/* * PMU support * * Copyright (C) 2012 ARM Limited * Author: Will Deacon <will.deacon@arm.com> * * This code is based heavily on the ARMv7 perf event code. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #define pr_fmt(fmt) "hw perfevents: " fmt #include <linux/bitmap.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/kernel.h> #include <linux/export.h> #include <linux/perf_event.h> #include <linux/platform_device.h> #include <linux/spinlock.h> #include <linux/uaccess.h> #include <asm/cputype.h> #include <asm/irq.h> #include <asm/irq_regs.h> #include <asm/pmu.h> #include <asm/stacktrace.h> /* * ARMv8 supports a maximum of 32 events. * The cycle counter is included in this total. */ #define ARMPMU_MAX_HWEVENTS 32 static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events); static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask); static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events); #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu)) /* Set at runtime when we know what CPU type we are. */ static struct arm_pmu *cpu_pmu; int armpmu_get_max_events(void) { int max_events = 0; if (cpu_pmu != NULL) max_events = cpu_pmu->num_events; return max_events; } EXPORT_SYMBOL_GPL(armpmu_get_max_events); int perf_num_counters(void) { return armpmu_get_max_events(); } EXPORT_SYMBOL_GPL(perf_num_counters); #define HW_OP_UNSUPPORTED 0xFFFF #define C(_x) \ PERF_COUNT_HW_CACHE_##_x #define CACHE_OP_UNSUPPORTED 0xFFFF static int armpmu_map_cache_event(const unsigned (*cache_map) [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX], u64 config) { unsigned int cache_type, cache_op, cache_result, ret; cache_type = (config >> 0) & 0xff; if (cache_type >= PERF_COUNT_HW_CACHE_MAX) return -EINVAL; cache_op = (config >> 8) & 0xff; if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) return -EINVAL; cache_result = (config >> 16) & 0xff; if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) return -EINVAL; ret = (int)(*cache_map)[cache_type][cache_op][cache_result]; if (ret == CACHE_OP_UNSUPPORTED) return -ENOENT; return ret; } static int armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config) { int mapping; if (config >= PERF_COUNT_HW_MAX) return -EINVAL; mapping = (*event_map)[config]; return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping; } static int armpmu_map_raw_event(u32 raw_event_mask, u64 config) { return (int)(config & raw_event_mask); } static int map_cpu_event(struct perf_event *event, const unsigned (*event_map)[PERF_COUNT_HW_MAX], const unsigned (*cache_map) [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX], u32 raw_event_mask) { u64 config = event->attr.config; switch (event->attr.type) { case PERF_TYPE_HARDWARE: return armpmu_map_event(event_map, config); case PERF_TYPE_HW_CACHE: return armpmu_map_cache_event(cache_map, config); case PERF_TYPE_RAW: return armpmu_map_raw_event(raw_event_mask, config); } return -ENOENT; } int armpmu_event_set_period(struct perf_event *event, struct hw_perf_event *hwc, int idx) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); s64 left = local64_read(&hwc->period_left); s64 period = hwc->sample_period; int ret = 0; if (unlikely(left <= -period)) { left = period; local64_set(&hwc->period_left, left); hwc->last_period = period; ret = 1; } if (unlikely(left <= 0)) { left += period; local64_set(&hwc->period_left, left); hwc->last_period = period; ret = 1; } if (left > (s64)armpmu->max_period) left = armpmu->max_period; local64_set(&hwc->prev_count, (u64)-left); armpmu->write_counter(idx, (u64)(-left) & 0xffffffff); perf_event_update_userpage(event); return ret; } u64 armpmu_event_update(struct perf_event *event, struct hw_perf_event *hwc, int idx) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); u64 delta, prev_raw_count, new_raw_count; again: prev_raw_count = local64_read(&hwc->prev_count); new_raw_count = armpmu->read_counter(idx); if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, new_raw_count) != prev_raw_count) goto again; delta = (new_raw_count - prev_raw_count) & armpmu->max_period; local64_add(delta, &event->count); local64_sub(delta, &hwc->period_left); return new_raw_count; } static void armpmu_read(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; /* Don't read disabled counters! */ if (hwc->idx < 0) return; armpmu_event_update(event, hwc, hwc->idx); } static void armpmu_stop(struct perf_event *event, int flags) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; /* * ARM pmu always has to update the counter, so ignore * PERF_EF_UPDATE, see comments in armpmu_start(). */ if (!(hwc->state & PERF_HES_STOPPED)) { armpmu->disable(hwc, hwc->idx); barrier(); /* why? */ armpmu_event_update(event, hwc, hwc->idx); hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; } } static void armpmu_start(struct perf_event *event, int flags) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; /* * ARM pmu always has to reprogram the period, so ignore * PERF_EF_RELOAD, see the comment below. */ if (flags & PERF_EF_RELOAD) WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); hwc->state = 0; /* * Set the period again. Some counters can't be stopped, so when we * were stopped we simply disabled the IRQ source and the counter * may have been left counting. If we don't do this step then we may * get an interrupt too soon or *way* too late if the overflow has * happened since disabling. */ armpmu_event_set_period(event, hwc, hwc->idx); armpmu->enable(hwc, hwc->idx); } static void armpmu_del(struct perf_event *event, int flags) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct pmu_hw_events *hw_events = armpmu->get_hw_events(); struct hw_perf_event *hwc = &event->hw; int idx = hwc->idx; WARN_ON(idx < 0); armpmu_stop(event, PERF_EF_UPDATE); hw_events->events[idx] = NULL; clear_bit(idx, hw_events->used_mask); perf_event_update_userpage(event); } static int armpmu_add(struct perf_event *event, int flags) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct pmu_hw_events *hw_events = armpmu->get_hw_events(); struct hw_perf_event *hwc = &event->hw; int idx; int err = 0; perf_pmu_disable(event->pmu); /* If we don't have a space for the counter then finish early. */ idx = armpmu->get_event_idx(hw_events, hwc); if (idx < 0) { err = idx; goto out; } /* * If there is an event in the counter we are going to use then make * sure it is disabled. */ event->hw.idx = idx; armpmu->disable(hwc, idx); hw_events->events[idx] = event; hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; if (flags & PERF_EF_START) armpmu_start(event, PERF_EF_RELOAD); /* Propagate our changes to the userspace mapping. */ perf_event_update_userpage(event); out: perf_pmu_enable(event->pmu); return err; } static int validate_event(struct pmu_hw_events *hw_events, struct perf_event *event) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct hw_perf_event fake_event = event->hw; struct pmu *leader_pmu = event->group_leader->pmu; if (is_software_event(event)) return 1; if (event->pmu != leader_pmu || event->state < PERF_EVENT_STATE_OFF) return 1; if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec) return 1; return armpmu->get_event_idx(hw_events, &fake_event) >= 0; } static int validate_group(struct perf_event *event) { struct perf_event *sibling, *leader = event->group_leader; struct pmu_hw_events fake_pmu; DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS); /* * Initialise