPHER_SUITE_CCMP:
			pval = AES_ENABLED;
			break;
		case WLAN_CIPHER_SUITE_AES_CMAC:
			pval = AES_ENABLED;
			break;
		default:
			brcmf_err("invalid cipher pairwise (%d)\n",
				  sme->crypto.ciphers_pairwise[0]);
			return -EINVAL;
		}
	}
	if (sme->crypto.cipher_group) {
		switch (sme->crypto.cipher_group) {
		case WLAN_CIPHER_SUITE_WEP40:
		case WLAN_CIPHER_SUITE_WEP104:
			gval = WEP_ENABLED;
			break;
		case WLAN_CIPHER_SUITE_TKIP:
			gval = TKIP_ENABLED;
			break;
		case WLAN_CIPHER_SUITE_CCMP:
			gval = AES_ENABLED;
			break;
		case WLAN_CIPHER_SUITE_AES_CMAC:
			gval = AES_ENABLED;
			break;
		default:
			brcmf_err("invalid cipher group (%d)\n",
				  sme->crypto.cipher_group);
			return -EINVAL;
		}
	}

	brcmf_dbg(CONN, "pval (%d) gval (%d)\n", pval, gval);
	/* In case of privacy, but no security and WPS then simulate */
	/* setting AES. WPS-2.0 allows no security                   */
	if (brcmf_find_wpsie(sme->ie, sme->ie_len) && !pval && !gval &&
	    sme->privacy)
		pval = AES_ENABLED;
	err = brcmf_fil_bsscfg_int_set(netdev_priv(ndev), "wsec", pval | gval);
	if (err) {
		brcmf_err("error (%d)\n", err);
		return err;
	}

	sec = &profile->sec;
	sec->cipher_pairwise = sme->crypto.ciphers_pairwise[0];
	sec->cipher_group = sme->crypto.cipher_group;

	return err;
}

static s32
brcmf_set_key_mgmt(struct net_device *ndev, struct cfg80211_connect_params *sme)
{
	struct brcmf_cfg80211_profile *profile = ndev_to_prof(ndev);
	struct brcmf_cfg80211_security *sec;
	s32 val = 0;
	s32 err = 0;

	if (sme->crypto.n_akm_suites) {
		err = brcmf_fil_bsscfg_int_get(netdev_priv(ndev),
					       "wpa_auth", &val);
		if (err) {
			brcmf_err("could not get wpa_auth (%d)\n", err);
			return err;
		}
		if (val & (WPA_AUTH_PSK | WPA_AUTH_UNSPECIFIED)) {
			switch (sme->crypto.akm_suites[0]) {
			case WLAN_AKM_SUITE_8021X:
				val = WPA_AUTH_UNSPECIFIED;
				break;
			case WLAN_AKM_SUITE_PSK:
				val = WPA_AUTH_PSK;
				break;
			default:
				brcmf_err("invalid cipher group (%d)\n",
					  sme->crypto.cipher_group);
				return -EINVAL;
			}
		} else if (val & (WPA2_AUTH_PSK | WPA2_AUTH_UNSPECIFIED)) {
			switch (sme->crypto.akm_suites[0]) {
			case WLAN_AKM_SUITE_8021X:
				val = WPA2_AUTH_UNSPECIFIED;
				break;
			case WLAN_AKM_SUITE_PSK:
				val = WPA2_AUTH_PSK;
				break;
			default:
				brcmf_err("invalid cipher group (%d)\n",
					  sme->crypto.cipher_group);
				return -EINVAL;
			}
		}

		brcmf_dbg(CONN, "setting wpa_auth to %d\n", val);
		err = brcmf_fil_bsscfg_int_set(netdev_priv(ndev),
					       "wpa_auth", val);
		if (err) {
			brcmf_err("could not set wpa_auth (%d)\n", err);
			return err;
		}
	}
	sec = &profile->sec;
	sec->wpa_auth = sme->crypto.akm_suites[0];

	return err;
}

static s32
brcmf_set_sharedkey(struct net_device *ndev,
		    struct cfg80211_connect_params *sme)
{
	struct brcmf_cfg80211_profile *profile = ndev_to_prof(ndev);
	struct brcmf_cfg80211_security *sec;
	struct brcmf_wsec_key key;
	s32 val;
	s32 err = 0;

	brcmf_dbg(CONN, "key len (%d)\n", sme->key_len);

	if (sme->key_len == 0)
		return 0;

	sec = &profile->sec;
	brcmf_dbg(CONN, "wpa_versions 0x%x cipher_pairwise 0x%x\n",
		  sec->wpa_versions, sec->cipher_pairwise);

	if (sec->wpa_versions & (NL80211_WPA_VERSION_1 | NL80211_WPA_VERSION_2))
		return 0;

	if (!(sec->cipher_pairwise &
	    (WLAN_CIPHER_SUITE_WEP40 | WLAN_CIPHER_SUITE_WEP104)))
		return 0;

	memset(&key, 0, sizeof(key));
	key.len = (u32) sme->key_len;
	key.index = (u32) sme->key_idx;
	if (key.len > sizeof(key.data)) {
		brcmf_err("Too long key length (%u)\n", key.len);
		return -EINVAL;
	}
	memcpy(key.data, sme->key, key.len);
	key.flags = BRCMF_PRIMARY_KEY;
	switch (sec->cipher_pairwise) {
	case WLAN_CIPHER_SUITE_WEP40:
		key.algo = CRYPTO_ALGO_WEP1;
		break;
	case WLAN_CIPHER_SUITE_WEP104:
		key.algo = CRYPTO_ALGO_WEP128;
		break;
	default:
		brcmf_err("Invalid algorithm (%d)\n",
			  sme->crypto.ciphers_pairwise[0]);
		return -EINVAL;
	}
	/* Set the new key/index */
	brcmf_dbg(CONN, "key length (%d) key index (%d) algo (%d)\n",
		  key.len, key.index, key.algo);
	brcmf_dbg(CONN, "key \"%s\"\n", key.data);
	err = send_key_to_dongle(ndev, &key);
	if (err)
		return err;

	if (sec->auth_type == NL80211_AUTHTYPE_SHARED_KEY) {
		brcmf_dbg(CONN, "set auth_type to shared key\n");
		val = WL_AUTH_SHARED_KEY;	/* shared key */
		err = brcmf_fil_bsscfg_int_set(netdev_priv(ndev), "auth", val);
		if (err)
			brcmf_err("set auth failed (%d)\n", err);
	}
	return err;
}

static
enum nl80211_auth_type brcmf_war_auth_type(struct brcmf_if *ifp,
					   enum nl80211_auth_type type)
{
	u32 ci;
	if (type == NL80211_AUTHTYPE_AUTOMATIC) {
		/* shift to ignore chip revision */
		ci = brcmf_get_chip_info(ifp) >> 4;
		switch (ci) {
		case 43236:
			brcmf_dbg(CONN, "43236 WAR: use OPEN instead of AUTO\n");
			return NL80211_AUTHTYPE_OPEN_SYSTEM;
		default:
			break;
		}
	}
	return type;
}

static s32
brcmf_cfg80211_connect(struct wiphy *wiphy, struct net_device *ndev,
		       struct cfg80211_connect_params *sme)
{
	struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
	struct brcmf_if *ifp = netdev_priv(ndev);
	struct brcmf_cfg80211_profile *profile = &ifp->vif->profile;
	struct ieee80211_channel *chan = sme->channel;
	struct brcmf_join_params join_params;
	size_t join_params_size;
	struct brcmf_tlv *rsn_ie;
	struct brcmf_vs_tlv *wpa_ie;
	void *ie;
	u32 ie_len;
	struct brcmf_ext_join_params_le *ext_join_params;
	u16 chanspec;

	s32 err = 0;

	brcmf_dbg(TRACE, "Enter\n");
	if (!check_vif_up(ifp->vif))
		return -EIO;

	if (!sme->ssid) {
		brcmf_err("Invalid ssid\n");
		return -EOPNOTSUPP;
	}

	if (ifp->vif == cfg->p2p.bss_idx[P2PAPI_BSSCFG_PRIMARY].vif) {
		/* A normal (non P2P) connection request setup. */
		ie = NULL;
		ie_len = 0;
		/* find the WPA_IE */
		wpa_ie = brcmf_find_wpaie((u8 *)sme->ie, sme->ie_len);
		if (wpa_ie) {
			ie = wpa_ie;
			ie_len = wpa_ie->len + TLV_HDR_LEN;
		} else {
			/* find the RSN_IE */
			rsn_ie = brcmf_parse_tlvs((u8 *)sme->ie, sme->ie_len,
						  WLAN_EID_RSN);
			if (rsn_ie) {
				ie = rsn_ie;
				ie_len = rsn_ie->len + TLV_HDR_LEN;
			}
		}
		brcmf_fil_iovar_data_set(ifp, "wpaie", ie, ie_len);
	}

	err = brcmf_vif_set_mgmt_ie(ifp->vif, BRCMF_VNDR_IE_ASSOCREQ_FLAG,
				    sme->ie, sme->ie_len);
	if (err)
		brcmf_err("Set Assoc REQ IE Failed\n");
	else
		brcmf_dbg(TRACE, "Applied Vndr IEs for Assoc request\n");

	set_bit(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state);

	if (chan) {
		cfg->channel =
			ieee80211_frequency_to_channel(chan->center_freq);
		chanspec = channel_to_chanspec(&cfg->d11inf, chan);
		brcmf_dbg(CONN, "channel=%d, center_req=%d, chanspec=0x%04x\n",
			  cfg->channel, chan->center_freq, chanspec);
	} else {
		cfg->channel = 0;
		chanspec = 0;
	}

	brcmf_dbg(INFO, "ie (%p), ie_len (%zd)\n", sme->ie, sme->ie_len);

	err = brcmf_set_wpa_version(ndev, sme);
	if (err) {
		brcmf_err("wl_set_wpa_version failed (%d)\n", err);
		goto done;
	}

	sme->auth_type = brcmf_war_auth_type(ifp, sme->auth_type);
	err = brcmf_set_auth_type(ndev, sme);
	if (err) {
		brcmf_err("wl_set_auth_type failed (%d)\n", err);
		goto done;
	}

	err = brcmf_set_set_cipher(ndev, sme);
	if (err) {
		brcmf_err("wl_set_set_cipher failed (%d)\n", err);
		goto done;
	}

	err = brcmf_set_key_mgmt(ndev, sme);
	if (err) {
		brcmf_err("wl_set_key_mgmt failed (%d)\n", err);
		goto done;
	}

	err = brcmf_set_sharedkey(ndev, sme);
	if (err) {
		brcmf_err("brcmf_set_sharedkey failed (%d)\n", err);
		goto done;
	}

	profile->ssid.SSID_len = min_t(u32, (u32)sizeof(profile->ssid.SSID),
				       (u32)sme->ssid_len);
	memcpy(&profile->ssid.SSID, sme->ssid, profile->ssid.SSID_len);
	if (profile->ssid.SSID_len < IEEE80211_MAX_SSID_LEN) {
		profile->ssid.SSID[profile->ssid.SSID_len] = 0;
		brcmf_dbg(CONN, "SSID \"%s\", len (%d)\n", profile->ssid.SSID,
			  profile->ssid.SSID_len);
	}

	/* Join with specific BSSID and cached SSID
	 * If SSID is zero join based on BSSID only
	 */
	join_params_size = offsetof(struct brcmf_ext_join_params_le, assoc_le) +
		offsetof(struct brcmf_assoc_params_le, chanspec_list);
	if (cfg->channel)
		join_params_size += sizeof(u16);
	ext_join_params = kzalloc(join_params_size, GFP_KERNEL);
	if (ext_join_params == NULL) {
		err = -ENOMEM;
		goto done;
	}
	ext_join_params->ssid_le.SSID_len = cpu_to_le32(profile->ssid.SSID_len);
	memcpy(&ext_join_params->ssid_le.SSID, sme->ssid,
	       profile->ssid.SSID_len);
	/*increase dwell time to receive probe response or detect Beacon
	 * from target AP at a noisy air only during connect command
	 */
	ext_join_params->scan_le.active_time =
		cpu_to_le32(BRCMF_SCAN_JOIN_ACTIVE_DWELL_TIME_MS);
	ext_join_params->scan_le.passive_time =
		cpu_to_le32(BRCMF_SCAN_JOIN_PASSIVE_DWELL_TIME_MS);
	/* Set up join scan parameters */
	ext_join_params->scan_le.scan_type = -1;
	/* to sync with presence period of VSDB GO.
	 * Send probe request more frequently. Probe request will be stopped
	 * when it gets probe response from target AP/GO.
	 */
	ext_join_params->scan_le.nprobes =
		cpu_to_le32(BRCMF_SCAN_JOIN_ACTIVE_DWELL_TIME_MS /
			    BRCMF_SCAN_JOIN_PROBE_INTERVAL_MS);
	ext_join_params->scan_le.home_time = cpu_to_le32(-1);

	if (sme->bssid)
		memcpy(&ext_join_params->assoc_le.bssid, sme->bssid, ETH_ALEN);
	else
		memset(&ext_join_params->assoc_le.bssid, 0xFF, ETH_ALEN);

	if (cfg->channel) {
		ext_join_params->assoc_le.chanspec_num = cpu_to_le32(1);

		ext_join_params->assoc_le.chanspec_list[0] =
			cpu_to_le16(chanspec);
	}

	err  = brcmf_fil_bsscfg_data_set(ifp, "join", ext_join_params,
					 join_params_size);
	kfree(ext_join_params);
	if (!err)
		/* This is it. join command worked, we are done */
		goto done;

	/* join command failed, fallback to set ssid */
	memset(&join_params, 0, sizeof(join_params));
	join_params_size = sizeof(join_params.ssid_le);

	memcpy(&join_params.ssid_le.SSID, sme->ssid, profile->ssid.SSID_len);
	join_params.ssid_le.SSID_len = cpu_to_le32(profile->ssid.SSID_len);

	if (sme->bssid)
		memcpy(join_params.params_le.bssid, sme->bssid, ETH_ALEN);
	else
		memset(join_params.params_le.bssid, 0xFF, ETH_ALEN);

	if (cfg->channel) {
		join_params.params_le.chanspec_list[0] = cpu_to_le16(chanspec);
		join_params.params_le.chanspec_num = cpu_to_le32(1);
		join_params_size += sizeof(join_params.params_le);
	}
	err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_SSID,
				     &join_params, join_params_size);
	if (err)
		brcmf_err("BRCMF_C_SET_SSID failed (%d)\n", err);

done:
	if (err)
		clear_bit(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state);
	brcmf_dbg(TRACE, "Exit\n");
	return err;
}

static s32
brcmf_cfg80211_disconnect(struct wiphy *wiphy, struct net_device *ndev,
		       u16 reason_code)
{
	struct brcmf_if *ifp = netdev_priv(ndev);
	struct brcmf_cfg80211_profile *profile = &ifp->vif->profile;
	struct brcmf_scb_val_le scbval;
	s32 err = 0;

	brcmf_dbg(TRACE, "Enter. Reason code = %d\n", reason_code);
	if (!check_vif_up(ifp->vif))
		return -EIO;

	clear_bit(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state);

	memcpy(&scbval.ea, &profile->bssid, ETH_ALEN);
	scbval.val = cpu_to_le32(reason_code);
	err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_DISASSOC,
				     &scbval, sizeof(scbval));
	if (err)
		brcmf_err("error (%d)\n", err);

	brcmf_dbg(TRACE, "Exit\n");
	return err;
}

static s32
brcmf_cfg80211_set_tx_power(struct wiphy *wiphy, struct wireless_dev *wdev,
			    enum nl80211_tx_power_setting type, s32 mbm)
{

	struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
	struct net_device *ndev = cfg_to_ndev(cfg);
	struct brcmf_if *ifp = netdev_priv(ndev);
	u16 txpwrmw;
	s32 err = 0;
	s32 disable = 0;
	s32 dbm = MBM_TO_DBM(mbm);

	brcmf_dbg(TRACE, "Enter\n");
	if (!check_vif_up(ifp->vif))
		return -EIO;

	switch (type) {
	case NL80211_TX_POWER_AUTOMATIC:
		break;
	case NL80211_TX_POWER_LIMITED:
	case NL80211_TX_POWER_FIXED:
		if (dbm < 0) {
			brcmf_err("TX_POWER_FIXED - dbm is negative\n");
			err = -EINVAL;
			goto done;
		}
		break;
	}
	/* Make sure radio is off or on as far as software is concerned */
	disable = WL_RADIO_SW_DISABLE << 16;
	err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_RADIO, disable);
	if (err)
		brcmf_err("WLC_SET_RADIO error (%d)\n", err);

	if (dbm > 0xffff)
		txpwrmw = 0xffff;
	else
		txpwrmw = (u16) dbm;
	err = brcmf_fil_iovar_int_set(ifp, "qtxpower",
				      (s32)brcmf_mw_to_qdbm(txpwrmw));
	if (err)
		brcmf_err("qtxpower error (%d)\n", err);
	cfg->conf->tx_power = dbm;

done:
	brcmf_dbg(TRACE, "Exit\n");
	return err;
}

static s32 brcmf_cfg80211_get_tx_power(struct wiphy *wiphy,
				       struct wireless_dev *wdev,
				       s32 *dbm)
{
	struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
	struct brcmf_if *ifp = netdev_priv(cfg_to_ndev(cfg));
	s32 txpwrdbm;
	u8 result;
	s32 err = 0;

	brcmf_dbg(TRACE, "Enter\n");
	if (!check_vif_up(ifp->vif))
		return -EIO;

	err = brcmf_fil_iovar_int_get(ifp, "qtxpower", &txpwrdbm);
	if (err) {
		brcmf_err("error (%d)\n", err);
		goto done;
	}

	result = (u8) (txpwrdbm & ~WL_TXPWR_OVERRIDE);
	*dbm = (s32) brcmf_qdbm_to_mw(result);

done:
	brcmf_dbg(TRACE, "Exit\n");
	return err;
}

static s32
brcmf_cfg80211_config_default_key(struct wiphy *wiphy, struct net_device *ndev,
			       u8 key_idx, bool unicast, bool multicast)
{
	struct brcmf_if *ifp = netdev_priv(ndev);
	u32 index;
	u32 wsec;
	s32 err = 0;

	brcmf_dbg(TRACE, "Enter\n");
	brcmf_dbg(CONN, "key index (%d)\n", key_idx);
	if (!check_vif_up(ifp->vif))
		return -EIO;

	err = brcmf_fil_bsscfg_int_get(ifp, "wsec", &wsec);
	if (err) {
		brcmf_err("WLC_GET_WSEC error (%d)\n", err);
		goto done;
	}

	if (wsec & WEP_ENABLED) {
		/* Just select a new current key */
		index = key_idx;
		err = brcmf_fil_cmd_int_set(ifp,
					    BRCMF_C_SET_KEY_PRIMARY, index);
		if (err)
			brcmf_err("error (%d)\n", err);
	}
done:
	brcmf_dbg(TRACE, "Exit\n");
	return err;
}

static s32
brcmf_add_keyext(struct wiphy *wiphy, struct net_device *ndev,
	      u8 key_idx, const u8 *mac_addr, struct key_params *params)
{
	struct brcmf_if *ifp = netdev_priv(ndev);
	struct brcmf_wsec_key key;
	s32 err = 0;
	u8 keybuf[8];

	memset(&key, 0, sizeof(key));
	key.index = (u32) key_idx;
	/* Instead of bcast for ea address for default wep keys,
		 driver needs it to be Null */
	if (!is_multicast_ether_addr(mac_addr))
		memcpy((char *)&key.ea, (void *)mac_addr, ETH_ALEN);
	key.len = (u32) params->key_len;
	/* check for key index change */
	if (key.len == 0) {
		/* key delete */
		err = send_key_to_dongle(ndev, &key);
		if (err)
			brcmf_err("key delete error (%d)\n", err);
	} else {
		if (key.len > sizeof(key.data)) {
			brcmf_err("Invalid key length (%d)\n", key.len);
			return -EINVAL;
		}

		brcmf_dbg(CONN, "Setting the key index %d\n", key.index);
		memcpy(key.data, params->key, key.len);

		if ((ifp->vif->mode != WL_MODE_AP) &&
		    (params->cipher == WLAN_CIPHER_SUITE_TKIP)) {
			brcmf_dbg(CONN, "Swapping RX/TX MIC key\n");
			memcpy(keybuf, &key.data[24], sizeof(keybuf));
			memcpy(&key.data[24], &key.data[16], sizeof(keybuf));
			memcpy(&key.data[16], keybuf, sizeof(keybuf));
		}

