- 根目录:
- drivers
- staging
- vt6656
- int.c
/*
* Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
*
* File: int.c
*
* Purpose: Handle USB interrupt endpoint
*
* Author: Jerry Chen
*
* Date: Apr. 2, 2004
*
* Functions:
*
* Revision History:
* 04-02-2004 Jerry Chen: Initial release
*
*/
#include "int.h"
#include "mib.h"
#include "tmacro.h"
#include "mac.h"
#include "power.h"
#include "bssdb.h"
#include "usbpipe.h"
static int msglevel = MSG_LEVEL_INFO; /* MSG_LEVEL_DEBUG */
/*+
*
* Function: InterruptPollingThread
*
* Synopsis: Thread running at IRQL PASSIVE_LEVEL.
*
* Arguments: Device Extension
*
* Returns:
*
* Algorithm: Call USBD for input data;
*
* History: dd-mm-yyyy Author Comment
*
*
* Notes:
*
* USB reads are by nature 'Blocking', and when in a read, the device looks
* like it's in a 'stall' condition, so we deliberately time out every second
* if we've gotten no data
*
-*/
void INTvWorkItem(struct vnt_private *pDevice)
{
int ntStatus;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"---->Interrupt Polling Thread\n");
spin_lock_irq(&pDevice->lock);
if (pDevice->fKillEventPollingThread != true)
ntStatus = PIPEnsInterruptRead(pDevice);
spin_unlock_irq(&pDevice->lock);
}
void INTnsProcessData(struct vnt_private *pDevice)
{
PSINTData pINTData;
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
struct net_device_stats *pStats = &pDevice->stats;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"---->s_nsInterruptProcessData\n");
pINTData = (PSINTData) pDevice->intBuf.pDataBuf;
if (pINTData->byTSR0 & TSR_VALID) {
STAvUpdateTDStatCounter(&(pDevice->scStatistic),
(u8)(pINTData->byPkt0 & 0x0F),
(u8)(pINTData->byPkt0>>4),
pINTData->byTSR0);
BSSvUpdateNodeTxCounter(pDevice,
&(pDevice->scStatistic),
pINTData->byTSR0,
pINTData->byPkt0);
/*DBG_PRN_GRP01(("TSR0 %02x\n", pINTData->byTSR0));*/
}
if (pINTData->byTSR1 & TSR_VALID) {
STAvUpdateTDStatCounter(&(pDevice->scStatistic),
(u8)(pINTData->byPkt1 & 0x0F),
(u8)(pINTData->byPkt1>>4),
pINTData->byTSR1);
BSSvUpdateNodeTxCounter(pDevice,
&(pDevice->scStatistic),
pINTData->byTSR1,
pINTData->byPkt1);
/*DBG_PRN_GRP01(("TSR1 %02x\n", pINTData->byTSR1));*/
}
if (pINTData->byTSR2 & TSR_VALID) {
STAvUpdateTDStatCounter(&(pDevice->scStatistic),
(u8)(pINTData->byPkt2 & 0x0F),
(u8)(pINTData->byPkt2>>4),
pINTData->byTSR2);
BSSvUpdateNodeTxCounter(pDevice,
&(pDevice->scStatistic),
pINTData->byTSR2,
pINTData->byPkt2);
/*DBG_PRN_GRP01(("TSR2 %02x\n", pINTData->byTSR2));*/
}
if (pINTData->byTSR3 & TSR_VALID) {
STAvUpdateTDStatCounter(&(pDevice->scStatistic),
(u8)(pINTData->byPkt3 & 0x0F),
(u8)(pINTData->byPkt3>>4),
pINTData->byTSR3);
BSSvUpdateNodeTxCounter(pDevice,
&(pDevice->scStatistic),
pINTData->byTSR3,
pINTData->byPkt3);
/*DBG_PRN_GRP01(("TSR3 %02x\n", pINTData->byTSR3));*/
}
if (pINTData->byISR0 != 0) {
if (pINTData->byISR0 & ISR_BNTX) {
if (pDevice->eOPMode == OP_MODE_AP) {
if (pMgmt->byDTIMCount > 0) {
pMgmt->byDTIMCount--;
pMgmt->sNodeDBTable[0].bRxPSPoll =
false;
} else if (pMgmt->byDTIMCount == 0) {
/* check if multicast tx buffering */
pMgmt->byDTIMCount =
pMgmt->byDTIMPeriod-1;
pMgmt->sNodeDBTable[0].bRxPSPoll = true;
if (pMgmt->sNodeDBTable[0].bPSEnable)
bScheduleCommand((void *) pDevice,
WLAN_CMD_RX_PSPOLL,
NULL);
}
bScheduleCommand((void *) pDevice,
WLAN_CMD_BECON_SEND,
NULL);
} /* if (pDevice->eOPMode == OP_MODE_AP) */
pDevice->bBeaconSent = true;
} else {
pDevice->bBeaconSent = false;
}
if (pINTData->byISR0 & ISR_TBTT) {
if (pDevice->bEnablePSMode)
bScheduleCommand((void *) pDevice,
WLAN_CMD_TBTT_WAKEUP,
NULL);
if (pDevice->bChannelSwitch) {
pDevice->byChannelSwitchCount--;
if (pDevice->byChannelSwitchCount == 0)
bScheduleCommand((void *) pDevice,
WLAN_CMD_11H_CHSW,
NULL);
}
}
pDevice->qwCurrTSF = cpu_to_le64(pINTData->qwTSF);
/*DBG_PRN_GRP01(("ISR0 = %02x ,
LoTsf = %08x,
HiTsf = %08x\n",
pINTData->byISR0,
pINTData->dwLoTSF,
pINTData->dwHiTSF)); */
STAvUpdate802_11Counter(&pDevice->s802_11Counter,
&pDevice->scStatistic,
pINTData->byRTSSuccess,
pINTData->byRTSFail,
pINTData->byACKFail,
pINTData->byFCSErr);
STAvUpdateIsrStatCounter(&pDevice->scStatistic,
pINTData->byISR0,
pINTData->byISR1);
}
if (pINTData->byISR1 != 0)
if (pINTData->byISR1 & ISR_GPIO3)
bScheduleCommand((void *) pDevice,
WLAN_CMD_RADIO,
NULL);
pDevice->intBuf.uDataLen = 0;
pDevice->intBuf.bInUse = false;
pStats->tx_packets = pDevice->scStatistic.ullTsrOK;
pStats->tx_bytes = pDevice->scStatistic.ullTxDirectedBytes +
pDevice->scStatistic.ullTxMulticastBytes +
pDevice->scStatistic.ullTxBroadcastBytes;
pStats->tx_errors = pDevice->scStatistic.dwTsrErr;
pStats->tx_dropped = pDevice->scStatistic.dwTsrErr;
}