the fake PMU. We only need to populate the * used_mask for the purposes of validation. */ memset(fake_used_mask, 0, sizeof(fake_used_mask)); fake_pmu.used_mask = fake_used_mask; if (!validate_event(&fake_pmu, leader)) return -EINVAL; list_for_each_entry(sibling, &leader->sibling_list, group_entry) { if (!validate_event(&fake_pmu, sibling)) return -EINVAL; } if (!validate_event(&fake_pmu, event)) return -EINVAL; return 0; } static void armpmu_disable_percpu_irq(void *data) { unsigned int irq = *(unsigned int *)data; disable_percpu_irq(irq); } static void armpmu_release_hardware(struct arm_pmu *armpmu) { int irq; unsigned int i, irqs; struct platform_device *pmu_device = armpmu->plat_device; irqs = min(pmu_device->num_resources, num_possible_cpus()); if (!irqs) return; irq = platform_get_irq(pmu_device, 0); if (irq <= 0) return; if (irq_is_percpu(irq)) { on_each_cpu(armpmu_disable_percpu_irq, &irq, 1); free_percpu_irq(irq, &cpu_hw_events); } else { for (i = 0; i < irqs; ++i) { if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs)) continue; irq = platform_get_irq(pmu_device, i); if (irq > 0) free_irq(irq, armpmu); } } } static void armpmu_enable_percpu_irq(void *data) { unsigned int irq = *(unsigned int *)data; enable_percpu_irq(irq, IRQ_TYPE_NONE); } static int armpmu_reserve_hardware(struct arm_pmu *armpmu) { int err, irq; unsigned int i, irqs; struct platform_device *pmu_device = armpmu->plat_device; if (!pmu_device) { pr_err("no PMU device registered\n"); return -ENODEV; } irqs = min(pmu_device->num_resources, num_possible_cpus()); if (!irqs) { pr_err("no irqs for PMUs defined\n"); return -ENODEV; } irq = platform_get_irq(pmu_device, 0); if (irq <= 0) { pr_err("failed to get valid irq for PMU device\n"); return -ENODEV; } if (irq_is_percpu(irq)) { err = request_percpu_irq(irq, armpmu->handle_irq, "arm-pmu", &cpu_hw_events); if (err) { pr_err("unable to request percpu IRQ%d for ARM PMU counters\n", irq); armpmu_release_hardware(armpmu); return err; } on_each_cpu(armpmu_enable_percpu_irq, &irq, 1); } else { for (i = 0; i < irqs; ++i) { err = 0; irq = platform_get_irq(pmu_device, i); if (irq <= 0) continue; /* * If we have a single PMU interrupt that we can't shift, * assume that we're running on a uniprocessor machine and * continue. Otherwise, continue without this interrupt. */ if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) { pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n", irq, i); continue; } err = request_irq(irq, armpmu->handle_irq, IRQF_NOBALANCING, "arm-pmu", armpmu); if (err) { pr_err("unable to request IRQ%d for ARM PMU counters\n", irq); armpmu_release_hardware(armpmu); return err; } cpumask_set_cpu(i, &armpmu->active_irqs); } } return 0; } static void hw_perf_event_destroy(struct perf_event *event) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); atomic_t *active_events = &armpmu->active_events; struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex; if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) { armpmu_release_hardware(armpmu); mutex_unlock(pmu_reserve_mutex); } } static int event_requires_mode_exclusion(struct perf_event_attr *attr) { return attr->exclude_idle || attr->exclude_user || attr->exclude_kernel || attr->exclude_hv; } static int __hw_perf_event_init(struct perf_event *event) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; int mapping, err; mapping = armpmu->map_event(event); if (mapping < 0) { pr_debug("event %x:%llx not supported\n", event->attr.type, event->attr.config); return mapping; } /* * We don't assign an index until we actually place the event onto * hardware. Use -1 to signify that we haven't decided where to