		/* if IW_ENCODE_EXT_RX_SEQ_VALID set */
		if (params->seq && params->seq_len == 6) {
			/* rx iv */
			u8 *ivptr;
			ivptr = (u8 *) params->seq;
			key.rxiv.hi = (ivptr[5] << 24) | (ivptr[4] << 16) |
			    (ivptr[3] << 8) | ivptr[2];
			key.rxiv.lo = (ivptr[1] << 8) | ivptr[0];
			key.iv_initialized = true;
		}

		switch (params->cipher) {
		case WLAN_CIPHER_SUITE_WEP40:
			key.algo = CRYPTO_ALGO_WEP1;
			brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_WEP40\n");
			break;
		case WLAN_CIPHER_SUITE_WEP104:
			key.algo = CRYPTO_ALGO_WEP128;
			brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_WEP104\n");
			break;
		case WLAN_CIPHER_SUITE_TKIP:
			key.algo = CRYPTO_ALGO_TKIP;
			brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_TKIP\n");
			break;
		case WLAN_CIPHER_SUITE_AES_CMAC:
			key.algo = CRYPTO_ALGO_AES_CCM;
			brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_AES_CMAC\n");
			break;
		case WLAN_CIPHER_SUITE_CCMP:
			key.algo = CRYPTO_ALGO_AES_CCM;
			brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_CCMP\n");
			break;
		default:
			brcmf_err("Invalid cipher (0x%x)\n", params->cipher);
			return -EINVAL;
		}
		err = send_key_to_dongle(ndev, &key);
		if (err)
			brcmf_err("wsec_key error (%d)\n", err);
	}
	return err;
}

static s32
brcmf_cfg80211_add_key(struct wiphy *wiphy, struct net_device *ndev,
		    u8 key_idx, bool pairwise, const u8 *mac_addr,
		    struct key_params *params)
{
	struct brcmf_if *ifp = netdev_priv(ndev);
	struct brcmf_wsec_key key;
	s32 val;
	s32 wsec;
	s32 err = 0;
	u8 keybuf[8];

	brcmf_dbg(TRACE, "Enter\n");
	brcmf_dbg(CONN, "key index (%d)\n", key_idx);
	if (!check_vif_up(ifp->vif))
		return -EIO;

	if (mac_addr) {
		brcmf_dbg(TRACE, "Exit");
		return brcmf_add_keyext(wiphy, ndev, key_idx, mac_addr, params);
	}
	memset(&key, 0, sizeof(key));

	key.len = (u32) params->key_len;
	key.index = (u32) key_idx;

	if (key.len > sizeof(key.data)) {
		brcmf_err("Too long key length (%u)\n", key.len);
		err = -EINVAL;
		goto done;
	}
	memcpy(key.data, params->key, key.len);

	key.flags = BRCMF_PRIMARY_KEY;
	switch (params->cipher) {
	case WLAN_CIPHER_SUITE_WEP40:
		key.algo = CRYPTO_ALGO_WEP1;
		val = WEP_ENABLED;
		brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_WEP40\n");
		break;
	case WLAN_CIPHER_SUITE_WEP104:
		key.algo = CRYPTO_ALGO_WEP128;
		val = WEP_ENABLED;
		brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_WEP104\n");
		break;
	case WLAN_CIPHER_SUITE_TKIP:
		if (ifp->vif->mode != WL_MODE_AP) {
			brcmf_dbg(CONN, "Swapping RX/TX MIC key\n");
			memcpy(keybuf, &key.data[24], sizeof(keybuf));
			memcpy(&key.data[24], &key.data[16], sizeof(keybuf));
			memcpy(&key.data[16], keybuf, sizeof(keybuf));
		}
		key.algo = CRYPTO_ALGO_TKIP;
		val = TKIP_ENABLED;
		brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_TKIP\n");
		break;
	case WLAN_CIPHER_SUITE_AES_CMAC:
		key.algo = CRYPTO_ALGO_AES_CCM;
		val = AES_ENABLED;
		brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_AES_CMAC\n");
		break;
	case WLAN_CIPHER_SUITE_CCMP:
		key.algo = CRYPTO_ALGO_AES_CCM;
		val = AES_ENABLED;
		brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_CCMP\n");
		break;
	default:
		brcmf_err("Invalid cipher (0x%x)\n", params->cipher);
		err = -EINVAL;
		goto done;
	}

	err = send_key_to_dongle(ndev, &key);
	if (err)
		goto done;

	err = brcmf_fil_bsscfg_int_get(ifp, "wsec", &wsec);
	if (err) {
		brcmf_err("get wsec error (%d)\n", err);
		goto done;
	}
	wsec |= val;
	err = brcmf_fil_bsscfg_int_set(ifp, "wsec", wsec);
	if (err) {
		brcmf_err("set wsec error (%d)\n", err);
		goto done;
	}

done:
	brcmf_dbg(TRACE, "Exit\n");
	return err;
}

static s32
brcmf_cfg80211_del_key(struct wiphy *wiphy, struct net_device *ndev,
		    u8 key_idx, bool pairwise, const u8 *mac_addr)
{
	struct brcmf_if *ifp = netdev_priv(ndev);
	struct brcmf_wsec_key key;
	s32 err = 0;

	brcmf_dbg(TRACE, "Enter\n");
	if (!check_vif_up(ifp->vif))
		return -EIO;

	if (key_idx >= DOT11_MAX_DEFAULT_KEYS) {
		/* we ignore this key index in this case */
		brcmf_err("invalid key index (%d)\n", key_idx);
		return -EINVAL;
	}

	memset(&key, 0, sizeof(key));

	key.index = (u32) key_idx;
	key.flags = BRCMF_PRIMARY_KEY;
	key.algo = CRYPTO_ALGO_OFF;

	brcmf_dbg(CONN, "key index (%d)\n", key_idx);

	/* Set the new key/index */
	err = send_key_to_dongle(ndev, &key);

	brcmf_dbg(TRACE, "Exit\n");
	return err;
}

static s32
brcmf_cfg80211_get_key(struct wiphy *wiphy, struct net_device *ndev,
		    u8 key_idx, bool pairwise, const u8 *mac_addr, void *cookie,
		    void (*callback) (void *cookie, struct key_params * params))
{
	struct key_params params;
	struct brcmf_if *ifp = netdev_priv(ndev);
	struct brcmf_cfg80211_profile *profile = &ifp->vif->profile;
	struct brcmf_cfg80211_security *sec;
	s32 wsec;
	s32 err = 0;

	brcmf_dbg(TRACE, "Enter\n");
	brcmf_dbg(CONN, "key index (%d)\n", key_idx);
	if (!check_vif_up(ifp->vif))
		return -EIO;

	memset(&params, 0, sizeof(params));

	err = brcmf_fil_bsscfg_int_get(ifp, "wsec", &wsec);
	if (err) {
		brcmf_err("WLC_GET_WSEC error (%d)\n", err);
		/* Ignore this error, may happen during DISASSOC */
		err = -EAGAIN;
		goto done;
	}
	if (wsec & WEP_ENABLED) {
		sec = &profile->sec;
		if (sec->cipher_pairwise & WLAN_CIPHER_SUITE_WEP40) {
			params.cipher = WLAN_CIPHER_SUITE_WEP40;
			brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_WEP40\n");
		} else if (sec->cipher_pairwise & WLAN_CIPHER_SUITE_WEP104) {
			params.cipher = WLAN_CIPHER_SUITE_WEP104;
			brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_WEP104\n");
		}
	} else if (wsec & TKIP_ENABLED) {
		params.cipher = WLAN_CIPHER_SUITE_TKIP;
		brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_TKIP\n");
	} else if (wsec & AES_ENABLED) {
		params.cipher = WLAN_CIPHER_SUITE_AES_CMAC;
		brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_AES_CMAC\n");
	} else  {
		brcmf_err("Invalid algo (0x%x)\n", wsec);
		err = -EINVAL;
		goto done;
	}
	callback(cookie, &params);

done:
	brcmf_dbg(TRACE, "Exit\n");
	return err;
}

static s32
brcmf_cfg80211_config_default_mgmt_key(struct wiphy *wiphy,
				    struct net_device *ndev, u8 key_idx)
{
	brcmf_dbg(INFO, "Not supported\n");

	return -EOPNOTSUPP;
}

static s32
brcmf_cfg80211_get_station(struct wiphy *wiphy, struct net_device *ndev,
			   u8 *mac, struct station_info *sinfo)
{
	struct brcmf_if *ifp = netdev_priv(ndev);
	struct brcmf_cfg80211_profile *profile = &ifp->vif->profile;
	struct brcmf_scb_val_le scb_val;
	int rssi;
	s32 rate;
	s32 err = 0;
	u8 *bssid = profile->bssid;
	struct brcmf_sta_info_le sta_info_le;

	brcmf_dbg(TRACE, "Enter, MAC %pM\n", mac);
	if (!check_vif_up(ifp->vif))
		return -EIO;

	if (ifp->vif->mode == WL_MODE_AP) {
		memcpy(&sta_info_le, mac, ETH_ALEN);
		err = brcmf_fil_iovar_data_get(ifp, "sta_info",
					       &sta_info_le,
					       sizeof(sta_info_le));
		if (err < 0) {
			brcmf_err("GET STA INFO failed, %d\n", err);
			goto done;
		}
		sinfo->filled = STATION_INFO_INACTIVE_TIME;
		sinfo->inactive_time = le32_to_cpu(sta_info_le.idle) * 1000;
		if (le32_to_cpu(sta_info_le.flags) & BRCMF_STA_ASSOC) {
			sinfo->filled |= STATION_INFO_CONNECTED_TIME;
			sinfo->connected_time = le32_to_cpu(sta_info_le.in);
		}
		brcmf_dbg(TRACE, "STA idle time : %d ms, connected time :%d sec\n",
			  sinfo->inactive_time, sinfo->connected_time);
	} else if (ifp->vif->mode == WL_MODE_BSS) {
		if (memcmp(mac, bssid, ETH_ALEN)) {
			brcmf_err("Wrong Mac address cfg_mac-%pM wl_bssid-%pM\n",
				  mac, bssid);
			err = -ENOENT;
			goto done;
		}
		/* Report the current tx rate */
		err = brcmf_fil_cmd_int_get(ifp, BRCMF_C_GET_RATE, &rate);
		if (err) {
			brcmf_err("Could not get rate (%d)\n", err);
			goto done;
		} else {
			sinfo->filled |= STATION_INFO_TX_BITRATE;
			sinfo->txrate.legacy = rate * 5;
			brcmf_dbg(CONN, "Rate %d Mbps\n", rate / 2);
		}

		if (test_bit(BRCMF_VIF_STATUS_CONNECTED,
			     &ifp->vif->sme_state)) {
			memset(&scb_val, 0, sizeof(scb_val));
			err = brcmf_fil_cmd_data_get(ifp, BRCMF_C_GET_RSSI,
						     &scb_val, sizeof(scb_val));
			if (err) {
				brcmf_err("Could not get rssi (%d)\n", err);
				goto done;
			} else {
				rssi = le32_to_cpu(scb_val.val);
				sinfo->filled |= STATION_INFO_SIGNAL;
				sinfo->signal = rssi;
				brcmf_dbg(CONN, "RSSI %d dBm\n", rssi);
			}
		}
	} else
		err = -EPERM;
done:
	brcmf_dbg(TRACE, "Exit\n");
	return err;
}

static s32
brcmf_cfg80211_set_power_mgmt(struct wiphy *wiphy, struct net_device *ndev,
			   bool enabled, s32 timeout)
{
	s32 pm;
	s32 err = 0;
	struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
	struct brcmf_if *ifp = netdev_priv(ndev);

	brcmf_dbg(TRACE, "Enter\n");

	/*
	 * Powersave enable/disable request is coming from the
	 * cfg80211 even before the interface is up. In that
	 * scenario, driver will be storing the power save
	 * preference in cfg struct to apply this to
	 * FW later while initializing the dongle
	 */
	cfg->pwr_save = enabled;
	if (!check_vif_up(ifp->vif)) {

		brcmf_dbg(INFO, "Device is not ready, storing the value in cfg_info struct\n");
		goto done;
	}

	pm = enabled ? PM_FAST : PM_OFF;
	/* Do not enable the power save after assoc if it is a p2p interface */
	if (ifp->vif->wdev.iftype == NL80211_IFTYPE_P2P_CLIENT) {
		brcmf_dbg(INFO, "Do not enable power save for P2P clients\n");
		pm = PM_OFF;
	}
	brcmf_dbg(INFO, "power save %s\n", (pm ? "enabled" : "disabled"));

	err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_PM, pm);
	if (err) {
		if (err == -ENODEV)
			brcmf_err("net_device is not ready yet\n");
		else
			brcmf_err("error (%d)\n", err);
	}
done:
	brcmf_dbg(TRACE, "Exit\n");
	return err;
}

static s32 brcmf_inform_single_bss(struct brcmf_cfg80211_info *cfg,
				   struct brcmf_bss_info_le *bi)
{
	struct wiphy *wiphy = cfg_to_wiphy(cfg);
	struct ieee80211_channel *notify_channel;
	struct cfg80211_bss *bss;
	struct ieee80211_supported_band *band;
	struct brcmu_chan ch;
	s32 err = 0;
	u16 channel;
	u32 freq;
	u16 notify_capability;
	u16 notify_interval;
	u8 *notify_ie;
	size_t notify_ielen;
	s32 notify_signal;

	if (le32_to_cpu(bi->length) > WL_BSS_INFO_MAX) {
		brcmf_err("Bss info is larger than buffer. Discarding\n");
		return 0;
	}

	if (!bi->ctl_ch) {
		ch.chspec = le16_to_cpu(bi->chanspec);
		cfg->d11inf.decchspec(&ch);
		bi->ctl_ch = ch.chnum;
	}
	channel = bi->ctl_ch;

	if (channel <= CH_MAX_2G_CHANNEL)
		band = wiphy->bands[IEEE80211_BAND_2GHZ];
	else
		band = wiphy->bands[IEEE80211_BAND_5GHZ];

	freq = ieee80211_channel_to_frequency(channel, band->band);
	notify_channel = ieee80211_get_channel(wiphy, freq);

	notify_capability = le16_to_cpu(bi->capability);
	notify_interval = le16_to_cpu(bi->beacon_period);
	notify_ie = (u8 *)bi + le16_to_cpu(bi->ie_offset);
	notify_ielen = le32_to_cpu(bi->ie_length);
	notify_signal = (s16)le16_to_cpu(bi->RSSI) * 100;

	brcmf_dbg(CONN, "bssid: %pM\n", bi->BSSID);
	brcmf_dbg(CONN, "Channel: %d(%d)\n", channel, freq);
	brcmf_dbg(CONN, "Capability: %X\n", notify_capability);
	brcmf_dbg(CONN, "Beacon interval: %d\n", notify_interval);
	brcmf_dbg(CONN, "Signal: %d\n", notify_signal);

	bss = cfg80211_inform_bss(wiphy, notify_channel, (const u8 *)bi->BSSID,
		0, notify_capability, notify_interval, notify_ie,
		notify_ielen, notify_signal, GFP_KERNEL);

	if (!bss)
		return -ENOMEM;

	cfg80211_put_bss(wiphy, bss);

	return err;
}

static struct brcmf_bss_info_le *
next_bss_le(struct brcmf_scan_results *list, struct brcmf_bss_info_le *bss)
{
	if (bss == NULL)
		return list->bss_info_le;
	return (struct brcmf_bss_info_le *)((unsigned long)bss +
					    le32_to_cpu(bss->length));
}

static s32 brcmf_inform_bss(struct brcmf_cfg80211_info *cfg)
{
	struct brcmf_scan_results *bss_list;
	struct brcmf_bss_info_le *bi = NULL;	/* must be initialized */
	s32 err = 0;
	int i;

	bss_list = cfg->bss_list;
	if (bss_list->count != 0 &&
	    bss_list->version != BRCMF_BSS_INFO_VERSION) {
		brcmf_err("Version %d != WL_BSS_INFO_VERSION\n",
			  bss_list->version);
		return -EOPNOTSUPP;
	}
	brcmf_dbg(SCAN, "scanned AP count (%d)\n", bss_list->count);
	for (i = 0; i < bss_list->count; i++) {
		bi = next_bss_le(bss_list, bi);
		err = brcmf_inform_single_bss(cfg, bi);
		if (err)
			break;
	}
	return err;
}

static s32 wl_inform_ibss(struct brcmf_cfg80211_info *cfg,
			  struct net_device *ndev, const u8 *bssid)
{
	struct wiphy *wiphy = cfg_to_wiphy(cfg);
	struct ieee80211_channel *notify_channel;
	struct brcmf_bss_info_le *bi = NULL;
	struct ieee80211_supported_band *band;
	struct cfg80211_bss *bss;
	struct brcmu_chan ch;
	u8 *buf = NULL;
	s32 err = 0;
	u32 freq;
	u16 notify_capability;
	u16 notify_interval;
	u8 *notify_ie;
	size_t notify_ielen;
	s32 notify_signal;

	brcmf_dbg(TRACE, "Enter\n");

	buf = kzalloc(WL_BSS_INFO_MAX, GFP_KERNEL);
	if (buf == NULL) {
		err = -ENOMEM;
		goto CleanUp;
	}

	*(__le32 *)buf = cpu_to_le32(WL_BSS_INFO_MAX);

	err = brcmf_fil_cmd_data_get(netdev_priv(ndev), BRCMF_C_GET_BSS_INFO,
				     buf, WL_BSS_INFO_MAX);
	if (err) {
		brcmf_err("WLC_GET_BSS_INFO failed: %d\n", err);
		goto CleanUp;
	}

	bi = (struct brcmf_bss_info_le *)(buf + 4);

	ch.chspec = le16_to_cpu(bi->chanspec);
	cfg->d11inf.decchspec(&ch);

	if (ch.band == BRCMU_CHAN_BAND_2G)
		band = wiphy->bands[IEEE80211_BAND_2GHZ];
	else
		band = wiphy->bands[IEEE80211_BAND_5GHZ];

	freq = ieee80211_channel_to_frequency(ch.chnum, band->band);
	notify_channel = ieee80211_get_channel(wiphy, freq);

	notify_capability = le16_to_cpu(bi->capability);
	notify_interval = le16_to_cpu(bi->beacon_period);
	notify_ie = (u8 *)bi + le16_to_cpu(bi->ie_offset);
	notify_ielen = le32_to_cpu(bi->ie_length);
	notify_signal = (s16)le16_to_cpu(bi->RSSI) * 100;

	brcmf_dbg(CONN, "channel: %d(%d)\n", ch.chnum, freq);
	brcmf_dbg(CONN, "capability: %X\n", notify_capability);
	brcmf_dbg(CONN, "beacon interval: %d\n", notify_interval);
	brcmf_dbg(CONN, "signal: %d\n", notify_signal);

	bss = cfg80211_inform_bss(wiphy, notify_channel, bssid,
		0, notify_capability, notify_interval,
		notify_ie, notify_ielen, notify_signal, GFP_KERNEL);

	if (!bss) {
		err = -ENOMEM;
		goto CleanUp;
	}

	cfg80211_put_bss(wiphy, bss);

CleanUp:

	kfree(buf);

	brcmf_dbg(TRACE, "Exit\n");

	return err;
}

static bool brcmf_is_ibssmode(struct brcmf_cfg80211_vif *vif)
{
	return vif->mode == WL_MODE_IBSS;
}

static s32 brcmf_update_bss_info(struct brcmf_cfg80211_info *cfg,
				 struct brcmf_if *ifp)
{
	struct brcmf_cfg80211_profile *profile = ndev_to_prof(ifp->ndev);
	struct brcmf_bss_info_le *bi;
	struct brcmf_ssid *ssid;
	struct brcmf_tlv *tim;
	u16 beacon_interval;
	u8 dtim_period;
	size_t ie_len;
	u8 *ie;
	s32 err = 0;

	brcmf_dbg(TRACE, "Enter\n");
	if (brcmf_is_ibssmode(ifp->vif))
		return err;

	ssid = &profile->ssid;

	*(__le32 *)cfg->extra_buf = cpu_to_le32(WL_EXTRA_BUF_MAX);
	err = brcmf_fil_cmd_data_get(ifp, BRCMF_C_GET_BSS_INFO,
				     cfg->extra_buf, WL_EXTRA_BUF_MAX);
	if (err) {
		brcmf_err("Could not get bss info %d\n", err);
		goto update_bss_info_out;
	}

	bi = (struct brcmf_bss_info_le *)(cfg->extra_buf + 4);
	err = brcmf_inform_single_bss(cfg, bi);
	if (err)
		goto update_bss_info_out;

	ie = ((u8 *)bi) + le16_to_cpu(bi->ie_offset);
	ie_len = le32_to_cpu(bi->ie_length);
	beacon_interval = le16_to_cpu(bi->beacon_period);

	tim = brcmf_parse_tlvs(ie, ie_len, WLAN_EID_TIM);
	if (tim)
		dtim_period = tim->data[1];
	else {
		/*
		* active scan was done so we could not get dtim
		* information out of probe response.
		* so we speficially query dtim information to dongle.
		*/
		u32 var;
		err = brcmf_fil_iovar_int_get(ifp, "dtim_assoc", &var);
		if (err) {
			brcmf_err("wl dtim_assoc failed (%d)\n", err);
			goto update_bss_info_out;
		}
		dtim_period = (u8)var;
	}

update_bss_info_out:
	brcmf_dbg(TRACE, "Exit");
	return err;
}

void brcmf_abort_scanning(struct brcmf_cfg80211_info *cfg)
{
	struct escan_info *escan = &cfg->escan_info;

	set_bit(BRCMF_SCAN_STATUS_ABORT, &cfg->scan_status);
	if (cfg->scan_request) {
		escan->escan_state = WL_ESCAN_STATE_IDLE;
		brcmf_notify_escan_complete(cfg, escan->ifp, true, true);
	}
	clear_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status);
	clear_bit(BRCMF_SCAN_STATUS_ABORT, &cfg->scan_status);
}

static void brcmf_cfg80211_escan_timeout_worker(struct work_struct *work)
{
	struct brcmf_cfg80211_info *cfg =
			container_of(work, struct brcmf_cfg80211_info,
				     escan_timeout_work);

	brcmf_notify_escan_complete(cfg, cfg->escan_info.ifp, true, true);
}

static void brcmf_escan_timeout(unsigned long data)
{
	struct brcmf_cfg80211_info *cfg =
			(struct brcmf_cfg80211_info *)data;

	if (cfg->scan_request) {
		brcmf_err("timer expired\n");
		schedule_work(&cfg->escan_timeout_work);
	}
}

static s32
brcmf_compare_update_same_bss(struct brcmf_cfg80211_info *cfg,
			      struct brcmf_bss_info_le *bss,
			      struct brcmf_bss_info_le *bss_info_le)
{
	struct brcmu_chan ch_bss, ch_bss_info_le;

	ch_bss.chspec = le16_to_cpu(bss->chanspec);
	cfg->d11inf.decchspec(&ch_bss);
	ch_bss_info_le.chspec = le16_to_cpu(bss_info_le->chanspec);
	cfg->d11inf.decchspec(&ch_bss_info_le);

	if (!memcmp(&bss_info_le->BSSID, &bss->BSSID, ETH_ALEN) &&
		ch_bss.band == ch_bss_info_le.band &&
		bss_info_le->SSID_len == bss->SSID_len &&
		!memcmp(bss_info_le->SSID, bss->SSID, bss_info_le->SSID_len)) {
		if ((bss->flags & WLC_BSS_RSSI_ON_CHANNEL) ==
			(bss_info_le->flags & WLC_BSS_RSSI_ON_CHANNEL)) {
			s16 bss_rssi = le16_to_cpu(bss->RSSI);
			s16 bss_info_rssi = le16_to_cpu(bss_info_le->RSSI);

			/* preserve max RSSI if the measurements are
			* both on-channel or both off-channel
			*/
			if (bss_info_rssi > bss_rssi)
				bss->RSSI = bss_info_le->RSSI;
		} else if ((bss->flags & WLC_BSS_RSSI_ON_CHANNEL) &&
			(bss_info_le->flags & WLC_BSS_RSSI_ON_CHANNEL) == 0) {
			/* preserve the on-channel rssi measurement
			* if the new measurement is off channel
			*/
			bss->RSSI = bss_info_le->RSSI;
			bss->flags |= WLC_BSS_RSSI_ON_CHANNEL;
		}
		return 1;
	}
	return 0;
}

static s32
brcmf_cfg80211_escan_handler(struct brcmf_if *ifp,
			     const struct brcmf_event_msg *e, void *data)
{
	struct brcmf_cfg80211_info *cfg = ifp->drvr->config;
	s32 status;
	s32 err = 0;
	struct brcmf_escan_result_le *escan_result_le;
	struct brcmf_bss_info_le *bss_info_le;
	struct brcmf_bss_info_le *bss = NULL;
	u32 bi_length;
	struct brcmf_scan_results *list;
	u32 i;
	bool aborted;

	status = e->status;

	if (!test_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status)) {
		brcmf_err("scan not ready, bssidx=%d\n", ifp->bssidx);
		return -EPERM;
	}

	if (status == BRCMF_E_STATUS_PARTIAL) {
		brcmf_dbg(SCAN, "ESCAN Partial result\n");
		escan_result_le = (struct brcmf_escan_result_le *) data;
		if (!escan_result_le) {
			brcmf_err("Invalid escan result (NULL pointer)\n");
			goto exit;
		}
		if (le16_to_cpu(escan_result_le->bss_count) != 1) {
			brcmf_err("Invalid bss_count %d: ignoring\n",
				  escan_result_le->bss_count);
			goto exit;
		}
		bss_info_le = &escan_result_le->bss_info_le;

		if (brcmf_p2p_scan_finding_common_channel(cfg, bss_info_le))
			goto exit;

		if (!cfg->scan_request) {
			brcmf_dbg(SCAN, "result without cfg80211 request\n");
			goto exit;
		}

		bi_length = le32_to_cpu(bss_info_le->length);
		if (bi_length != (le32_to_cpu(escan_result_le->buflen) -
					WL_ESCAN_RESULTS_FIXED_SIZE)) {
			brcmf_err("Invalid bss_info length %d: ignoring\n",
				  bi_length);
			goto exit;
		}

		if (!(cfg_to_wiphy(cfg)->interface_modes &
					BIT(NL80211_IFTYPE_ADHOC))) {
			if (le16_to_cpu(bss_info_le->capability) &
						WLAN_CAPABILITY_IBSS) {
				brcmf_err("Ignoring IBSS result\n");
				goto exit;
			}
		}

		list = (struct brcmf_scan_results *)
				cfg->escan_info.escan_buf;
		if (bi_length > WL_ESCAN_BUF_SIZE - list->buflen) {
			brcmf_err("Buffer is too small: ignoring\n");
			goto exit;
		}

		for (i = 0; i < list->count; i++) {
			bss = bss ? (struct brcmf_bss_info_le *)
				((unsigned char *)bss +
				le32_to_cpu(bss->length)) : list->bss_info_le;
			if (brcmf_compare_update_same_bss(cfg, bss,
							  bss_info_le))
				goto exit;
		}
		memcpy(&(cfg->escan_info.escan_buf[list->buflen]),
			bss_info_le, bi_length);
		list->version = le32_to_cpu(bss_info_le->version);
		list->buflen += bi_length;
		list->count++;
	} else {
		cfg->escan_info.escan_state = WL_ESCAN_STATE_IDLE;
		if (brcmf_p2p_scan_finding_common_channel(cfg, NULL))
			goto exit;
		if (cfg->scan_request) {
			cfg->bss_list = (struct brcmf_scan_results *)
				cfg->escan_info.escan_buf;
			brcmf_inform_bss(cfg);
			aborted = status != BRCMF_E_STATUS_SUCCESS;
			brcmf_notify_escan_complete(cfg, ifp, aborted,
						    false);
		} else
			brcmf_dbg(SCAN, "Ignored scan complete result 0x%x\n",
				  status);
	}
exit:
	return err;
}

static void brcmf_init_escan(struct brcmf_cfg80211_info *cfg)
{
	brcmf_fweh_register(cfg->pub, BRCMF_E_ESCAN_RESULT,
			    brcmf_cfg80211_escan_handler);
	cfg->escan_info.escan_state = WL_ESCAN_STATE_IDLE;
	/* Init scan_timeout timer */
	init_timer(&cfg->escan_timeout);
	cfg->escan_timeout.data = (unsigned long) cfg;
	cfg->escan_timeout.function = brcmf_escan_timeout;
	INIT_WORK(&cfg->escan_timeout_work,
		  brcmf_cfg80211_escan_timeout_worker);
}

static __always_inline void brcmf_delay(u32 ms)
{
	if (ms < 1000 / HZ) {
		cond_resched();
		mdelay(ms);
	} else {
		msleep(ms);
	}
}

static s32 brcmf_cfg80211_resume(struct wiphy *wiphy)
{
	brcmf_dbg(TRACE, "Enter\n");

	return 0;
}

static s32 brcmf_cfg80211_suspend(struct wiphy *wiphy,
				  struct cfg80211_wowlan *wow)
{
	struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
	struct net_device *ndev = cfg_to_ndev(cfg);
	struct brcmf_cfg80211_vif *vif;

	brcmf_dbg(TRACE, "Enter\n");

	/*
	 * if the primary net_device is not READY there is nothing
	 * we can do but pray resume goes smoothly.
	 */
	vif = ((struct brcmf_if *)netdev_priv(ndev))->vif;
	if (!check_vif_up(vif))
		goto exit;

	list_for_each_entry(vif, &cfg->vif_list, list) {
		if (!test_bit(BRCMF_VIF_STATUS_READY, &vif->sme_state))
			continue;
		/*
		 * While going to suspend if associated with AP disassociate
		 * from AP to save power while system is in suspended state
		 */
		brcmf_link_down(vif);

		/* Make sure WPA_Supplicant receives all the event
		 * generated due to DISASSOC call to the fw to keep
		 * the state fw and WPA_Supplicant state consistent
		 */
		brcmf_delay(500);
	}

	/* end any scanning */
	if (test_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status))
		brcmf_abort_scanning(cfg);

	/* Turn off watchdog timer */
	brcmf_set_mpc(netdev_priv(ndev), 1);

exit:
	brcmf_dbg(TRACE, "Exit\n");
	/* clear any scanning activity */
	cfg->scan_status = 0;
	return 0;
}

static __used s32
brcmf_update_pmklist(struct net_device *ndev,
		     struct brcmf_cfg80211_pmk_list *pmk_list, s32 err)
{
	int i, j;
	int pmkid_len;

	pmkid_len = le32_to_cpu(pmk_list->pmkids.npmkid);

	brcmf_dbg(CONN, "No of elements %d\n", pmkid_len);
	for (i = 0; i < pmkid_len; i++) {
		brcmf_dbg(CONN, "PMKID[%d]: %pM =\n", i,
			  &pmk_list->pmkids.pmkid[i].BSSID);
		for (j = 0; j < WLAN_PMKID_LEN; j++)
			brcmf_dbg(CONN, "%02x\n",
				  pmk_list->pmkids.pmkid[i].PMKID[j]);
	}

	if (!err)
		brcmf_fil_iovar_data_set(netdev_priv(ndev), "pmkid_info",
					 (char *)pmk_list, sizeof(*pmk_list));

	return err;
}

static s32
brcmf_cfg80211_set_pmksa(struct wiphy *wiphy, struct net_device *ndev,
			 struct cfg80211_pmksa *pmksa)
{
	struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
	struct brcmf_if *ifp = netdev_priv(ndev);
	struct pmkid_list *pmkids = &cfg->pmk_list->pmkids;
	s32 err = 0;
	int i;
	int pmkid_len;

	brcmf_dbg(TRACE, "Enter\n");
	if (!check_vif_up(ifp->vif))
		return -EIO;

	pmkid_len = le32_to_cpu(pmkids->npmkid);
	for (i = 0; i < pmkid_len; i++)
		if (!memcmp(pmksa->bssid, pmkids->pmkid[i].BSSID, ETH_ALEN))
			break;
	if (i < WL_NUM_PMKIDS_MAX) {
		memcpy(pmkids->pmkid[i].BSSID, pmksa->bssid, ETH_ALEN);
		memcpy(pmkids->pmkid[i].PMKID, pmksa->pmkid, WLAN_PMKID_LEN);
		if (i == pmkid_len) {
			pmkid_len++;
			pmkids->npmkid = cpu_to_le32(pmkid_len);
		}
	} else
		err = -EINVAL;

	brcmf_dbg(CONN, "set_pmksa,IW_PMKSA_ADD - PMKID: %pM =\n",
		  pmkids->pmkid[pmkid_len].BSSID);
	for (i = 0; i < WLAN_PMKID_LEN; i++)
		brcmf_dbg(CONN, "%02x\n", pmkids->pmkid[pmkid_len].PMKID[i]);

	err = brcmf_update_pmklist(ndev, cfg->pmk_list, err);

	brcmf_dbg(TRACE, "Exit\n");
	return err;
}

static s32
brcmf_cfg80211_del_pmksa(struct wiphy *wiphy, struct net_device *ndev,
		      struct cfg80211_pmksa *pmksa)
{
	struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
	struct brcmf_if *ifp = netdev_priv(ndev);
	struct pmkid_list pmkid;
	s32 err = 0;
	int i, pmkid_len;

	brcmf_dbg(TRACE, "Enter\n");
	if (!check_vif_up(ifp->vif))
		return -EIO;

	memcpy(&pmkid.pmkid[0].BSSID, pmksa->bssid, ETH_ALEN);
	memcpy(&pmkid.pmkid[0].PMKID, pmksa->pmkid, WLAN_PMKID_LEN);

	brcmf_dbg(CONN, "del_pmksa,IW_PMKSA_REMOVE - PMKID: %pM =\n",
		  &pmkid.pmkid[0].BSSID);
	for (i = 0; i < WLAN_PMKID_LEN; i++)
		brcmf_dbg(CONN, "%02x\n", pmkid.pmkid[0].PMKID[i]);

	pmkid_len = le32_to_cpu(cfg->pmk_list->pmkids.npmkid);
	for (i = 0; i < pmkid_len; i++)
		if (!memcmp
		    (pmksa->bssid, &cfg->pmk_list->pmkids.pmkid[i].BSSID,
		     ETH_ALEN))
			break;

	if ((pmkid_len > 0)
	    && (i < pmkid_len)) {
		memset(&cfg->pmk_list->pmkids.pmkid[i], 0,
		       sizeof(struct pmkid));
		for (; i < (pmkid_len - 1); i++) {
			memcpy(&cfg->pmk_list->pmkids.pmkid[i].BSSID,
			       &cfg->pmk_list->pmkids.pmkid[i + 1].BSSID,
			       ETH_ALEN);
			memcpy(&cfg->pmk_list->pmkids.pmkid[i].PMKID,
			       &cfg->pmk_list->pmkids.pmkid[i + 1].PMKID,
			       WLAN_PMKID_LEN);
		}
		cfg->pmk_list->pmkids.npmkid = cpu_to_le32(pmkid_len - 1);
	} else
		err = -EINVAL;

	err = brcmf_update_pmklist(ndev, cfg->pmk_list, err);

	brcmf_dbg(TRACE, "Exit\n");
	return err;

}

static s32
brcmf_cfg80211_flush_pmksa(struct wiphy *wiphy, struct net_device *ndev)
{
	struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
	struct brcmf_if *ifp = netdev_priv(ndev);
	s32 err = 0;

	brcmf_dbg(TRACE, "Enter\n");
	if (!check_vif_up(ifp->vif))
		return -EIO;

	memset(cfg->pmk_list, 0, sizeof(*cfg->pmk_list));
	err = brcmf_update_pmklist(ndev, cfg->pmk_list, err);

	brcmf_dbg(TRACE, "Exit\n");
	return err;

}

/*
 * PFN result doesn't have all the info which are
 * required by the supplicant
 * (For e.g IEs) Do a target Escan so that sched scan results are reported
 * via wl_inform_single_bss in the required format. Escan does require the
 * scan request in the form of cfg80211_scan_request. For timebeing, create
 * cfg80211_scan_request one out of the received PNO event.
 */
static s32
brcmf_notify_sched_scan_results(struct brcmf_if *ifp,
				const struct brcmf_event_msg *e, void *data)
{
	struct brcmf_cfg80211_info *cfg = ifp->drvr->config;
	struct brcmf_pno_net_info_le *netinfo, *netinfo_start;
	struct cfg80211_scan_request *request = NULL;
	struct cfg80211_ssid *ssid = NULL;
	struct ieee80211_channel *channel = NULL;
	struct wiphy *wiphy = cfg_to_wiphy(cfg);
	int err = 0;
	int channel_req = 0;
	int band = 0;
	struct brcmf_pno_scanresults_le *pfn_result;
	u32 result_count;
	u32 status;

	brcmf_dbg(SCAN, "Enter\n");

	if (e->event_code == BRCMF_E_PFN_NET_LOST) {
		brcmf_dbg(SCAN, "PFN NET LOST event. Do Nothing\n");
		return 0;
	}

	pfn_result = (struct brcmf_pno_scanresults_le *)data;
	result_count = le32_to_cpu(pfn_result->count);
	status = le32_to_cpu(pfn_result->status);