put it * yet. For SMP systems, each core has it's own PMU so we can't do any * clever allocation or constraints checking at this point. */ hwc->idx = -1; hwc->config_base = 0; hwc->config = 0; hwc->event_base = 0; /* * Check whether we need to exclude the counter from certain modes. */ if ((!armpmu->set_event_filter || armpmu->set_event_filter(hwc, &event->attr)) && event_requires_mode_exclusion(&event->attr)) { pr_debug("ARM performance counters do not support mode exclusion\n"); return -EPERM; } /* * Store the event encoding into the config_base field. */ hwc->config_base |= (unsigned long)mapping; if (!hwc->sample_period) { /* * For non-sampling runs, limit the sample_period to half * of the counter width. That way, the new counter value * is far less likely to overtake the previous one unless * you have some serious IRQ latency issues. */ hwc->sample_period = armpmu->max_period >> 1; hwc->last_period = hwc->sample_period; local64_set(&hwc->period_left, hwc->sample_period); } err = 0; if (event->group_leader != event) { err = validate_group(event); if (err) return -EINVAL; } return err; } static int armpmu_event_init(struct perf_event *event) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); int err = 0; atomic_t *active_events = &armpmu->active_events; if (armpmu->map_event(event) == -ENOENT) return -ENOENT; event->destroy = hw_perf_event_destroy; if (!atomic_inc_not_zero(active_events)) { mutex_lock(&armpmu->reserve_mutex); if (atomic_read(active_events) == 0) err = armpmu_reserve_hardware(armpmu); if (!err) atomic_inc(active_events); mutex_unlock(&armpmu->reserve_mutex); } if (err) return err; err = __hw_perf_event_init(event); if (err) hw_perf_event_destroy(event); return err; } static void armpmu_enable(struct pmu *pmu) { struct arm_pmu *armpmu = to_arm_pmu(pmu); struct pmu_hw_events *hw_events = armpmu->get_hw_events(); int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events); if (enabled) armpmu->start(); } static void armpmu_disable(struct pmu *pmu) { struct arm_pmu *armpmu = to_arm_pmu(pmu); armpmu->stop(); } static void __init armpmu_init(struct arm_pmu *armpmu) { atomic_set(&armpmu->active_events, 0); mutex_init(&armpmu->reserve_mutex); armpmu->pmu = (struct pmu) { .pmu_enable = armpmu_enable, .pmu_disable = armpmu_disable, .event_init = armpmu_event_init, .add = armpmu_add, .del = armpmu_del, .start = armpmu_start, .stop = armpmu_stop, .read = armpmu_read, }; } int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type) { armpmu_init(armpmu); return perf_pmu_register(&armpmu->pmu, name, type); } /* * ARMv8 PMUv3 Performance Events handling code. * Common event types. */ enum armv8_pmuv3_perf_types { /* Required events. */ ARMV8_PMUV3_PERFCTR_PMNC_SW_INCR = 0x00, ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL = 0x03, ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS = 0x04, ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED = 0x10, ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES = 0x11, ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED = 0x12, /* At least one of the following is required. */ ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED = 0x08, ARMV8_PMUV3_PERFCTR_OP_SPEC = 0x1B, /* Common architectural events. */ ARMV8_PMUV3_PERFCTR_MEM_READ = 0x06, ARMV8_PMUV3_PERFCTR_MEM_WRITE = 0x07, ARMV8_PMUV3_PERFCTR_EXC_TAKEN = 0x09, ARMV8_PMUV3_PERFCTR_EXC_EXECUTED = 0x0A, ARMV8_PMUV3_PERFCTR_CID_WRITE = 0x0B, ARMV8_PMUV3_PERFCTR_PC_WRITE = 0x0C, ARMV8_PMUV3_PERFCTR_PC_IMM_BRANCH = 0x0D, ARMV8_PMUV3_PERFCTR_PC_PROC_RETURN = 0x0E, ARMV8_PMUV3_PERFCTR_MEM_UNALIGNED_ACCESS = 0x0F, ARMV8_PMUV3_PERFCTR_TTBR_WRITE = 0x1C, /* Common microarchitectural events. */ ARMV8_PMUV3_PERFCTR_L1_ICACHE_REFILL = 0x01, ARMV8_PMUV3_PERFCTR_ITLB_REFILL = 0x02, ARMV8_PMUV3_PERFCTR_DTLB_REFILL = 0x05, ARMV8_PMUV3_PERFCTR_MEM_ACCESS = 0x13, ARMV8_PMUV3_PERFCTR_L1_ICACHE_ACCESS = 0x14, ARMV8_PMUV3_PERFCTR_L1_DCACHE_WB = 0x15, ARMV8_PMUV3_PERFCTR_L2_CACHE_ACCESS = 0x16, ARMV8_PMUV3_PERFCTR_L2_CACHE_REFILL = 0x17, ARMV8_PMUV3_PERFCTR_L2_CACHE_WB = 0x18, ARMV8_PMUV3_PERFCTR_BUS_ACCESS = 0x19, ARMV8_PMUV3_PERFCTR_MEM_ERROR = 0x1A, ARMV8_PMUV3_PERFCTR_BUS_CYCLES = 0x1D, }; /* PMUv3 HW events mapping. */ static const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = { [PERF_COUNT_HW_CPU_CYCLES] = ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES, [PERF_COUNT_HW_INSTRUCTIONS] = ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED, [PERF_COUNT_HW_CACHE_REFERENCES] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS, [PERF_COUNT_HW_CACHE_MISSES] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = HW_OP_UNSUPPORTED, [PERF_COUNT_HW_BRANCH_MISSES] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED, [PERF_COUNT_HW_BUS_CYCLES] = HW_OP_UNSUPPORTED, [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = HW_OP_UNSUPPORTED, [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = HW_OP_UNSUPPORTED, }; static const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(L1D)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS, [C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS, [C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, }, [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, }, [C(DTLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, }, [C(ITLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, }, [C(BPU)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED, [C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED, [C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, }, [C(NODE)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, }, }; /* * Perf Events' indices */ #define ARMV8_IDX_CYCLE_COUNTER 0 #define ARMV8_IDX_COUNTER0 1 #define ARMV8_IDX_COUNTER_LAST (ARMV8_IDX_CYCLE_COUNTER + cpu_pmu->num_events - 1) #define ARMV8_MAX_COUNTERS 32 #define ARMV8_COUNTER_MASK (ARMV8_MAX_COUNTERS - 1) /* * ARMv8 low level PMU access */ /* * Perf Event to low level counters mapping */ #define ARMV8_IDX_TO_COUNTER(x) \ (((x) - ARMV8_IDX_COUNTER0) & ARMV8_COUNTER_MASK) /* * Per-CPU PMCR: config reg */ #define ARMV8_PMCR_E (1 << 0) /* Enable all counters */ #define ARMV8_PMCR_P (1 << 1) /* Reset all counters */ #define ARMV8_PMCR_C (1 << 2) /* Cycle counter reset */ #define ARMV8_PMCR_D (1 << 3) /* CCNT counts every 64th cpu cycle */ #define ARMV8_PMCR_X (1 << 4) /* Export to ETM */ #define ARMV8_PMCR_DP (1 << 5) /* Disable CCNT if non-invasive debug*/ #define ARMV8_PMCR_N_SHIFT 11 /* Number of counters supported */ #define ARMV8_PMCR_N_MASK 0x1f #define ARMV8_PMCR_MASK 0x3f /* Mask for writable bits */ /* * PMOVSR: counters overflow flag status reg */ #define ARMV8_OVSR_MASK 0xffffffff /* Mask for writable bits */ #define ARMV8_OVERFLOWED_MASK ARMV8_OVSR_MASK /* * PMXEVTYPER: Event selection reg */ #define ARMV8_EVTYPE_MASK 0xc80003ff /* Mask for writable bits */ #define ARMV8_EVTYPE_EVENT 0x3ff /* Mask for EVENT bits */ /* * Event filters for PMUv3 */ #define ARMV8_EXCLUDE_EL1 (1 << 31) #define ARMV8_EXCLUDE_EL0 (1 << 30) #define ARMV8_INCLUDE_EL2 (1 << 27) static inline u32 armv8pmu_pmcr_read(void) { u32 val; asm volatile("mrs %0, pmcr_el0" : "=r" (val)); return val; } static inline void armv8pmu_pmcr_write(u32 val) { val &= ARMV8_PMCR_MASK; isb(); asm volatile("msr pmcr_el0, %0" :: "r" (val)); } static inline int armv8pmu_has_overflowed(u32 pmovsr) { return pmovsr & ARMV8_OVERFLOWED_MASK; } static inline int armv8pmu_counter_valid(int idx) { return idx >= ARMV8_IDX_CYCLE_COUNTER && idx <= ARMV8_IDX_COUNTER_LAST; } static inline int armv8pmu_counter_has_overflowed(u32 pmnc, int idx) { int ret = 0; u32 counter; if (!armv8pmu_counter_valid(idx)) { pr_err("CPU%u checking wrong counter %d overflow status\n", smp_processor_id(), idx); } else { counter = ARMV8_IDX_TO_COUNTER(idx); ret = pmnc & BIT(counter); } return ret; } static inline int armv8pmu_select_counter(int idx) { u32 counter; if (!armv8pmu_counter_valid(idx)) { pr_err("CPU%u selecting wrong PMNC counter %d\n", smp_processor_id(), idx); return -EINVAL; } counter = ARMV8_IDX_TO_COUNTER(idx); asm volatile("msr pmselr_el0, %0" :: "r" (counter)); isb(); return idx; } static inline u32 armv8pmu_read_counter(int idx) { u32 value = 0; if (!armv8pmu_counter_valid(idx)) pr_err("CPU%u reading wrong counter %d\n", smp_processor_id(), idx); else if (idx == ARMV8_IDX_CYCLE_COUNTER) asm volatile("mrs %0, pmccntr_el0" : "=r" (value)); else if (armv8pmu_select_counter(idx) == idx) asm volatile("mrs %0, pmxevcntr_el0" : "=r" (value)); return value; } static inline void armv8pmu_write_counter(int idx, u32 value) { if (!armv8pmu_counter_valid(idx)) pr_err("CPU%u writing wrong counter %d\n", smp_processor_id(), idx); else if (idx == ARMV8_IDX_CYCLE_COUNTER) asm volatile("msr pmccntr_el0, %0" :: "r" (value)); else if (armv8pmu_select_counter(idx) == idx) asm volatile("msr pmxevcntr_el0, %0" :: "r" (value)); } static inline void armv8pmu_write_evtype(int idx, u32 val) { if (armv8pmu_select_counter(idx) == idx) { val &= ARMV8_EVTYPE_MASK; asm volatile("msr pmxevtyper_el0, %0" :: "r" (val)); } } static inline int armv8pmu_enable_counter(int idx) { u32 counter; if (!armv8pmu_counter_valid(idx)) { pr_err("CPU%u enabling wrong PMNC counter %d\n", smp_processor_id(), idx); return -EINVAL; } counter = ARMV8_IDX_TO_COUNTER(idx); asm volatile("msr pmcntenset_el0, %0" :: "r" (BIT(counter))); return idx; } static inline int armv8pmu_disable_counter(int idx) { u32 counter; if (!armv8pmu_counter_valid(idx)) { pr_err("CPU%u disabling wrong PMNC counter %d\n", smp_processor_id(), idx); return -EINVAL; } counter = ARMV8_IDX_TO_COUNTER(idx); asm volatile("msr pmcntenclr_el0, %0" :: "r" (BIT(counter))); return idx; } static inline int armv8pmu_enable_intens(int idx) { u32 counter; if (!armv8pmu_counter_valid(idx)) { pr_err("CPU%u enabling wrong PMNC counter IRQ enable %d\n", smp_processor_id(), idx); return -EINVAL; } counter = ARMV8_IDX_TO_COUNTER(idx); asm volatile("msr pmintenset_el1, %0" :: "r" (BIT(counter))); return idx; } static inline int armv8pmu_disable_intens(int idx) { u32 counter; if (!armv8pmu_counter_valid(idx)) { pr_err("CPU%u disabling wrong PMNC counter IRQ enable %d\n", smp_processor_id(), idx); return -EINVAL; } counter = ARMV8_IDX_TO_COUNTER(idx); asm volatile("msr pmintenclr_el1, %0" :: "r" (BIT(counter))); isb(); /* Clear the overflow flag in case an interrupt is pending. */ asm volatile("msr pmovsclr_el0, %0" :: "r" (BIT(counter))); isb(); return idx; } static inline u32 armv8pmu_getreset_flags(void) { u32 value; /* Read */ asm volatile("mrs %0, pmovsclr_el0" : "=r" (value)); /* Write to clear flags */ value &= ARMV8_OVSR_MASK; asm volatile("msr pmovsclr_el0, %0" :: "r" (value)); return value; } static void armv8pmu_enable_event(struct hw_perf_event *hwc, int idx) { unsigned long flags; struct pmu_hw_events *events = cpu_pmu->get_hw_events(); /* * Enable counter and interrupt, and set the counter to count * the event that we're interested in. */ raw_spin_lock_irqsave(&events->pmu_lock, flags); /* * Disable counter */ armv8pmu_disable_counter(idx); /* * Set