	/*
	 * PFN event is limited to fit 512 bytes so we may get
	 * multiple NET_FOUND events. For now place a warning here.
	 */
	WARN_ON(status != BRCMF_PNO_SCAN_COMPLETE);
	brcmf_dbg(SCAN, "PFN NET FOUND event. count: %d\n", result_count);
	if (result_count > 0) {
		int i;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		ssid = kcalloc(result_count, sizeof(*ssid), GFP_KERNEL);
		channel = kcalloc(result_count, sizeof(*channel), GFP_KERNEL);
		if (!request || !ssid || !channel) {
			err = -ENOMEM;
			goto out_err;
		}

		request->wiphy = wiphy;
		data += sizeof(struct brcmf_pno_scanresults_le);
		netinfo_start = (struct brcmf_pno_net_info_le *)data;

		for (i = 0; i < result_count; i++) {
			netinfo = &netinfo_start[i];
			if (!netinfo) {
				brcmf_err("Invalid netinfo ptr. index: %d\n",
					  i);
				err = -EINVAL;
				goto out_err;
			}

			brcmf_dbg(SCAN, "SSID:%s Channel:%d\n",
				  netinfo->SSID, netinfo->channel);
			memcpy(ssid[i].ssid, netinfo->SSID, netinfo->SSID_len);
			ssid[i].ssid_len = netinfo->SSID_len;
			request->n_ssids++;

			channel_req = netinfo->channel;
			if (channel_req <= CH_MAX_2G_CHANNEL)
				band = NL80211_BAND_2GHZ;
			else
				band = NL80211_BAND_5GHZ;
			channel[i].center_freq =
				ieee80211_channel_to_frequency(channel_req,
							       band);
			channel[i].band = band;
			channel[i].flags |= IEEE80211_CHAN_NO_HT40;
			request->channels[i] = &channel[i];
			request->n_channels++;
		}

		/* assign parsed ssid array */
		if (request->n_ssids)
			request->ssids = &ssid[0];

		if (test_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status)) {
			/* Abort any on-going scan */
			brcmf_abort_scanning(cfg);
		}

		set_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status);
		err = brcmf_do_escan(cfg, wiphy, ifp, request);
		if (err) {
			clear_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status);
			goto out_err;
		}
		cfg->sched_escan = true;
		cfg->scan_request = request;
	} else {
		brcmf_err("FALSE PNO Event. (pfn_count == 0)\n");
		goto out_err;
	}

	kfree(ssid);
	kfree(channel);
	kfree(request);
	return 0;

out_err:
	kfree(ssid);
	kfree(channel);
	kfree(request);
	cfg80211_sched_scan_stopped(wiphy);
	return err;
}

static int brcmf_dev_pno_clean(struct net_device *ndev)
{
	int ret;

	/* Disable pfn */
	ret = brcmf_fil_iovar_int_set(netdev_priv(ndev), "pfn", 0);
	if (ret == 0) {
		/* clear pfn */
		ret = brcmf_fil_iovar_data_set(netdev_priv(ndev), "pfnclear",
					       NULL, 0);
	}
	if (ret < 0)
		brcmf_err("failed code %d\n", ret);

	return ret;
}

static int brcmf_dev_pno_config(struct net_device *ndev)
{
	struct brcmf_pno_param_le pfn_param;

	memset(&pfn_param, 0, sizeof(pfn_param));
	pfn_param.version = cpu_to_le32(BRCMF_PNO_VERSION);

	/* set extra pno params */
	pfn_param.flags = cpu_to_le16(1 << BRCMF_PNO_ENABLE_ADAPTSCAN_BIT);
	pfn_param.repeat = BRCMF_PNO_REPEAT;
	pfn_param.exp = BRCMF_PNO_FREQ_EXPO_MAX;

	/* set up pno scan fr */
	pfn_param.scan_freq = cpu_to_le32(BRCMF_PNO_TIME);

	return brcmf_fil_iovar_data_set(netdev_priv(ndev), "pfn_set",
					&pfn_param, sizeof(pfn_param));
}

static int
brcmf_cfg80211_sched_scan_start(struct wiphy *wiphy,
				struct net_device *ndev,
				struct cfg80211_sched_scan_request *request)
{
	struct brcmf_if *ifp = netdev_priv(ndev);
	struct brcmf_cfg80211_info *cfg = wiphy_priv(wiphy);
	struct brcmf_pno_net_param_le pfn;
	int i;
	int ret = 0;

	brcmf_dbg(SCAN, "Enter n_match_sets:%d n_ssids:%d\n",
		  request->n_match_sets, request->n_ssids);
	if (test_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status)) {
		brcmf_err("Scanning already: status (%lu)\n", cfg->scan_status);
		return -EAGAIN;
	}
	if (test_bit(BRCMF_SCAN_STATUS_SUPPRESS, &cfg->scan_status)) {
		brcmf_err("Scanning suppressed: status (%lu)\n",
			  cfg->scan_status);
		return -EAGAIN;
	}

	if (!request->n_ssids || !request->n_match_sets) {
		brcmf_err("Invalid sched scan req!! n_ssids:%d\n",
			  request->n_ssids);
		return -EINVAL;
	}

	if (request->n_ssids > 0) {
		for (i = 0; i < request->n_ssids; i++) {
			/* Active scan req for ssids */
			brcmf_dbg(SCAN, ">>> Active scan req for ssid (%s)\n",
				  request->ssids[i].ssid);

			/*
			 * match_set ssids is a supert set of n_ssid list,
			 * so we need not add these set seperately.
			 */
		}
	}

	if (request->n_match_sets > 0) {
		/* clean up everything */
		ret = brcmf_dev_pno_clean(ndev);
		if  (ret < 0) {
			brcmf_err("failed error=%d\n", ret);
			return ret;
		}

		/* configure pno */
		ret = brcmf_dev_pno_config(ndev);
		if (ret < 0) {
			brcmf_err("PNO setup failed!! ret=%d\n", ret);
			return -EINVAL;
		}

		/* configure each match set */
		for (i = 0; i < request->n_match_sets; i++) {
			struct cfg80211_ssid *ssid;
			u32 ssid_len;

			ssid = &request->match_sets[i].ssid;
			ssid_len = ssid->ssid_len;

			if (!ssid_len) {
				brcmf_err("skip broadcast ssid\n");
				continue;
			}
			pfn.auth = cpu_to_le32(WLAN_AUTH_OPEN);
			pfn.wpa_auth = cpu_to_le32(BRCMF_PNO_WPA_AUTH_ANY);
			pfn.wsec = cpu_to_le32(0);
			pfn.infra = cpu_to_le32(1);
			pfn.flags = cpu_to_le32(1 << BRCMF_PNO_HIDDEN_BIT);
			pfn.ssid.SSID_len = cpu_to_le32(ssid_len);
			memcpy(pfn.ssid.SSID, ssid->ssid, ssid_len);
			ret = brcmf_fil_iovar_data_set(ifp, "pfn_add", &pfn,
						       sizeof(pfn));
			brcmf_dbg(SCAN, ">>> PNO filter %s for ssid (%s)\n",
				  ret == 0 ? "set" : "failed", ssid->ssid);
		}
		/* Enable the PNO */
		if (brcmf_fil_iovar_int_set(ifp, "pfn", 1) < 0) {
			brcmf_err("PNO enable failed!! ret=%d\n", ret);
			return -EINVAL;
		}
	} else {
		return -EINVAL;
	}

	return 0;
}

static int brcmf_cfg80211_sched_scan_stop(struct wiphy *wiphy,
					  struct net_device *ndev)
{
	struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);

	brcmf_dbg(SCAN, "enter\n");
	brcmf_dev_pno_clean(ndev);
	if (cfg->sched_escan)
		brcmf_notify_escan_complete(cfg, netdev_priv(ndev), true, true);
	return 0;
}

#ifdef CONFIG_NL80211_TESTMODE
static int brcmf_cfg80211_testmode(struct wiphy *wiphy, void *data, int len)
{
	struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
	struct net_device *ndev = cfg_to_ndev(cfg);
	struct brcmf_dcmd *dcmd = data;
	struct sk_buff *reply;
	int ret;

	brcmf_dbg(TRACE, "cmd %x set %d buf %p len %d\n", dcmd->cmd, dcmd->set,
		  dcmd->buf, dcmd->len);

	if (dcmd->set)
		ret = brcmf_fil_cmd_data_set(netdev_priv(ndev), dcmd->cmd,
					     dcmd->buf, dcmd->len);
	else
		ret = brcmf_fil_cmd_data_get(netdev_priv(ndev), dcmd->cmd,
					     dcmd->buf, dcmd->len);
	if (ret == 0) {
		reply = cfg80211_testmode_alloc_reply_skb(wiphy, sizeof(*dcmd));
		nla_put(reply, NL80211_ATTR_TESTDATA, sizeof(*dcmd), dcmd);
		ret = cfg80211_testmode_reply(reply);
	}
	return ret;
}
#endif

static s32 brcmf_configure_opensecurity(struct brcmf_if *ifp)
{
	s32 err;

	/* set auth */
	err = brcmf_fil_bsscfg_int_set(ifp, "auth", 0);
	if (err < 0) {
		brcmf_err("auth error %d\n", err);
		return err;
	}
	/* set wsec */
	err = brcmf_fil_bsscfg_int_set(ifp, "wsec", 0);
	if (err < 0) {
		brcmf_err("wsec error %d\n", err);
		return err;
	}
	/* set upper-layer auth */
	err = brcmf_fil_bsscfg_int_set(ifp, "wpa_auth", WPA_AUTH_NONE);
	if (err < 0) {
		brcmf_err("wpa_auth error %d\n", err);
		return err;
	}

	return 0;
}

static bool brcmf_valid_wpa_oui(u8 *oui, bool is_rsn_ie)
{
	if (is_rsn_ie)
		return (memcmp(oui, RSN_OUI, TLV_OUI_LEN) == 0);

	return (memcmp(oui, WPA_OUI, TLV_OUI_LEN) == 0);
}

static s32
brcmf_configure_wpaie(struct net_device *ndev, struct brcmf_vs_tlv *wpa_ie,
		     bool is_rsn_ie)
{
	struct brcmf_if *ifp = netdev_priv(ndev);
	u32 auth = 0; /* d11 open authentication */
	u16 count;
	s32 err = 0;
	s32 len = 0;
	u32 i;
	u32 wsec;
	u32 pval = 0;
	u32 gval = 0;
	u32 wpa_auth = 0;
	u32 offset;
	u8 *data;
	u16 rsn_cap;
	u32 wme_bss_disable;

	brcmf_dbg(TRACE, "Enter\n");
	if (wpa_ie == NULL)
		goto exit;

	len = wpa_ie->len + TLV_HDR_LEN;
	data = (u8 *)wpa_ie;
	offset = TLV_HDR_LEN;
	if (!is_rsn_ie)
		offset += VS_IE_FIXED_HDR_LEN;
	else
		offset += WPA_IE_VERSION_LEN;

	/* check for multicast cipher suite */
	if (offset + WPA_IE_MIN_OUI_LEN > len) {
		err = -EINVAL;
		brcmf_err("no multicast cipher suite\n");
		goto exit;
	}

	if (!brcmf_valid_wpa_oui(&data[offset], is_rsn_ie)) {
		err = -EINVAL;
		brcmf_err("ivalid OUI\n");
		goto exit;
	}
	offset += TLV_OUI_LEN;

	/* pick up multicast cipher */
	switch (data[offset]) {
	case WPA_CIPHER_NONE:
		gval = 0;
		break;
	case WPA_CIPHER_WEP_40:
	case WPA_CIPHER_WEP_104:
		gval = WEP_ENABLED;
		break;
	case WPA_CIPHER_TKIP:
		gval = TKIP_ENABLED;
		break;
	case WPA_CIPHER_AES_CCM:
		gval = AES_ENABLED;
		break;
	default:
		err = -EINVAL;
		brcmf_err("Invalid multi cast cipher info\n");
		goto exit;
	}

	offset++;
	/* walk thru unicast cipher list and pick up what we recognize */
	count = data[offset] + (data[offset + 1] << 8);
	offset += WPA_IE_SUITE_COUNT_LEN;
	/* Check for unicast suite(s) */
	if (offset + (WPA_IE_MIN_OUI_LEN * count) > len) {
		err = -EINVAL;
		brcmf_err("no unicast cipher suite\n");
		goto exit;
	}
	for (i = 0; i < count; i++) {
		if (!brcmf_valid_wpa_oui(&data[offset], is_rsn_ie)) {
			err = -EINVAL;
			brcmf_err("ivalid OUI\n");
			goto exit;
		}
		offset += TLV_OUI_LEN;
		switch (data[offset]) {
		case WPA_CIPHER_NONE:
			break;
		case WPA_CIPHER_WEP_40:
		case WPA_CIPHER_WEP_104:
			pval |= WEP_ENABLED;
			break;
		case WPA_CIPHER_TKIP:
			pval |= TKIP_ENABLED;
			break;
		case WPA_CIPHER_AES_CCM:
			pval |= AES_ENABLED;
			break;
		default:
			brcmf_err("Ivalid unicast security info\n");
		}
		offset++;
	}
	/* walk thru auth management suite list and pick up what we recognize */
	count = data[offset] + (data[offset + 1] << 8);
	offset += WPA_IE_SUITE_COUNT_LEN;
	/* Check for auth key management suite(s) */
	if (offset + (WPA_IE_MIN_OUI_LEN * count) > len) {
		err = -EINVAL;
		brcmf_err("no auth key mgmt suite\n");
		goto exit;
	}
	for (i = 0; i < count; i++) {
		if (!brcmf_valid_wpa_oui(&data[offset], is_rsn_ie)) {
			err = -EINVAL;
			brcmf_err("ivalid OUI\n");
			goto exit;
		}
		offset += TLV_OUI_LEN;
		switch (data[offset]) {
		case RSN_AKM_NONE:
			brcmf_dbg(TRACE, "RSN_AKM_NONE\n");
			wpa_auth |= WPA_AUTH_NONE;
			break;
		case RSN_AKM_UNSPECIFIED:
			brcmf_dbg(TRACE, "RSN_AKM_UNSPECIFIED\n");
			is_rsn_ie ? (wpa_auth |= WPA2_AUTH_UNSPECIFIED) :
				    (wpa_auth |= WPA_AUTH_UNSPECIFIED);
			break;
		case RSN_AKM_PSK:
			brcmf_dbg(TRACE, "RSN_AKM_PSK\n");
			is_rsn_ie ? (wpa_auth |= WPA2_AUTH_PSK) :
				    (wpa_auth |= WPA_AUTH_PSK);
			break;
		default:
			brcmf_err("Ivalid key mgmt info\n");
		}
		offset++;
	}

	if (is_rsn_ie) {
		wme_bss_disable = 1;
		if ((offset + RSN_CAP_LEN) <= len) {
			rsn_cap = data[offset] + (data[offset + 1] << 8);
			if (rsn_cap & RSN_CAP_PTK_REPLAY_CNTR_MASK)
				wme_bss_disable = 0;
		}
		/* set wme_bss_disable to sync RSN Capabilities */
		err = brcmf_fil_bsscfg_int_set(ifp, "wme_bss_disable",
					       wme_bss_disable);
		if (err < 0) {
			brcmf_err("wme_bss_disable error %d\n", err);
			goto exit;
		}
	}
	/* FOR WPS , set SES_OW_ENABLED */
	wsec = (pval | gval | SES_OW_ENABLED);

	/* set auth */
	err = brcmf_fil_bsscfg_int_set(ifp, "auth", auth);
	if (err < 0) {
		brcmf_err("auth error %d\n", err);
		goto exit;
	}
	/* set wsec */
	err = brcmf_fil_bsscfg_int_set(ifp, "wsec", wsec);
	if (err < 0) {
		brcmf_err("wsec error %d\n", err);
		goto exit;
	}
	/* set upper-layer auth */
	err = brcmf_fil_bsscfg_int_set(ifp, "wpa_auth", wpa_auth);
	if (err < 0) {
		brcmf_err("wpa_auth error %d\n", err);
		goto exit;
	}

exit:
	return err;
}

static s32
brcmf_parse_vndr_ies(const u8 *vndr_ie_buf, u32 vndr_ie_len,
		     struct parsed_vndr_ies *vndr_ies)
{
	s32 err = 0;
	struct brcmf_vs_tlv *vndrie;
	struct brcmf_tlv *ie;
	struct parsed_vndr_ie_info *parsed_info;
	s32 remaining_len;

	remaining_len = (s32)vndr_ie_len;
	memset(vndr_ies, 0, sizeof(*vndr_ies));

	ie = (struct brcmf_tlv *)vndr_ie_buf;
	while (ie) {
		if (ie->id != WLAN_EID_VENDOR_SPECIFIC)
			goto next;
		vndrie = (struct brcmf_vs_tlv *)ie;
		/* len should be bigger than OUI length + one */
		if (vndrie->len < (VS_IE_FIXED_HDR_LEN - TLV_HDR_LEN + 1)) {
			brcmf_err("invalid vndr ie. length is too small %d\n",
				  vndrie->len);
			goto next;
		}
		/* if wpa or wme ie, do not add ie */
		if (!memcmp(vndrie->oui, (u8 *)WPA_OUI, TLV_OUI_LEN) &&
		    ((vndrie->oui_type == WPA_OUI_TYPE) ||
		    (vndrie->oui_type == WME_OUI_TYPE))) {
			brcmf_dbg(TRACE, "Found WPA/WME oui. Do not add it\n");
			goto next;
		}

		parsed_info = &vndr_ies->ie_info[vndr_ies->count];

		/* save vndr ie information */
		parsed_info->ie_ptr = (char *)vndrie;
		parsed_info->ie_len = vndrie->len + TLV_HDR_LEN;
		memcpy(&parsed_info->vndrie, vndrie, sizeof(*vndrie));

		vndr_ies->count++;

		brcmf_dbg(TRACE, "** OUI %02x %02x %02x, type 0x%02x\n",
			  parsed_info->vndrie.oui[0],
			  parsed_info->vndrie.oui[1],
			  parsed_info->vndrie.oui[2],
			  parsed_info->vndrie.oui_type);

		if (vndr_ies->count >= VNDR_IE_PARSE_LIMIT)
			break;
next:
		remaining_len -= (ie->len + TLV_HDR_LEN);
		if (remaining_len <= TLV_HDR_LEN)
			ie = NULL;
		else
			ie = (struct brcmf_tlv *)(((u8 *)ie) + ie->len +
				TLV_HDR_LEN);
	}
	return err;
}

static u32
brcmf_vndr_ie(u8 *iebuf, s32 pktflag, u8 *ie_ptr, u32 ie_len, s8 *add_del_cmd)
{

	__le32 iecount_le;
	__le32 pktflag_le;

	strncpy(iebuf, add_del_cmd, VNDR_IE_CMD_LEN - 1);
	iebuf[VNDR_IE_CMD_LEN - 1] = '\0';

	iecount_le = cpu_to_le32(1);
	memcpy(&iebuf[VNDR_IE_COUNT_OFFSET], &iecount_le, sizeof(iecount_le));

	pktflag_le = cpu_to_le32(pktflag);
	memcpy(&iebuf[VNDR_IE_PKTFLAG_OFFSET], &pktflag_le, sizeof(pktflag_le));

	memcpy(&iebuf[VNDR_IE_VSIE_OFFSET], ie_ptr, ie_len);

	return ie_len + VNDR_IE_HDR_SIZE;
}

s32 brcmf_vif_set_mgmt_ie(struct brcmf_cfg80211_vif *vif, s32 pktflag,
			  const u8 *vndr_ie_buf, u32 vndr_ie_len)
{
	struct brcmf_if *ifp;
	struct vif_saved_ie *saved_ie;
	s32 err = 0;
	u8  *iovar_ie_buf;
	u8  *curr_ie_buf;
	u8  *mgmt_ie_buf = NULL;
	int mgmt_ie_buf_len;
	u32 *mgmt_ie_len;
	u32 del_add_ie_buf_len = 0;
	u32 total_ie_buf_len = 0;
	u32 parsed_ie_buf_len = 0;
	struct parsed_vndr_ies old_vndr_ies;
	struct parsed_vndr_ies new_vndr_ies;
	struct parsed_vndr_ie_info *vndrie_info;
	s32 i;
	u8 *ptr;
	int remained_buf_len;

	if (!vif)
		return -ENODEV;
	ifp = vif->ifp;
	saved_ie = &vif->saved_ie;

	brcmf_dbg(TRACE, "bssidx %d, pktflag : 0x%02X\n", ifp->bssidx, pktflag);
	iovar_ie_buf = kzalloc(WL_EXTRA_BUF_MAX, GFP_KERNEL);
	if (!iovar_ie_buf)
		return -ENOMEM;
	curr_ie_buf = iovar_ie_buf;
	switch (pktflag) {
	case BRCMF_VNDR_IE_PRBREQ_FLAG:
		mgmt_ie_buf = saved_ie->probe_req_ie;
		mgmt_ie_len = &saved_ie->probe_req_ie_len;
		mgmt_ie_buf_len = sizeof(saved_ie->probe_req_ie);
		break;
	case BRCMF_VNDR_IE_PRBRSP_FLAG:
		mgmt_ie_buf = saved_ie->probe_res_ie;
		mgmt_ie_len = &saved_ie->probe_res_ie_len;
		mgmt_ie_buf_len = sizeof(saved_ie->probe_res_ie);
		break;
	case BRCMF_VNDR_IE_BEACON_FLAG:
		mgmt_ie_buf = saved_ie->beacon_ie;
		mgmt_ie_len = &saved_ie->beacon_ie_len;
		mgmt_ie_buf_len = sizeof(saved_ie->beacon_ie);
		break;
	case BRCMF_VNDR_IE_ASSOCREQ_FLAG:
		mgmt_ie_buf = saved_ie->assoc_req_ie;
		mgmt_ie_len = &saved_ie->assoc_req_ie_len;
		mgmt_ie_buf_len = sizeof(saved_ie->assoc_req_ie);
		break;
	default:
		err = -EPERM;
		brcmf_err("not suitable type\n");
		goto exit;
	}

	if (vndr_ie_len > mgmt_ie_buf_len) {
		err = -ENOMEM;
		brcmf_err("extra IE size too big\n");
		goto exit;
	}

	/* parse and save new vndr_ie in curr_ie_buff before comparing it */
	if (vndr_ie_buf && vndr_ie_len && curr_ie_buf) {
		ptr = curr_ie_buf;
		brcmf_parse_vndr_ies(vndr_ie_buf, vndr_ie_len, &new_vndr_ies);
		for (i = 0; i < new_vndr_ies.count; i++) {
			vndrie_info = &new_vndr_ies.ie_info[i];
			memcpy(ptr + parsed_ie_buf_len, vndrie_info->ie_ptr,
			       vndrie_info->ie_len);
			parsed_ie_buf_len += vndrie_info->ie_len;
		}
	}

	if (mgmt_ie_buf && *mgmt_ie_len) {
		if (parsed_ie_buf_len && (parsed_ie_buf_len == *mgmt_ie_len) &&
		    (memcmp(mgmt_ie_buf, curr_ie_buf,
			    parsed_ie_buf_len) == 0)) {
			brcmf_dbg(TRACE, "Previous mgmt IE equals to current IE\n");
			goto exit;
		}

		/* parse old vndr_ie */
		brcmf_parse_vndr_ies(mgmt_ie_buf, *mgmt_ie_len, &old_vndr_ies);

		/* make a command to delete old ie */
		for (i = 0; i < old_vndr_ies.count; i++) {
			vndrie_info = &old_vndr_ies.ie_info[i];

			brcmf_dbg(TRACE, "DEL ID : %d, Len: %d , OUI:%02x:%02x:%02x\n",
				  vndrie_info->vndrie.id,
				  vndrie_info->vndrie.len,
				  vndrie_info->vndrie.oui[0],
				  vndrie_info->vndrie.oui[1],
				  vndrie_info->vndrie.oui[2]);

			del_add_ie_buf_len = brcmf_vndr_ie(curr_ie_buf, pktflag,
							   vndrie_info->ie_ptr,
							   vndrie_info->ie_len,
							   "del");
			curr_ie_buf += del_add_ie_buf_len;
			total_ie_buf_len += del_add_ie_buf_len;
		}
	}

	*mgmt_ie_len = 0;
	/* Add if there is any extra IE */
	if (mgmt_ie_buf && parsed_ie_buf_len) {
		ptr = mgmt_ie_buf;

		remained_buf_len = mgmt_ie_buf_len;

		/* make a command to add new ie */
		for (i = 0; i < new_vndr_ies.count; i++) {
			vndrie_info = &new_vndr_ies.ie_info[i];

			/* verify remained buf size before copy data */
			if (remained_buf_len < (vndrie_info->vndrie.len +
							VNDR_IE_VSIE_OFFSET)) {
				brcmf_err("no space in mgmt_ie_buf: len left %d",
					  remained_buf_len);
				break;
			}
			remained_buf_len -= (vndrie_info->ie_len +
					     VNDR_IE_VSIE_OFFSET);

			brcmf_dbg(TRACE, "ADDED ID : %d, Len: %d, OUI:%02x:%02x:%02x\n",
				  vndrie_info->vndrie.id,
				  vndrie_info->vndrie.len,
				  vndrie_info->vndrie.oui[0],
				  vndrie_info->vndrie.oui[1],
				  vndrie_info->vndrie.oui[2]);

			del_add_ie_buf_len = brcmf_vndr_ie(curr_ie_buf, pktflag,
							   vndrie_info->ie_ptr,
							   vndrie_info->ie_len,
							   "add");

			/* save the parsed IE in wl struct */
			memcpy(ptr + (*mgmt_ie_len), vndrie_info->ie_ptr,
			       vndrie_info->ie_len);
			*mgmt_ie_len += vndrie_info->ie_len;

			curr_ie_buf += del_add_ie_buf_len;
			total_ie_buf_len += del_add_ie_buf_len;
		}
	}
	if (total_ie_buf_len) {
		err  = brcmf_fil_bsscfg_data_set(ifp, "vndr_ie", iovar_ie_buf,
						 total_ie_buf_len);
		if (err)
			brcmf_err("vndr ie set error : %d\n", err);
	}

exit:
	kfree(iovar_ie_buf);
	return err;
}

s32 brcmf_vif_clear_mgmt_ies(struct brcmf_cfg80211_vif *vif)
{
	s32 pktflags[] = {
		BRCMF_VNDR_IE_PRBREQ_FLAG,
		BRCMF_VNDR_IE_PRBRSP_FLAG,
		BRCMF_VNDR_IE_BEACON_FLAG
	};
	int i;

	for (i = 0; i < ARRAY_SIZE(pktflags); i++)
		brcmf_vif_set_mgmt_ie(vif, pktflags[i], NULL, 0);

	memset(&vif->saved_ie, 0, sizeof(vif->saved_ie));
	return 0;
}

static s32
brcmf_config_ap_mgmt_ie(struct brcmf_cfg80211_vif *vif,
			struct cfg80211_beacon_data *beacon)
{
	s32 err;

	/* Set Beacon IEs to FW */
	err = brcmf_vif_set_mgmt_ie(vif, BRCMF_VNDR_IE_BEACON_FLAG,
				    beacon->tail, beacon->tail_len);
	if (err) {
		brcmf_err("Set Beacon IE Failed\n");
		return err;
	}
	brcmf_dbg(TRACE, "Applied Vndr IEs for Beacon\n");

	/* Set Probe Response IEs to FW */
	err = brcmf_vif_set_mgmt_ie(vif, BRCMF_VNDR_IE_PRBRSP_FLAG,
				    beacon->proberesp_ies,
				    beacon->proberesp_ies_len);
	if (err)
		brcmf_err("Set Probe Resp IE Failed\n");
	else
		brcmf_dbg(TRACE, "Applied Vndr IEs for Probe Resp\n");

	return err;
}

static s32
brcmf_cfg80211_set_channel(struct brcmf_cfg80211_info *cfg,
			   struct brcmf_if *ifp,
			   struct ieee80211_channel *channel)
{
	u16 chanspec;
	s32 err;

	brcmf_dbg(TRACE, "band=%d, center_freq=%d\n", channel->band,
		  channel->center_freq);

	chanspec = channel_to_chanspec(&cfg->d11inf, channel);
	err = brcmf_fil_iovar_int_set(ifp, "chanspec", chanspec);

	return err;
}

static s32
brcmf_cfg80211_start_ap(struct wiphy *wiphy, struct net_device *ndev,
			struct cfg80211_ap_settings *settings)
{
	s32 ie_offset;
	struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
	struct brcmf_if *ifp = netdev_priv(ndev);
	struct brcmf_tlv *ssid_ie;
	struct brcmf_ssid_le ssid_le;
	s32 err = -EPERM;
	struct brcmf_tlv *rsn_ie;
	struct brcmf_vs_tlv *wpa_ie;
	struct brcmf_join_params join_params;
	enum nl80211_iftype dev_role;
	struct brcmf_fil_bss_enable_le bss_enable;

	brcmf_dbg(TRACE, "channel_type=%d, beacon_interval=%d, dtim_period=%d,\n",
		  cfg80211_get_chandef_type(&settings->chandef),
		  settings->beacon_interval,
		  settings->dtim_period);
	brcmf_dbg(TRACE, "ssid=%s(%zu), auth_type=%d, inactivity_timeout=%d\n",
		  settings->ssid, settings->ssid_len, settings->auth_type,
		  settings->inactivity_timeout);

	dev_role = ifp->vif->wdev.iftype;

	memset(&ssid_le, 0, sizeof(ssid_le));
	if (settings->ssid == NULL || settings->ssid_len == 0) {
		ie_offset = DOT11_MGMT_HDR_LEN + DOT11_BCN_PRB_FIXED_LEN;
		ssid_ie = brcmf_parse_tlvs(
				(u8 *)&settings->beacon.head[ie_offset],
				settings->beacon.head_len - ie_offset,
				WLAN_EID_SSID);
		if (!ssid_ie)
			return -EINVAL;

		memcpy(ssid_le.SSID, ssid_ie->data, ssid_ie->len);
		ssid_le.SSID_len = cpu_to_le32(ssid_ie->len);
		brcmf_dbg(TRACE, "SSID is (%s) in Head\n", ssid_le.SSID);
	} else {
		memcpy(ssid_le.SSID, settings->ssid, settings->ssid_len);
		ssid_le.SSID_len = cpu_to_le32((u32)settings->ssid_len);
	}

	brcmf_set_mpc(ifp, 0);
	brcmf_configure_arp_offload(ifp, false);

	/* find the RSN_IE */
	rsn_ie = brcmf_parse_tlvs((u8 *)settings->beacon.tail,
				  settings->beacon.tail_len, WLAN_EID_RSN);

	/* find the WPA_IE */
	wpa_ie = brcmf_find_wpaie((u8 *)settings->beacon.tail,
				  settings->beacon.tail_len);

	if ((wpa_ie != NULL || rsn_ie != NULL)) {
		brcmf_dbg(TRACE, "WPA(2) IE is found\n");
		if (wpa_ie != NULL) {
			/* WPA IE */
			err = brcmf_configure_wpaie(ndev, wpa_ie, false);
			if (err < 0)
				goto exit;
		} else {
			/* RSN IE */
			err = brcmf_configure_wpaie(ndev,
				(struct brcmf_vs_tlv *)rsn_ie, true);
			if (err < 0)
				goto exit;
		}
	} else {
		brcmf_dbg(TRACE, "No WPA(2) IEs found\n");
		brcmf_configure_opensecurity(ifp);
	}

	brcmf_config_ap_mgmt_ie(ifp->vif, &settings->beacon);

	err = brcmf_cfg80211_set_channel(cfg, ifp, settings->chandef.chan);
	if (err < 0) {
		brcmf_err("Set Channel failed, %d\n", err);
		goto exit;
	}

	if (settings->beacon_interval) {
		err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_BCNPRD,
					    settings->beacon_interval);
		if (err < 0) {
			brcmf_err("Beacon Interval Set Error, %d\n", err);
			goto exit;
		}
	}
	if (settings->dtim_period) {
		err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_DTIMPRD,
					    settings->dtim_period);
		if (err < 0) {
			brcmf_err("DTIM Interval Set Error, %d\n", err);
			goto exit;
		}
	}

	if (dev_role == NL80211_IFTYPE_AP) {
		err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_DOWN, 1);
		if (err < 0) {
			brcmf_err("BRCMF_C_DOWN error %d\n", err);
			goto exit;
		}
		brcmf_fil_iovar_int_set(ifp, "apsta", 0);
	}

	err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_INFRA, 1);
	if (err < 0) {
		brcmf_err("SET INFRA error %d\n", err);
		goto exit;
	}
	if (dev_role == NL80211_IFTYPE_AP) {
		err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_AP, 1);
		if (err < 0) {
			brcmf_err("setting AP mode failed %d\n", err);
			goto exit;
		}
		err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_UP, 1);
		if (err < 0) {
			brcmf_err("BRCMF_C_UP error (%d)\n", err);
			goto exit;
		}

		memset(&join_params, 0, sizeof(join_params));
		/* join parameters starts with ssid */
		memcpy(&join_params.ssid_le, &ssid_le, sizeof(ssid_le));
		/* create softap */
		err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_SSID,
					     &join_params, sizeof(join_params));
		if (err < 0) {
			brcmf_err("SET SSID error (%d)\n", err);
			goto exit;
		}
		brcmf_dbg(TRACE, "AP mode configuration complete\n");
	} else {
		err = brcmf_fil_bsscfg_data_set(ifp, "ssid", &ssid_le,
						sizeof(ssid_le));
		if (err < 0) {
			brcmf_err("setting ssid failed %d\n", err);
			goto exit;
		}
		bss_enable.bsscfg_idx = cpu_to_le32(ifp->bssidx);
		bss_enable.enable = cpu_to_le32(1);
		err = brcmf_fil_iovar_data_set(ifp, "bss", &bss_enable,
					       sizeof(bss_enable));
		if (err < 0) {
			brcmf_err("bss_enable config failed %d\n", err);
			goto exit;
		}

		brcmf_dbg(TRACE, "GO mode configuration complete\n");
	}
	clear_bit(BRCMF_VIF_STATUS_AP_CREATING, &ifp->vif->sme_state);
	set_bit(BRCMF_VIF_STATUS_AP_CREATED, &ifp->vif->sme_state);

exit:
	if (err) {
		brcmf_set_mpc(ifp, 1);
		brcmf_configure_arp_offload(ifp, true);
	}
	return err;
}

static int brcmf_cfg80211_stop_ap(struct wiphy *wiphy, struct net_device *ndev)
{
	struct brcmf_if *ifp = netdev_priv(ndev);
	s32 err;
	struct brcmf_fil_bss_enable_le bss_enable;
	struct brcmf_join_params join_params;

	brcmf_dbg(TRACE, "Enter\n");

	if (ifp->vif->wdev.iftype == NL80211_IFTYPE_AP) {
		/* Due to most likely deauths outstanding we sleep */
		/* first to make sure they get processed by fw. */
		msleep(400);

		memset(&join_params, 0, sizeof(join_params));
		err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_SSID,
					     &join_params, sizeof(join_params));
		if (err < 0)
			brcmf_err("SET SSID error (%d)\n", err);
		err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_UP, 0);
		if (err < 0)
			brcmf_err("BRCMF_C_UP error %d\n", err);
		err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_AP, 0);
		if (err < 0)
			brcmf_err("setting AP mode failed %d\n", err);
		err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_INFRA, 0);
		if (err < 0)
			brcmf_err("setting INFRA mode failed %d\n", err);
	} else {
		bss_enable.bsscfg_idx = cpu_to_le32(ifp->bssidx);
		bss_enable.enable = cpu_to_le32(0);
		err = brcmf_fil_iovar_data_set(ifp, "bss", &bss_enable,
					       sizeof(bss_enable));
		if (err < 0)
			brcmf_err("bss_enable config failed %d\n", err);
	}
	brcmf_set_mpc(ifp, 1);
	brcmf_configure_arp_offload(ifp, true);
	set_bit(BRCMF_VIF_STATUS_AP_CREATING, &ifp->vif->sme_state);
	clear_bit(BRCMF_VIF_STATUS_AP_CREATED, &ifp->vif->sme_state);

	return err;
}

static s32
brcmf_cfg80211_change_beacon(struct wiphy *wiphy, struct net_device *ndev,
			     struct cfg80211_beacon_data *info)
{
	struct brcmf_if *ifp = netdev_priv(ndev);
	s32 err;

	brcmf_dbg(TRACE, "Enter\n");

	err = brcmf_config_ap_mgmt_ie(ifp->vif, info);

	return err;
}

static int
brcmf_cfg80211_del_station(struct wiphy *wiphy, struct net_device *ndev,
			   u8 *mac)
{
	struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
	struct brcmf_scb_val_le scbval;
	struct brcmf_if *ifp = netdev_priv(ndev);
	s32 err;

	if (!mac)
		return -EFAULT;

	brcmf_dbg(TRACE, "Enter %pM\n", mac);

	if (ifp->vif == cfg->p2p.bss_idx[P2PAPI_BSSCFG_DEVICE].vif)
		ifp = cfg->p2p.bss_idx[P2PAPI_BSSCFG_PRIMARY].vif->ifp;
	if (!check_vif_up(ifp->vif))
		return -EIO;

	memcpy(&scbval.ea, mac, ETH_ALEN);
	scbval.val = cpu_to_le32(WLAN_REASON_DEAUTH_LEAVING);
	err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SCB_DEAUTHENTICATE_FOR_REASON,
				     &scbval, sizeof(scbval));
	if (err)
		brcmf_err("SCB_DEAUTHENTICATE_FOR_REASON failed %d\n", err);

	brcmf_dbg(TRACE, "Exit\n");
	return err;
}


static void
brcmf_cfg80211_mgmt_frame_register(struct wiphy *wiphy,
				   struct wireless_dev *wdev,
				   u16 frame_type, bool reg)
{
	struct brcmf_cfg80211_vif *vif;
	u16 mgmt_type;

	brcmf_dbg(TRACE, "Enter, frame_type %04x, reg=%d\n", frame_type, reg);

	mgmt_type = (frame_type & IEEE80211_FCTL_STYPE) >> 4;
	vif = container_of(wdev, struct brcmf_cfg80211_vif, wdev);
	if (reg)
		vif->mgmt_rx_reg |= BIT(mgmt_type);
	else
		vif->mgmt_rx_reg &= ~BIT(mgmt_type);
}


static int
brcmf_cfg80211_mgmt_tx(struct wiphy *wiphy, struct wireless_dev *wdev,
		       struct ieee80211_channel *chan, bool offchan,
		       unsigned int wait, const u8 *buf, size_t len,
		       bool no_cck, bool dont_wait_for_ack, u64 *cookie)
{
	struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
	const struct ieee80211_mgmt *mgmt;
	struct brcmf_cfg80211_vif *vif;
	s32 err = 0;
	s32 ie_offset;
	s32 ie_len;
	struct brcmf_fil_action_frame_le *action_frame;
	struct brcmf_fil_af_params_le *af_params;
	bool ack;
	s32 chan_nr;

	brcmf_dbg(TRACE, "Enter\n");