event (if destined for PMNx counters). */ armv8pmu_write_evtype(idx, hwc->config_base); /* * Enable interrupt for this counter */ armv8pmu_enable_intens(idx); /* * Enable counter */ armv8pmu_enable_counter(idx); raw_spin_unlock_irqrestore(&events->pmu_lock, flags); } static void armv8pmu_disable_event(struct hw_perf_event *hwc, int idx) { unsigned long flags; struct pmu_hw_events *events = cpu_pmu->get_hw_events(); /* * Disable counter and interrupt */ raw_spin_lock_irqsave(&events->pmu_lock, flags); /* * Disable counter */ armv8pmu_disable_counter(idx); /* * Disable interrupt for this counter */ armv8pmu_disable_intens(idx); raw_spin_unlock_irqrestore(&events->pmu_lock, flags); } static irqreturn_t armv8pmu_handle_irq(int irq_num, void *dev) { u32 pmovsr; struct perf_sample_data data; struct pmu_hw_events *cpuc; struct pt_regs *regs; int idx; /* * Get and reset the IRQ flags */ pmovsr = armv8pmu_getreset_flags(); /* * Did an overflow occur? */ if (!armv8pmu_has_overflowed(pmovsr)) return IRQ_NONE; /* * Handle the counter(s) overflow(s) */ regs = get_irq_regs(); cpuc = this_cpu_ptr(&cpu_hw_events); for (idx = 0; idx < cpu_pmu->num_events; ++idx) { struct perf_event *event = cpuc->events[idx]; struct hw_perf_event *hwc; /* Ignore if we don't have an event. */ if (!event) continue; /* * We have a single interrupt for all counters. Check that * each counter has overflowed before we process it. */ if (!armv8pmu_counter_has_overflowed(pmovsr, idx)) continue; hwc = &event->hw; armpmu_event_update(event, hwc, idx); perf_sample_data_init(&data, 0, hwc->last_period); if (!armpmu_event_set_period(event, hwc, idx)) continue; if (perf_event_overflow(event, &data, regs)) cpu_pmu->disable(hwc, idx); } /* * Handle the pending perf events. * * Note: this call *must* be run with interrupts disabled. For * platforms that can have the PMU interrupts raised as an NMI, this * will not work. */ irq_work_run(); return IRQ_HANDLED; } static void armv8pmu_start(void) { unsigned long flags; struct pmu_hw_events *events = cpu_pmu->get_hw_events(); raw_spin_lock_irqsave(&events->pmu_lock, flags); /* Enable all counters */ armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMCR_E); raw_spin_unlock_irqrestore(&events->pmu_lock, flags); } static void armv8pmu_stop(void) { unsigned long flags; struct pmu_hw_events *events = cpu_pmu->get_hw_events(); raw_spin_lock_irqsave(&events->pmu_lock, flags); /* Disable all counters */ armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMCR_E); raw_spin_unlock_irqrestore(&events->pmu_lock, flags); } static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc, struct hw_perf_event *event) { int idx; unsigned long evtype = event->config_base & ARMV8_EVTYPE_EVENT; /* Always place a cycle counter into the cycle counter. */ if (evtype == ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES) { if (test_and_set_bit(ARMV8_IDX_CYCLE_COUNTER, cpuc->used_mask)) return -EAGAIN; return ARMV8_IDX_CYCLE_COUNTER; } /* * For anything other than a cycle counter, try and use * the events counters */ for (idx = ARMV8_IDX_COUNTER0; idx < cpu_pmu->num_events; ++idx) { if (!test_and_set_bit(idx, cpuc->used_mask)) return idx; } /* The counters are all in use. */ return -EAGAIN; } /* * Add an event filter to a given event. This will only work for PMUv2 PMUs. */ static int armv8pmu_set_event_filter(struct hw_perf_event *event, struct perf_event_attr *attr) { unsigned long config_base = 0; if (attr->exclude_idle) return -EPERM; if (attr->exclude_user) config_base |= ARMV8_EXCLUDE_EL0; if (attr->exclude_kernel) config_base |= ARMV8_EXCLUDE_EL1; if (!attr->exclude_hv) config_base |= ARMV8_INCLUDE_EL2; /* * Install the filter