	*cookie = 0;

	mgmt = (const struct ieee80211_mgmt *)buf;

	if (!ieee80211_is_mgmt(mgmt->frame_control)) {
		brcmf_err("Driver only allows MGMT packet type\n");
		return -EPERM;
	}

	if (ieee80211_is_probe_resp(mgmt->frame_control)) {
		/* Right now the only reason to get a probe response */
		/* is for p2p listen response or for p2p GO from     */
		/* wpa_supplicant. Unfortunately the probe is send   */
		/* on primary ndev, while dongle wants it on the p2p */
		/* vif. Since this is only reason for a probe        */
		/* response to be sent, the vif is taken from cfg.   */
		/* If ever desired to send proberesp for non p2p     */
		/* response then data should be checked for          */
		/* "DIRECT-". Note in future supplicant will take    */
		/* dedicated p2p wdev to do this and then this 'hack'*/
		/* is not needed anymore.                            */
		ie_offset =  DOT11_MGMT_HDR_LEN +
			     DOT11_BCN_PRB_FIXED_LEN;
		ie_len = len - ie_offset;
		vif = container_of(wdev, struct brcmf_cfg80211_vif, wdev);
		if (vif == cfg->p2p.bss_idx[P2PAPI_BSSCFG_PRIMARY].vif)
			vif = cfg->p2p.bss_idx[P2PAPI_BSSCFG_DEVICE].vif;
		err = brcmf_vif_set_mgmt_ie(vif,
					    BRCMF_VNDR_IE_PRBRSP_FLAG,
					    &buf[ie_offset],
					    ie_len);
		cfg80211_mgmt_tx_status(wdev, *cookie, buf, len, true,
					GFP_KERNEL);
	} else if (ieee80211_is_action(mgmt->frame_control)) {
		af_params = kzalloc(sizeof(*af_params), GFP_KERNEL);
		if (af_params == NULL) {
			brcmf_err("unable to allocate frame\n");
			err = -ENOMEM;
			goto exit;
		}
		action_frame = &af_params->action_frame;
		/* Add the packet Id */
		action_frame->packet_id = cpu_to_le32(*cookie);
		/* Add BSSID */
		memcpy(&action_frame->da[0], &mgmt->da[0], ETH_ALEN);
		memcpy(&af_params->bssid[0], &mgmt->bssid[0], ETH_ALEN);
		/* Add the length exepted for 802.11 header  */
		action_frame->len = cpu_to_le16(len - DOT11_MGMT_HDR_LEN);
		/* Add the channel */
		chan_nr = ieee80211_frequency_to_channel(chan->center_freq);
		af_params->channel = cpu_to_le32(chan_nr);

		memcpy(action_frame->data, &buf[DOT11_MGMT_HDR_LEN],
		       le16_to_cpu(action_frame->len));

		brcmf_dbg(TRACE, "Action frame, cookie=%lld, len=%d, freq=%d\n",
			  *cookie, le16_to_cpu(action_frame->len),
			  chan->center_freq);

		ack = brcmf_p2p_send_action_frame(cfg, cfg_to_ndev(cfg),
						  af_params);

		cfg80211_mgmt_tx_status(wdev, *cookie, buf, len, ack,
					GFP_KERNEL);
		kfree(af_params);
	} else {
		brcmf_dbg(TRACE, "Unhandled, fc=%04x!!\n", mgmt->frame_control);
		brcmf_dbg_hex_dump(true, buf, len, "payload, len=%Zu\n", len);
	}

exit:
	return err;
}


static int
brcmf_cfg80211_cancel_remain_on_channel(struct wiphy *wiphy,
					struct wireless_dev *wdev,
					u64 cookie)
{
	struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
	struct brcmf_cfg80211_vif *vif;
	int err = 0;

	brcmf_dbg(TRACE, "Enter p2p listen cancel\n");

	vif = cfg->p2p.bss_idx[P2PAPI_BSSCFG_DEVICE].vif;
	if (vif == NULL) {
		brcmf_err("No p2p device available for probe response\n");
		err = -ENODEV;
		goto exit;
	}
	brcmf_p2p_cancel_remain_on_channel(vif->ifp);
exit:
	return err;
}

static int brcmf_cfg80211_crit_proto_start(struct wiphy *wiphy,
					   struct wireless_dev *wdev,
					   enum nl80211_crit_proto_id proto,
					   u16 duration)
{
	struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
	struct brcmf_cfg80211_vif *vif;

	vif = container_of(wdev, struct brcmf_cfg80211_vif, wdev);

	/* only DHCP support for now */
	if (proto != NL80211_CRIT_PROTO_DHCP)
		return -EINVAL;

	/* suppress and abort scanning */
	set_bit(BRCMF_SCAN_STATUS_SUPPRESS, &cfg->scan_status);
	brcmf_abort_scanning(cfg);

	return brcmf_btcoex_set_mode(vif, BRCMF_BTCOEX_DISABLED, duration);
}

static void brcmf_cfg80211_crit_proto_stop(struct wiphy *wiphy,
					   struct wireless_dev *wdev)
{
	struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
	struct brcmf_cfg80211_vif *vif;

	vif = container_of(wdev, struct brcmf_cfg80211_vif, wdev);

	brcmf_btcoex_set_mode(vif, BRCMF_BTCOEX_ENABLED, 0);
	clear_bit(BRCMF_SCAN_STATUS_SUPPRESS, &cfg->scan_status);
}

static struct cfg80211_ops wl_cfg80211_ops = {
	.add_virtual_intf = brcmf_cfg80211_add_iface,
	.del_virtual_intf = brcmf_cfg80211_del_iface,
	.change_virtual_intf = brcmf_cfg80211_change_iface,
	.scan = brcmf_cfg80211_scan,
	.set_wiphy_params = brcmf_cfg80211_set_wiphy_params,
	.join_ibss = brcmf_cfg80211_join_ibss,
	.leave_ibss = brcmf_cfg80211_leave_ibss,
	.get_station = brcmf_cfg80211_get_station,
	.set_tx_power = brcmf_cfg80211_set_tx_power,
	.get_tx_power = brcmf_cfg80211_get_tx_power,
	.add_key = brcmf_cfg80211_add_key,
	.del_key = brcmf_cfg80211_del_key,
	.get_key = brcmf_cfg80211_get_key,
	.set_default_key = brcmf_cfg80211_config_default_key,
	.set_default_mgmt_key = brcmf_cfg80211_config_default_mgmt_key,
	.set_power_mgmt = brcmf_cfg80211_set_power_mgmt,
	.connect = brcmf_cfg80211_connect,
	.disconnect = brcmf_cfg80211_disconnect,
	.suspend = brcmf_cfg80211_suspend,
	.resume = brcmf_cfg80211_resume,
	.set_pmksa = brcmf_cfg80211_set_pmksa,
	.del_pmksa = brcmf_cfg80211_del_pmksa,
	.flush_pmksa = brcmf_cfg80211_flush_pmksa,
	.start_ap = brcmf_cfg80211_start_ap,
	.stop_ap = brcmf_cfg80211_stop_ap,
	.change_beacon = brcmf_cfg80211_change_beacon,
	.del_station = brcmf_cfg80211_del_station,
	.sched_scan_start = brcmf_cfg80211_sched_scan_start,
	.sched_scan_stop = brcmf_cfg80211_sched_scan_stop,
	.mgmt_frame_register = brcmf_cfg80211_mgmt_frame_register,
	.mgmt_tx = brcmf_cfg80211_mgmt_tx,
	.remain_on_channel = brcmf_p2p_remain_on_channel,
	.cancel_remain_on_channel = brcmf_cfg80211_cancel_remain_on_channel,
	.start_p2p_device = brcmf_p2p_start_device,
	.stop_p2p_device = brcmf_p2p_stop_device,
	.crit_proto_start = brcmf_cfg80211_crit_proto_start,
	.crit_proto_stop = brcmf_cfg80211_crit_proto_stop,
#ifdef CONFIG_NL80211_TESTMODE
	.testmode_cmd = brcmf_cfg80211_testmode
#endif
};

static s32 brcmf_nl80211_iftype_to_mode(enum nl80211_iftype type)
{
	switch (type) {
	case NL80211_IFTYPE_AP_VLAN:
	case NL80211_IFTYPE_WDS:
	case NL80211_IFTYPE_MONITOR:
	case NL80211_IFTYPE_MESH_POINT:
		return -ENOTSUPP;
	case NL80211_IFTYPE_ADHOC:
		return WL_MODE_IBSS;
	case NL80211_IFTYPE_STATION:
	case NL80211_IFTYPE_P2P_CLIENT:
		return WL_MODE_BSS;
	case NL80211_IFTYPE_AP:
	case NL80211_IFTYPE_P2P_GO:
		return WL_MODE_AP;
	case NL80211_IFTYPE_P2P_DEVICE:
		return WL_MODE_P2P;
	case NL80211_IFTYPE_UNSPECIFIED:
	default:
		break;
	}

	return -EINVAL;
}

static void brcmf_wiphy_pno_params(struct wiphy *wiphy)
{
	/* scheduled scan settings */
	wiphy->max_sched_scan_ssids = BRCMF_PNO_MAX_PFN_COUNT;
	wiphy->max_match_sets = BRCMF_PNO_MAX_PFN_COUNT;
	wiphy->max_sched_scan_ie_len = BRCMF_SCAN_IE_LEN_MAX;
	wiphy->flags |= WIPHY_FLAG_SUPPORTS_SCHED_SCAN;
}

static const struct ieee80211_iface_limit brcmf_iface_limits[] = {
	{
		.max = 2,
		.types = BIT(NL80211_IFTYPE_STATION) |
			 BIT(NL80211_IFTYPE_ADHOC) |
			 BIT(NL80211_IFTYPE_AP)
	},
	{
		.max = 1,
		.types = BIT(NL80211_IFTYPE_P2P_CLIENT) |
			 BIT(NL80211_IFTYPE_P2P_GO)
	},
	{
		.max = 1,
		.types = BIT(NL80211_IFTYPE_P2P_DEVICE)
	}
};
static const struct ieee80211_iface_combination brcmf_iface_combos[] = {
	{
		 .max_interfaces = BRCMF_IFACE_MAX_CNT,
		 .num_different_channels = 2,
		 .n_limits = ARRAY_SIZE(brcmf_iface_limits),
		 .limits = brcmf_iface_limits
	}
};

static const struct ieee80211_txrx_stypes
brcmf_txrx_stypes[NUM_NL80211_IFTYPES] = {
	[NL80211_IFTYPE_STATION] = {
		.tx = 0xffff,
		.rx = BIT(IEEE80211_STYPE_ACTION >> 4) |
		      BIT(IEEE80211_STYPE_PROBE_REQ >> 4)
	},
	[NL80211_IFTYPE_P2P_CLIENT] = {
		.tx = 0xffff,
		.rx = BIT(IEEE80211_STYPE_ACTION >> 4) |
		      BIT(IEEE80211_STYPE_PROBE_REQ >> 4)
	},
	[NL80211_IFTYPE_P2P_GO] = {
		.tx = 0xffff,
		.rx = BIT(IEEE80211_STYPE_ASSOC_REQ >> 4) |
		      BIT(IEEE80211_STYPE_REASSOC_REQ >> 4) |
		      BIT(IEEE80211_STYPE_PROBE_REQ >> 4) |
		      BIT(IEEE80211_STYPE_DISASSOC >> 4) |
		      BIT(IEEE80211_STYPE_AUTH >> 4) |
		      BIT(IEEE80211_STYPE_DEAUTH >> 4) |
		      BIT(IEEE80211_STYPE_ACTION >> 4)
	},
	[NL80211_IFTYPE_P2P_DEVICE] = {
		.tx = 0xffff,
		.rx = BIT(IEEE80211_STYPE_ACTION >> 4) |
		      BIT(IEEE80211_STYPE_PROBE_REQ >> 4)
	}
};

static struct wiphy *brcmf_setup_wiphy(struct device *phydev)
{
	struct wiphy *wiphy;
	s32 err = 0;

	wiphy = wiphy_new(&wl_cfg80211_ops, sizeof(struct brcmf_cfg80211_info));
	if (!wiphy) {
		brcmf_err("Could not allocate wiphy device\n");
		return ERR_PTR(-ENOMEM);
	}
	set_wiphy_dev(wiphy, phydev);
	wiphy->max_scan_ssids = WL_NUM_SCAN_MAX;
	wiphy->max_scan_ie_len = BRCMF_SCAN_IE_LEN_MAX;
	wiphy->max_num_pmkids = WL_NUM_PMKIDS_MAX;
	wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
				 BIT(NL80211_IFTYPE_ADHOC) |
				 BIT(NL80211_IFTYPE_AP) |
				 BIT(NL80211_IFTYPE_P2P_CLIENT) |
				 BIT(NL80211_IFTYPE_P2P_GO) |
				 BIT(NL80211_IFTYPE_P2P_DEVICE);
	wiphy->iface_combinations = brcmf_iface_combos;
	wiphy->n_iface_combinations = ARRAY_SIZE(brcmf_iface_combos);
	wiphy->bands[IEEE80211_BAND_2GHZ] = &__wl_band_2ghz;
	wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
	wiphy->cipher_suites = __wl_cipher_suites;
	wiphy->n_cipher_suites = ARRAY_SIZE(__wl_cipher_suites);
	wiphy->flags |= WIPHY_FLAG_PS_ON_BY_DEFAULT |
			WIPHY_FLAG_OFFCHAN_TX |
			WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL;
	wiphy->mgmt_stypes = brcmf_txrx_stypes;
	wiphy->max_remain_on_channel_duration = 5000;
	brcmf_wiphy_pno_params(wiphy);
	brcmf_dbg(INFO, "Registering custom regulatory\n");
	wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY;
	wiphy_apply_custom_regulatory(wiphy, &brcmf_regdom);
	err = wiphy_register(wiphy);
	if (err < 0) {
		brcmf_err("Could not register wiphy device (%d)\n", err);
		wiphy_free(wiphy);
		return ERR_PTR(err);
	}
	return wiphy;
}

struct brcmf_cfg80211_vif *brcmf_alloc_vif(struct brcmf_cfg80211_info *cfg,
					   enum nl80211_iftype type,
					   bool pm_block)
{
	struct brcmf_cfg80211_vif *vif;

	if (cfg->vif_cnt == BRCMF_IFACE_MAX_CNT)
		return ERR_PTR(-ENOSPC);

	brcmf_dbg(TRACE, "allocating virtual interface (size=%zu)\n",
		  sizeof(*vif));
	vif = kzalloc(sizeof(*vif), GFP_KERNEL);
	if (!vif)
		return ERR_PTR(-ENOMEM);

	vif->wdev.wiphy = cfg->wiphy;
	vif->wdev.iftype = type;

	vif->mode = brcmf_nl80211_iftype_to_mode(type);
	vif->pm_block = pm_block;
	vif->roam_off = -1;

	brcmf_init_prof(&vif->profile);

	list_add_tail(&vif->list, &cfg->vif_list);
	cfg->vif_cnt++;
	return vif;
}

void brcmf_free_vif(struct brcmf_cfg80211_info *cfg,
		    struct brcmf_cfg80211_vif *vif)
{
	list_del(&vif->list);
	cfg->vif_cnt--;

	kfree(vif);
	if (!cfg->vif_cnt) {
		wiphy_unregister(cfg->wiphy);
		wiphy_free(cfg->wiphy);
	}
}

static bool brcmf_is_linkup(const struct brcmf_event_msg *e)
{
	u32 event = e->event_code;
	u32 status = e->status;

	if (event == BRCMF_E_SET_SSID && status == BRCMF_E_STATUS_SUCCESS) {
		brcmf_dbg(CONN, "Processing set ssid\n");
		return true;
	}

	return false;
}

static bool brcmf_is_linkdown(const struct brcmf_event_msg *e)
{
	u32 event = e->event_code;
	u16 flags = e->flags;

	if (event == BRCMF_E_LINK && (!(flags & BRCMF_EVENT_MSG_LINK))) {
		brcmf_dbg(CONN, "Processing link down\n");
		return true;
	}
	return false;
}

static bool brcmf_is_nonetwork(struct brcmf_cfg80211_info *cfg,
			       const struct brcmf_event_msg *e)
{
	u32 event = e->event_code;
	u32 status = e->status;

	if (event == BRCMF_E_LINK && status == BRCMF_E_STATUS_NO_NETWORKS) {
		brcmf_dbg(CONN, "Processing Link %s & no network found\n",
			  e->flags & BRCMF_EVENT_MSG_LINK ? "up" : "down");
		return true;
	}

	if (event == BRCMF_E_SET_SSID && status != BRCMF_E_STATUS_SUCCESS) {
		brcmf_dbg(CONN, "Processing connecting & no network found\n");
		return true;
	}

	return false;
}

static void brcmf_clear_assoc_ies(struct brcmf_cfg80211_info *cfg)
{
	struct brcmf_cfg80211_connect_info *conn_info = cfg_to_conn(cfg);

	kfree(conn_info->req_ie);
	conn_info->req_ie = NULL;
	conn_info->req_ie_len = 0;
	kfree(conn_info->resp_ie);
	conn_info->resp_ie = NULL;
	conn_info->resp_ie_len = 0;
}

static s32 brcmf_get_assoc_ies(struct brcmf_cfg80211_info *cfg,
			       struct brcmf_if *ifp)
{
	struct brcmf_cfg80211_assoc_ielen_le *assoc_info;
	struct brcmf_cfg80211_connect_info *conn_info = cfg_to_conn(cfg);
	u32 req_len;
	u32 resp_len;
	s32 err = 0;

	brcmf_clear_assoc_ies(cfg);

	err = brcmf_fil_iovar_data_get(ifp, "assoc_info",
				       cfg->extra_buf, WL_ASSOC_INFO_MAX);
	if (err) {
		brcmf_err("could not get assoc info (%d)\n", err);
		return err;
	}
	assoc_info =
		(struct brcmf_cfg80211_assoc_ielen_le *)cfg->extra_buf;
	req_len = le32_to_cpu(assoc_info->req_len);
	resp_len = le32_to_cpu(assoc_info->resp_len);
	if (req_len) {
		err = brcmf_fil_iovar_data_get(ifp, "assoc_req_ies",
					       cfg->extra_buf,
					       WL_ASSOC_INFO_MAX);
		if (err) {
			brcmf_err("could not get assoc req (%d)\n", err);
			return err;
		}
		conn_info->req_ie_len = req_len;
		conn_info->req_ie =
		    kmemdup(cfg->extra_buf, conn_info->req_ie_len,
			    GFP_KERNEL);
	} else {
		conn_info->req_ie_len = 0;
		conn_info->req_ie = NULL;
	}
	if (resp_len) {
		err = brcmf_fil_iovar_data_get(ifp, "assoc_resp_ies",
					       cfg->extra_buf,
					       WL_ASSOC_INFO_MAX);
		if (err) {
			brcmf_err("could not get assoc resp (%d)\n", err);
			return err;
		}
		conn_info->resp_ie_len = resp_len;
		conn_info->resp_ie =
		    kmemdup(cfg->extra_buf, conn_info->resp_ie_len,
			    GFP_KERNEL);
	} else {
		conn_info->resp_ie_len = 0;
		conn_info->resp_ie = NULL;
	}
	brcmf_dbg(CONN, "req len (%d) resp len (%d)\n",
		  conn_info->req_ie_len, conn_info->resp_ie_len);

	return err;
}

static s32
brcmf_bss_roaming_done(struct brcmf_cfg80211_info *cfg,
		       struct net_device *ndev,
		       const struct brcmf_event_msg *e)
{
	struct brcmf_if *ifp = netdev_priv(ndev);
	struct brcmf_cfg80211_profile *profile = &ifp->vif->profile;
	struct brcmf_cfg80211_connect_info *conn_info = cfg_to_conn(cfg);
	struct wiphy *wiphy = cfg_to_wiphy(cfg);
	struct ieee80211_channel *notify_channel = NULL;
	struct ieee80211_supported_band *band;
	struct brcmf_bss_info_le *bi;
	struct brcmu_chan ch;
	u32 freq;
	s32 err = 0;
	u8 *buf;

	brcmf_dbg(TRACE, "Enter\n");

	brcmf_get_assoc_ies(cfg, ifp);
	memcpy(profile->bssid, e->addr, ETH_ALEN);
	brcmf_update_bss_info(cfg, ifp);

	buf = kzalloc(WL_BSS_INFO_MAX, GFP_KERNEL);
	if (buf == NULL) {
		err = -ENOMEM;
		goto done;
	}

	/* data sent to dongle has to be little endian */
	*(__le32 *)buf = cpu_to_le32(WL_BSS_INFO_MAX);
	err = brcmf_fil_cmd_data_get(ifp, BRCMF_C_GET_BSS_INFO,
				     buf, WL_BSS_INFO_MAX);

	if (err)
		goto done;

	bi = (struct brcmf_bss_info_le *)(buf + 4);
	ch.chspec = le16_to_cpu(bi->chanspec);
	cfg->d11inf.decchspec(&ch);

	if (ch.band == BRCMU_CHAN_BAND_2G)
		band = wiphy->bands[IEEE80211_BAND_2GHZ];
	else
		band = wiphy->bands[IEEE80211_BAND_5GHZ];

	freq = ieee80211_channel_to_frequency(ch.chnum, band->band);
	notify_channel = ieee80211_get_channel(wiphy, freq);

done:
	kfree(buf);
	cfg80211_roamed(ndev, notify_channel, (u8 *)profile->bssid,
			conn_info->req_ie, conn_info->req_ie_len,
			conn_info->resp_ie, conn_info->resp_ie_len, GFP_KERNEL);
	brcmf_dbg(CONN, "Report roaming result\n");

	set_bit(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state);
	brcmf_dbg(TRACE, "Exit\n");
	return err;
}

static s32
brcmf_bss_connect_done(struct brcmf_cfg80211_info *cfg,
		       struct net_device *ndev, const struct brcmf_event_msg *e,
		       bool completed)
{
	struct brcmf_if *ifp = netdev_priv(ndev);
	struct brcmf_cfg80211_profile *profile = &ifp->vif->profile;
	struct brcmf_cfg80211_connect_info *conn_info = cfg_to_conn(cfg);
	s32 err = 0;

	brcmf_dbg(TRACE, "Enter\n");

	if (test_and_clear_bit(BRCMF_VIF_STATUS_CONNECTING,
			       &ifp->vif->sme_state)) {
		if (completed) {
			brcmf_get_assoc_ies(cfg, ifp);
			memcpy(profile->bssid, e->addr, ETH_ALEN);
			brcmf_update_bss_info(cfg, ifp);
			set_bit(BRCMF_VIF_STATUS_CONNECTED,
				&ifp->vif->sme_state);
		}
		cfg80211_connect_result(ndev,
					(u8 *)profile->bssid,
					conn_info->req_ie,
					conn_info->req_ie_len,
					conn_info->resp_ie,
					conn_info->resp_ie_len,
					completed ? WLAN_STATUS_SUCCESS :
						    WLAN_STATUS_AUTH_TIMEOUT,
					GFP_KERNEL);
		brcmf_dbg(CONN, "Report connect result - connection %s\n",
			  completed ? "succeeded" : "failed");
	}
	brcmf_dbg(TRACE, "Exit\n");
	return err;
}

static s32
brcmf_notify_connect_status_ap(struct brcmf_cfg80211_info *cfg,
			       struct net_device *ndev,
			       const struct brcmf_event_msg *e, void *data)
{
	static int generation;
	u32 event = e->event_code;
	u32 reason = e->reason;
	struct station_info sinfo;

	brcmf_dbg(CONN, "event %d, reason %d\n", event, reason);
	if (event == BRCMF_E_LINK && reason == BRCMF_E_REASON_LINK_BSSCFG_DIS &&
	    ndev != cfg_to_ndev(cfg)) {
		brcmf_dbg(CONN, "AP mode link down\n");
		complete(&cfg->vif_disabled);
		return 0;
	}

	if (((event == BRCMF_E_ASSOC_IND) || (event == BRCMF_E_REASSOC_IND)) &&
	    (reason == BRCMF_E_STATUS_SUCCESS)) {
		memset(&sinfo, 0, sizeof(sinfo));
		sinfo.filled = STATION_INFO_ASSOC_REQ_IES;
		if (!data) {
			brcmf_err("No IEs present in ASSOC/REASSOC_IND");
			return -EINVAL;
		}
		sinfo.assoc_req_ies = data;
		sinfo.assoc_req_ies_len = e->datalen;
		generation++;
		sinfo.generation = generation;
		cfg80211_new_sta(ndev, e->addr, &sinfo, GFP_KERNEL);
	} else if ((event == BRCMF_E_DISASSOC_IND) ||
		   (event == BRCMF_E_DEAUTH_IND) ||
		   (event == BRCMF_E_DEAUTH)) {
		cfg80211_del_sta(ndev, e->addr, GFP_KERNEL);
	}
	return 0;
}

static s32
brcmf_notify_connect_status(struct brcmf_if *ifp,
			    const struct brcmf_event_msg *e, void *data)
{
	struct brcmf_cfg80211_info *cfg = ifp->drvr->config;
	struct net_device *ndev = ifp->ndev;
	struct brcmf_cfg80211_profile *profile = &ifp->vif->profile;
	s32 err = 0;

	if (ifp->vif->mode == WL_MODE_AP) {
		err = brcmf_notify_connect_status_ap(cfg, ndev, e, data);
	} else if (brcmf_is_linkup(e)) {
		brcmf_dbg(CONN, "Linkup\n");
		if (brcmf_is_ibssmode(ifp->vif)) {
			memcpy(profile->bssid, e->addr, ETH_ALEN);
			wl_inform_ibss(cfg, ndev, e->addr);
			cfg80211_ibss_joined(ndev, e->addr, GFP_KERNEL);
			clear_bit(BRCMF_VIF_STATUS_CONNECTING,
				  &ifp->vif->sme_state);
			set_bit(BRCMF_VIF_STATUS_CONNECTED,
				&ifp->vif->sme_state);
		} else
			brcmf_bss_connect_done(cfg, ndev, e, true);
	} else if (brcmf_is_linkdown(e)) {
		brcmf_dbg(CONN, "Linkdown\n");
		if (!brcmf_is_ibssmode(ifp->vif)) {
			brcmf_bss_connect_done(cfg, ndev, e, false);
			if (test_and_clear_bit(BRCMF_VIF_STATUS_CONNECTED,
					       &ifp->vif->sme_state))
				cfg80211_disconnected(ndev, 0, NULL, 0,
						      GFP_KERNEL);
		}
		brcmf_link_down(ifp->vif);
		brcmf_init_prof(ndev_to_prof(ndev));
		if (ndev != cfg_to_ndev(cfg))
			complete(&cfg->vif_disabled);
	} else if (brcmf_is_nonetwork(cfg, e)) {
		if (brcmf_is_ibssmode(ifp->vif))
			clear_bit(BRCMF_VIF_STATUS_CONNECTING,
				  &ifp->vif->sme_state);
		else
			brcmf_bss_connect_done(cfg, ndev, e, false);
	}

	return err;
}

static s32
brcmf_notify_roaming_status(struct brcmf_if *ifp,
			    const struct brcmf_event_msg *e, void *data)
{
	struct brcmf_cfg80211_info *cfg = ifp->drvr->config;
	s32 err = 0;
	u32 event = e->event_code;
	u32 status = e->status;

	if (event == BRCMF_E_ROAM && status == BRCMF_E_STATUS_SUCCESS) {
		if (test_bit(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state))
			brcmf_bss_roaming_done(cfg, ifp->ndev, e);
		else
			brcmf_bss_connect_done(cfg, ifp->ndev, e, true);
	}

	return err;
}

static s32
brcmf_notify_mic_status(struct brcmf_if *ifp,
			const struct brcmf_event_msg *e, void *data)
{
	u16 flags = e->flags;
	enum nl80211_key_type key_type;

	if (flags & BRCMF_EVENT_MSG_GROUP)
		key_type = NL80211_KEYTYPE_GROUP;
	else
		key_type = NL80211_KEYTYPE_PAIRWISE;

	cfg80211_michael_mic_failure(ifp->ndev, (u8 *)&e->addr, key_type, -1,
				     NULL, GFP_KERNEL);

	return 0;
}

static s32 brcmf_notify_vif_event(struct brcmf_if *ifp,
				  const struct brcmf_event_msg *e, void *data)
{
	struct brcmf_cfg80211_info *cfg = ifp->drvr->config;
	struct brcmf_if_event *ifevent = (struct brcmf_if_event *)data;
	struct brcmf_cfg80211_vif_event *event = &cfg->vif_event;
	struct brcmf_cfg80211_vif *vif;

	brcmf_dbg(TRACE, "Enter: action %u flags %u ifidx %u bsscfg %u\n",
		  ifevent->action, ifevent->flags, ifevent->ifidx,
		  ifevent->bssidx);

	mutex_lock(&event->vif_event_lock);
	event->action = ifevent->action;
	vif = event->vif;

	switch (ifevent->action) {
	case BRCMF_E_IF_ADD:
		/* waiting process may have timed out */
		if (!cfg->vif_event.vif) {
			mutex_unlock(&event->vif_event_lock);
			return -EBADF;
		}

		ifp->vif = vif;
		vif->ifp = ifp;
		if (ifp->ndev) {
			vif->wdev.netdev = ifp->ndev;
			ifp->ndev->ieee80211_ptr = &vif->wdev;
			SET_NETDEV_DEV(ifp->ndev, wiphy_dev(cfg->wiphy));
		}
		mutex_unlock(&event->vif_event_lock);
		wake_up(&event->vif_wq);
		return 0;

	case BRCMF_E_IF_DEL:
		mutex_unlock(&event->vif_event_lock);
		/* event may not be upon user request */
		if (brcmf_cfg80211_vif_event_armed(cfg))
			wake_up(&event->vif_wq);
		return 0;

	case BRCMF_E_IF_CHANGE:
		mutex_unlock(&event->vif_event_lock);
		wake_up(&event->vif_wq);
		return 0;

	default:
		mutex_unlock(&event->vif_event_lock);
		break;
	}
	return -EINVAL;
}

static void brcmf_init_conf(struct brcmf_cfg80211_conf *conf)
{
	conf->frag_threshold = (u32)-1;
	conf->rts_threshold = (u32)-1;
	conf->retry_short = (u32)-1;
	conf->retry_long = (u32)-1;
	conf->tx_power = -1;
}

static void brcmf_register_event_handlers(struct brcmf_cfg80211_info *cfg)
{
	brcmf_fweh_register(cfg->pub, BRCMF_E_LINK,
			    brcmf_notify_connect_status);
	brcmf_fweh_register(cfg->pub, BRCMF_E_DEAUTH_IND,
			    brcmf_notify_connect_status);
	brcmf_fweh_register(cfg->pub, BRCMF_E_DEAUTH,
			    brcmf_notify_connect_status);
	brcmf_fweh_register(cfg->pub, BRCMF_E_DISASSOC_IND,
			    brcmf_notify_connect_status);
	brcmf_fweh_register(cfg->pub, BRCMF_E_ASSOC_IND,
			    brcmf_notify_connect_status);
	brcmf_fweh_register(cfg->pub, BRCMF_E_REASSOC_IND,
			    brcmf_notify_connect_status);
	brcmf_fweh_register(cfg->pub, BRCMF_E_ROAM,
			    brcmf_notify_roaming_status);
	brcmf_fweh_register(cfg->pub, BRCMF_E_MIC_ERROR,
			    brcmf_notify_mic_status);
	brcmf_fweh_register(cfg->pub, BRCMF_E_SET_SSID,
			    brcmf_notify_connect_status);
	brcmf_fweh_register(cfg->pub, BRCMF_E_PFN_NET_FOUND,
			    brcmf_notify_sched_scan_results);
	brcmf_fweh_register(cfg->pub, BRCMF_E_IF,
			    brcmf_notify_vif_event);
	brcmf_fweh_register(cfg->pub, BRCMF_E_P2P_PROBEREQ_MSG,
			    brcmf_p2p_notify_rx_mgmt_p2p_probereq);
	brcmf_fweh_register(cfg->pub, BRCMF_E_P2P_DISC_LISTEN_COMPLETE,
			    brcmf_p2p_notify_listen_complete);
	brcmf_fweh_register(cfg->pub, BRCMF_E_ACTION_FRAME_RX,
			    brcmf_p2p_notify_action_frame_rx);
	brcmf_fweh_register(cfg->pub, BRCMF_E_ACTION_FRAME_COMPLETE,
			    brcmf_p2p_notify_action_tx_complete);
	brcmf_fweh_register(cfg->pub, BRCMF_E_ACTION_FRAME_OFF_CHAN_COMPLETE,
			    brcmf_p2p_notify_action_tx_complete);
}

static void brcmf_deinit_priv_mem(struct brcmf_cfg80211_info *cfg)
{
	kfree(cfg->conf);
	cfg->conf = NULL;
	kfree(cfg->escan_ioctl_buf);
	cfg->escan_ioctl_buf = NULL;
	kfree(cfg->extra_buf);
	cfg->extra_buf = NULL;
	kfree(cfg->pmk_list);
	cfg->pmk_list = NULL;
}

static s32 brcmf_init_priv_mem(struct brcmf_cfg80211_info *cfg)
{
	cfg->conf = kzalloc(sizeof(*cfg->conf), GFP_KERNEL);
	if (!cfg->conf)
		goto init_priv_mem_out;
	cfg->escan_ioctl_buf = kzalloc(BRCMF_DCMD_MEDLEN, GFP_KERNEL);
	if (!cfg->escan_ioctl_buf)
		goto init_priv_mem_out;
	cfg->extra_buf = kzalloc(WL_EXTRA_BUF_MAX, GFP_KERNEL);
	if (!cfg->extra_buf)
		goto init_priv_mem_out;
	cfg->pmk_list = kzalloc(sizeof(*cfg->pmk_list), GFP_KERNEL);
	if (!cfg->pmk_list)
		goto init_priv_mem_out;

	return 0;

init_priv_mem_out:
	brcmf_deinit_priv_mem(cfg);

	return -ENOMEM;
}

static s32 wl_init_priv(struct brcmf_cfg80211_info *cfg)
{
	s32 err = 0;

	cfg->scan_request = NULL;
	cfg->pwr_save = true;
	cfg->roam_on = true;	/* roam on & off switch.
				 we enable roam per default */
	cfg->active_scan = true;	/* we do active scan for
				 specific scan per default */
	cfg->dongle_up = false;	/* dongle is not up yet */
	err = brcmf_init_priv_mem(cfg);
	if (err)
		return err;
	brcmf_register_event_handlers(cfg);
	mutex_init(&cfg->usr_sync);
	brcmf_init_escan(cfg);
	brcmf_init_conf(cfg->conf);
	init_completion(&cfg->vif_disabled);
	return err;
}

static void wl_deinit_priv(struct brcmf_cfg80211_info *cfg)
{
	cfg->dongle_up = false;	/* dongle down */
	brcmf_abort_scanning(cfg);
	brcmf_deinit_priv_mem(cfg);
}

static void init_vif_event(struct brcmf_cfg80211_vif_event *event)
{
	init_waitqueue_head(&event->vif_wq);
	mutex_init(&event->vif_event_lock);
}

struct brcmf_cfg80211_info *brcmf_cfg80211_attach(struct brcmf_pub *drvr,
						  struct device *busdev)
{
	struct net_device *ndev = drvr->iflist[0]->ndev;
	struct brcmf_cfg80211_info *cfg;
	struct wiphy *wiphy;
	struct brcmf_cfg80211_vif *vif;
	struct brcmf_if *ifp;
	s32 err = 0;
	s32 io_type;

	if (!ndev) {
		brcmf_err("ndev is invalid\n");
		return NULL;
	}

	ifp = netdev_priv(ndev);
	wiphy = brcmf_setup_wiphy(busdev);
	if (IS_ERR(wiphy))
		return NULL;

	cfg = wiphy_priv(wiphy);
	cfg->wiphy = wiphy;
	cfg->pub = drvr;
	init_vif_event(&cfg->vif_event);
	INIT_LIST_HEAD(&cfg->vif_list);

	vif = brcmf_alloc_vif(cfg, NL80211_IFTYPE_STATION, false);
	if (IS_ERR(vif)) {
		wiphy_free(wiphy);
		return NULL;
	}

	vif->ifp = ifp;
	vif->wdev.netdev = ndev;
	ndev->ieee80211_ptr = &vif->wdev;
	SET_NETDEV_DEV(ndev, wiphy_dev(cfg->wiphy));

	err = wl_init_priv(cfg);
	if (err) {
		brcmf_err("Failed to init iwm_priv (%d)\n", err);
		goto cfg80211_attach_out;
	}
	ifp->vif = vif;

	err = brcmf_p2p_attach(cfg);
	if (err) {
		brcmf_err("P2P initilisation failed (%d)\n", err);
		goto cfg80211_p2p_attach_out;
	}
	err = brcmf_btcoex_attach(cfg);
	if (err) {
		brcmf_err("BT-coex initialisation failed (%d)\n", err);
		brcmf_p2p_detach(&cfg->p2p);
		goto cfg80211_p2p_attach_out;
	}

	err = brcmf_fil_cmd_int_get(ifp, BRCMF_C_GET_VERSION,
				    &io_type);
	if (err) {
		brcmf_err("Failed to get D11 version (%d)\n", err);
		goto cfg80211_p2p_attach_out;
	}
	cfg->d11inf.io_type = (u8)io_type;
	brcmu_d11_attach(&cfg->d11inf);

	return cfg;

cfg80211_p2p_attach_out:
	wl_deinit_priv(cfg);

cfg80211_attach_out:
	brcmf_free_vif(cfg, vif);
	return NULL;
}

void brcmf_cfg80211_detach(struct brcmf_cfg80211_info *cfg)
{
	struct brcmf_cfg80211_vif *vif;
	struct brcmf_cfg80211_vif *tmp;

	wl_deinit_priv(cfg);
	brcmf_btcoex_detach(cfg);
	list_for_each_entry_safe(vif, tmp, &cfg->vif_list, list) {
		brcmf_free_vif(cfg, vif);
	}
}

static s32
brcmf_dongle_roam(struct brcmf_if *ifp, u32 roamvar, u32 bcn_timeout)
{
	s32 err = 0;
	__le32 roamtrigger[2];
	__le32 roam_delta[2];

	/*
	 * Setup timeout if Beacons are lost and roam is
	 * off to report link down
	 */
	if (roamvar) {
		err = brcmf_fil_iovar_int_set(ifp, "bcn_timeout", bcn_timeout);
		if (err) {
			brcmf_err("bcn_timeout error (%d)\n", err);
			goto dongle_rom_out;
		}
	}

	/*
	 * Enable/Disable built-in roaming to allow supplicant
	 * to take care of roaming
	 */
	brcmf_dbg(INFO, "Internal Roaming = %s\n", roamvar ? "Off" : "On");
	err = brcmf_fil_iovar_int_set(ifp, "roam_off", roamvar);
	if (err) {
		brcmf_err("roam_off error (%d)\n", err);
		goto dongle_rom_out;
	}

	roamtrigger[0] = cpu_to_le32(WL_ROAM_TRIGGER_LEVEL);
	roamtrigger[1] = cpu_to_le32(BRCM_BAND_ALL);
	err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_ROAM_TRIGGER,
				     (void *)roamtrigger, sizeof(roamtrigger));
	if (err) {
		brcmf_err("WLC_SET_ROAM_TRIGGER error (%d)\n", err);
		goto dongle_rom_out;
	}

	roam_delta[0] = cpu_to_le32(WL_ROAM_DELTA);
	roam_delta[1] = cpu_to_le32(BRCM_BAND_ALL);
	err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_ROAM_DELTA,
				     (void *)roam_delta, sizeof(roam_delta));
	if (err) {
		brcmf_err("WLC_SET_ROAM_DELTA error (%d)\n", err);
		goto dongle_rom_out;
	}

dongle_rom_out:
	return err;
}

static s32
brcmf_dongle_scantime(struct brcmf_if *ifp, s32 scan_assoc_time,
		      s32 scan_unassoc_time, s32 scan_passive_time)
{
	s32 err = 0;

	err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_SCAN_CHANNEL_TIME,
				    scan_assoc_time);
	if (err) {
		if (err == -EOPNOTSUPP)
			brcmf_dbg(INFO, "Scan assoc time is not supported\n");
		else
			brcmf_err("Scan assoc time error (%d)\n", err);
		goto dongle_scantime_out;
	}
	err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_SCAN_UNASSOC_TIME,
				    scan_unassoc_time);
	if (err) {
		if (err == -EOPNOTSUPP)
			brcmf_dbg(INFO, "Scan unassoc time is not supported\n");
		else
			brcmf_err("Scan unassoc time error (%d)\n", err);
		goto dongle_scantime_out;
	}

	err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_SCAN_PASSIVE_TIME,
				    scan_passive_time);
	if (err) {
		if (err == -EOPNOTSUPP)
			brcmf_dbg(INFO, "Scan passive time is not supported\n");
		else
			brcmf_err("Scan passive time error (%d)\n", err);
		goto dongle_scantime_out;
	}

dongle_scantime_out:
	return err;
}


static s32 brcmf_construct_reginfo(struct brcmf_cfg80211_info *cfg, u32 bw_cap)
{
	struct brcmf_if *ifp = netdev_priv(cfg_to_ndev(cfg));
	struct ieee80211_channel *band_chan_arr;
	struct brcmf_chanspec_list *list;
	struct brcmu_chan ch;
	s32 err;
	u8 *pbuf;
	u32 i, j;
	u32 total;
	enum ieee80211_band band;
	u32 channel;
	u32 *n_cnt;
	bool ht40_allowed;
	u32 index;
	u32 ht40_flag;
	bool update;
	u32 array_size;

	pbuf = kzalloc(BRCMF_DCMD_MEDLEN, GFP_KERNEL);

	if (pbuf == NULL)
		return -ENOMEM;

	list = (struct brcmf_chanspec_list *)pbuf;

	err = brcmf_fil_iovar_data_get(ifp, "chanspecs", pbuf,
				       BRCMF_DCMD_MEDLEN);
	if (err) {
		brcmf_err("get chanspecs error (%d)\n", err);
		goto exit;
	}

	__wl_band_2ghz.n_channels = 0;
	__wl_band_5ghz_a.n_channels = 0;

	total = le32_to_cpu(list->count);
	for (i = 0; i < total; i++) {
		ch.chspec = (u16)le32_to_cpu(list->element[i]);
		cfg->d11inf.decchspec(&ch);

		if (ch.band == BRCMU_CHAN_BAND_2G) {
			band_chan_arr = __wl_2ghz_channels;
			array_size = ARRAY_SIZE(__wl_2ghz_channels);
			n_cnt = &__wl_band_2ghz.n_channels;
			band = IEEE80211_BAND_2GHZ;
			ht40_allowed = (bw_cap == WLC_N_BW_40ALL);
		} else if (ch.band == BRCMU_CHAN_BAND_5G) {
			band_chan_arr = __wl_5ghz_a_channels;
			array_size = ARRAY_SIZE(__wl_5ghz_a_channels);
			n_cnt = &__wl_band_5ghz_a.n_channels;
			band = IEEE80211_BAND_5GHZ;
			ht40_allowed = !(bw_cap == WLC_N_BW_20ALL);
		} else {
			brcmf_err("Invalid channel Sepc. 0x%x.\n", ch.chspec);
			continue;
		}
		if (!ht40_allowed && ch.bw == BRCMU_CHAN_BW_40)
			continue;
		update = false;
		for (j = 0; (j < *n_cnt && (*n_cnt < array_size)); j++) {
			if (band_chan_arr[j].hw_value == ch.chnum) {
				update = true;
				break;
			}
		}
		if (update)
			index = j;
		else
			index = *n_cnt;
		if (index <  array_size) {
			band_chan_arr[index].center_freq =
				ieee80211_channel_to_frequency(ch.chnum, band);
			band_chan_arr[index].hw_value = ch.chnum;

			if (ch.bw == BRCMU_CHAN_BW_40 && ht40_allowed) {
				/* assuming the order is HT20, HT40 Upper,
				 * HT40 lower from chanspecs
				 */
				ht40_flag = band_chan_arr[index].flags &
					    IEEE80211_CHAN_NO_HT40;
				if (ch.sb == BRCMU_CHAN_SB_U) {
					if (ht40_flag == IEEE80211_CHAN_NO_HT40)
						band_chan_arr[index].flags &=
							~IEEE80211_CHAN_NO_HT40;
					band_chan_arr[index].flags |=
						IEEE80211_CHAN_NO_HT40PLUS;
				} else {
					/* It should be one of
					 * IEEE80211_CHAN_NO_HT40 or
					 * IEEE80211_CHAN_NO_HT40PLUS
					 */
					band_chan_arr[index].flags &=
							~IEEE80211_CHAN_NO_HT40;
					if (ht40_flag == IEEE80211_CHAN_NO_HT40)
						band_chan_arr[index].flags |=
						    IEEE80211_CHAN_NO_HT40MINUS;
				}
			} else {
				band_chan_arr[index].flags =
							IEEE80211_CHAN_NO_HT40;
				ch.bw = BRCMU_CHAN_BW_20;
				cfg->d11inf.encchspec(&ch);
				channel = ch.chspec;
				err = brcmf_fil_bsscfg_int_get(ifp,
							       "per_chan_info",
							       &channel);
				if (!err) {
					if (channel & WL_CHAN_RADAR)
						band_chan_arr[index].flags |=
							(IEEE80211_CHAN_RADAR |
							IEEE80211_CHAN_NO_IBSS);
					if (channel & WL_CHAN_PASSIVE)
						band_chan_arr[index].flags |=
						    IEEE80211_CHAN_PASSIVE_SCAN;
				}
			}
			if (!update)
				(*n_cnt)++;
		}
	}
exit:
	kfree(pbuf);
	return err;
}


static s32 brcmf_update_wiphybands(struct brcmf_cfg80211_info *cfg)
{
	struct brcmf_if *ifp = netdev_priv(cfg_to_ndev(cfg));
	struct wiphy *wiphy;
	s32 phy_list;
	u32 band_list[3];
	u32 nmode;
	u32 bw_cap = 0;
	s8 phy;
	s32 err;
	u32 nband;
	s32 i;
	struct ieee80211_supported_band *bands[IEEE80211_NUM_BANDS];
	s32 index;

	err = brcmf_fil_cmd_data_get(ifp, BRCMF_C_GET_PHYLIST,
				     &phy_list, sizeof(phy_list));
	if (err) {
		brcmf_err("BRCMF_C_GET_PHYLIST error (%d)\n", err);
		return err;
	}

	phy = ((char *)&phy_list)[0];
	brcmf_dbg(INFO, "BRCMF_C_GET_PHYLIST reported: %c phy\n", phy);


	err = brcmf_fil_cmd_data_get(ifp, BRCMF_C_GET_BANDLIST,
				     &band_list, sizeof(band_list));
	if (err) {
		brcmf_err("BRCMF_C_GET_BANDLIST error (%d)\n", err);
		return err;
	}
	brcmf_dbg(INFO, "BRCMF_C_GET_BANDLIST reported: 0x%08x 0x%08x 0x%08x phy\n",
		  band_list[0], band_list[1], band_list[2]);

	err = brcmf_fil_iovar_int_get(ifp, "nmode", &nmode);
	if (err) {
		brcmf_err("nmode error (%d)\n", err);
	} else {
		err = brcmf_fil_iovar_int_get(ifp, "mimo_bw_cap", &bw_cap);
		if (err)
			brcmf_err("mimo_bw_cap error (%d)\n", err);
	}
	brcmf_dbg(INFO, "nmode=%d, mimo_bw_cap=%d\n", nmode, bw_cap);

	err = brcmf_construct_reginfo(cfg, bw_cap);
	if (err) {
		brcmf_err("brcmf_construct_reginfo failed (%d)\n", err);
		return err;
	}

	nband = band_list[0];
	memset(bands, 0, sizeof(bands));

	for (i = 1; i <= nband && i < ARRAY_SIZE(band_list); i++) {
		index = -1;
		if ((band_list[i] == WLC_BAND_5G) &&
		    (__wl_band_5ghz_a.n_channels > 0)) {
			index = IEEE80211_BAND_5GHZ;
			bands[index] = &__wl_band_5ghz_a;
			if ((bw_cap == WLC_N_BW_40ALL) ||
			    (bw_cap == WLC_N_BW_20IN2G_40IN5G))
				bands[index]->ht_cap.cap |=
							IEEE80211_HT_CAP_SGI_40;
		} else if ((band_list[i] == WLC_BAND_2G) &&
			   (__wl_band_2ghz.n_channels > 0)) {
			index = IEEE80211_BAND_2GHZ;
			bands[index] = &__wl_band_2ghz;
			if (bw_cap == WLC_N_BW_40ALL)
				bands[index]->ht_cap.cap |=
							IEEE80211_HT_CAP_SGI_40;
		}

		if ((index >= 0) && nmode) {
			bands[index]->ht_cap.cap |= IEEE80211_HT_CAP_SGI_20;
			bands[index]->ht_cap.cap |= IEEE80211_HT_CAP_DSSSCCK40;
			bands[index]->ht_cap.ht_supported = true;
			bands[index]->ht_cap.ampdu_factor =
						IEEE80211_HT_MAX_AMPDU_64K;
			bands[index]->ht_cap.ampdu_density =
						IEEE80211_HT_MPDU_DENSITY_16;
			/* An HT shall support all EQM rates for one spatial
			 * stream
			 */
			bands[index]->ht_cap.mcs.rx_mask[0] = 0xff;
		}
	}

	wiphy = cfg_to_wiphy(cfg);
	wiphy->bands[IEEE80211_BAND_2GHZ] = bands[IEEE80211_BAND_2GHZ];
	wiphy->bands[IEEE80211_BAND_5GHZ] = bands[IEEE80211_BAND_5GHZ];
	wiphy_apply_custom_regulatory(wiphy, &brcmf_regdom);

	return err;
}


static s32 brcmf_dongle_probecap(struct brcmf_cfg80211_info *cfg)
{
	return brcmf_update_wiphybands(cfg);
}

static s32 brcmf_config_dongle(struct brcmf_cfg80211_info *cfg)
{
	struct net_device *ndev;
	struct wireless_dev *wdev;
	struct brcmf_if *ifp;
	s32 power_mode;
	s32 err = 0;

	if (cfg->dongle_up)
		return err;

	ndev = cfg_to_ndev(cfg);
	wdev = ndev->ieee80211_ptr;
	ifp = netdev_priv(ndev);

	/* make sure RF is ready for work */
	brcmf_fil_cmd_int_set(ifp, BRCMF_C_UP, 0);

	brcmf_dongle_scantime(ifp, WL_SCAN_CHANNEL_TIME,
			      WL_SCAN_UNASSOC_TIME, WL_SCAN_PASSIVE_TIME);

	power_mode = cfg->pwr_save ? PM_FAST : PM_OFF;
	err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_PM, power_mode);
	if (err)
		goto default_conf_out;
	brcmf_dbg(INFO, "power save set to %s\n",
		  (power_mode ? "enabled" : "disabled"));

	err = brcmf_dongle_roam(ifp, (cfg->roam_on ? 0 : 1), WL_BEACON_TIMEOUT);
	if (err)
		goto default_conf_out;
	err = brcmf_cfg80211_change_iface(wdev->wiphy, ndev, wdev->iftype,
					  NULL, NULL);
	if (err)
		goto default_conf_out;
	err = brcmf_dongle_probecap(cfg);
	if (err)
		goto default_conf_out;

	brcmf_configure_arp_offload(ifp, true);

	cfg->dongle_up = true;
default_conf_out:

	return err;

}

static s32 __brcmf_cfg80211_up(struct brcmf_if *ifp)
{
	set_bit(BRCMF_VIF_STATUS_READY, &ifp->vif->sme_state);

	return brcmf_config_dongle(ifp->drvr->config);
}

static s32 __brcmf_cfg80211_down(struct brcmf_if *ifp)
{
	struct brcmf_cfg80211_info *cfg = ifp->drvr->config;

	/*
	 * While going down, if associated with AP disassociate
	 * from AP to save power
	 */
	if (check_vif_up(ifp->vif)) {
		brcmf_link_down(ifp->vif);

		/* Make sure WPA_Supplicant receives all the event
		   generated due to DISASSOC call to the fw to keep
		   the state fw and WPA_Supplicant state consistent
		 */
		brcmf_delay(500);
	}

	brcmf_abort_scanning(cfg);
	clear_bit(BRCMF_VIF_STATUS_READY, &ifp->vif->sme_state);

	return 0;
}

s32 brcmf_cfg80211_up(struct net_device *ndev)
{
	struct brcmf_if *ifp = netdev_priv(ndev);
	struct brcmf_cfg80211_info *cfg = ifp->drvr->config;
	s32 err = 0;

	mutex_lock(&cfg->usr_sync);
	err = __brcmf_cfg80211_up(ifp);
	mutex_unlock(&cfg->usr_sync);

	return err;
}

s32 brcmf_cfg80211_down(struct net_device *ndev)
{
	struct brcmf_if *ifp = netdev_priv(ndev);
	struct brcmf_cfg80211_info *cfg = ifp->drvr->config;
	s32 err = 0;

	mutex_lock(&cfg->usr_sync);
	err = __brcmf_cfg80211_down(ifp);
	mutex_unlock(&cfg->usr_sync);

	return err;
}

enum nl80211_iftype brcmf_cfg80211_get_iftype(struct brcmf_if *ifp)
{
	struct wireless_dev *wdev = &ifp->vif->wdev;

	return wdev->iftype;
}

u32 wl_get_vif_state_all(struct brcmf_cfg80211_info *cfg, unsigned long state)
{
	struct brcmf_cfg80211_vif *vif;
	bool result = 0;

	list_for_each_entry(vif, &cfg->vif_list, list) {
		if (test_bit(state, &vif->sme_state))
			result++;
	}
	return result;
}

static inline bool vif_event_equals(struct brcmf_cfg80211_vif_event *event,
				    u8 action)
{
	u8 evt_action;

	mutex_lock(&event->vif_event_lock);
	evt_action = event->action;
	mutex_unlock(&event->vif_event_lock);
	return evt_action == action;
}

void brcmf_cfg80211_arm_vif_event(struct brcmf_cfg80211_info *cfg,
				  struct brcmf_cfg80211_vif *vif)
{
	struct brcmf_cfg80211_vif_event *event = &cfg->vif_event;

	mutex_lock(&event->vif_event_lock);
	event->vif = vif;
	event->action = 0;
	mutex_unlock(&event->vif_event_lock);
}

bool brcmf_cfg80211_vif_event_armed(struct brcmf_cfg80211_info *cfg)
{
	struct brcmf_cfg80211_vif_event *event = &cfg->vif_event;
	bool armed;

	mutex_lock(&event->vif_event_lock);
	armed = event->vif != NULL;
	mutex_unlock(&event->vif_event_lock);

	return armed;
}
int brcmf_cfg80211_wait_vif_event_timeout(struct brcmf_cfg80211_info *cfg,
					  u8 action, ulong timeout)
{
	struct brcmf_cfg80211_vif_event *event = &cfg->vif_event;

	return wait_event_timeout(event->vif_wq,
				  vif_event_equals(event, action), timeout);
}