into config_base as this is used to * construct the event type. */ event->config_base = config_base; return 0; } static void armv8pmu_reset(void *info) { u32 idx, nb_cnt = cpu_pmu->num_events; /* The counter and interrupt enable registers are unknown at reset. */ for (idx = ARMV8_IDX_CYCLE_COUNTER; idx < nb_cnt; ++idx) armv8pmu_disable_event(NULL, idx); /* Initialize & Reset PMNC: C and P bits. */ armv8pmu_pmcr_write(ARMV8_PMCR_P | ARMV8_PMCR_C); /* Disable access from userspace. */ asm volatile("msr pmuserenr_el0, %0" :: "r" (0)); } static int armv8_pmuv3_map_event(struct perf_event *event) { return map_cpu_event(event, &armv8_pmuv3_perf_map, &armv8_pmuv3_perf_cache_map, ARMV8_EVTYPE_EVENT); } static struct arm_pmu armv8pmu = { .handle_irq = armv8pmu_handle_irq, .enable = armv8pmu_enable_event, .disable = armv8pmu_disable_event, .read_counter = armv8pmu_read_counter, .write_counter = armv8pmu_write_counter, .get_event_idx = armv8pmu_get_event_idx, .start = armv8pmu_start, .stop = armv8pmu_stop, .reset = armv8pmu_reset, .max_period = (1LLU << 32) - 1, }; static u32 __init armv8pmu_read_num_pmnc_events(void) { u32 nb_cnt; /* Read the nb of CNTx counters supported from PMNC */ nb_cnt = (armv8pmu_pmcr_read() >> ARMV8_PMCR_N_SHIFT) & ARMV8_PMCR_N_MASK; /* Add the CPU cycles counter and return */ return nb_cnt + 1; } static struct arm_pmu *__init armv8_pmuv3_pmu_init(void) { armv8pmu.name = "arm/armv8-pmuv3"; armv8pmu.map_event = armv8_pmuv3_map_event; armv8pmu.num_events = armv8pmu_read_num_pmnc_events(); armv8pmu.set_event_filter = armv8pmu_set_event_filter; return &armv8pmu; } /* * Ensure the PMU has sane values out of reset. * This requires SMP to be available, so exists as a separate initcall. */ static int __init cpu_pmu_reset(void) { if (cpu_pmu && cpu_pmu->reset) return on_each_cpu(cpu_pmu->reset, NULL, 1); return 0; } arch_initcall(cpu_pmu_reset); /* * PMU platform driver and devicetree bindings. */ static struct of_device_id armpmu_of_device_ids[] = { {.compatible = "arm,armv8-pmuv3"}, {}, }; static int armpmu_device_probe(struct platform_device *pdev) { if (!cpu_pmu) return -ENODEV; cpu_pmu->plat_device = pdev; return 0; } static struct platform_driver armpmu_driver = { .driver = { .name = "arm-pmu", .of_match_table = armpmu_of_device_ids, }, .probe = armpmu_device_probe, }; static int __init register_pmu_driver(void) { return platform_driver_register(&armpmu_driver); } device_initcall(register_pmu_driver); static struct pmu_hw_events *armpmu_get_cpu_events(void) { return this_cpu_ptr(&cpu_hw_events); } static void __init cpu_pmu_init(struct arm_pmu *armpmu) { int cpu; for_each_possible_cpu(cpu) { struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu); events->events = per_cpu(hw_events, cpu); events->used_mask = per_cpu(used_mask, cpu); raw_spin_lock_init(&events->pmu_lock); } armpmu->get_hw_events = armpmu_get_cpu_events; } static int __init init_hw_perf_events(void) { u64 dfr = read_cpuid(ID_AA64DFR0_EL1); switch ((dfr >> 8) & 0xf) { case 0x1: /* PMUv3 */ cpu_pmu = armv8_pmuv3_pmu_init(); break; } if (cpu_pmu) { pr_info("enabled with %s PMU driver, %d counters available\n", cpu_pmu->name, cpu_pmu->num_events); cpu_pmu_init(cpu_pmu); armpmu_register(cpu_pmu, "cpu", PERF_TYPE_RAW); } else { pr_info("no hardware support available\n"); } return 0; } early_initcall(init_hw_perf_events); /* * Callchain handling code. */ struct frame_tail { struct frame_tail __user *fp; unsigned long lr; } __attribute__((packed)); /* * Get the return address for a single stackframe and return a pointer to the * next frame tail. */ static struct frame_tail __user * user_backtrace(struct frame_tail __user *tail, struct perf_callchain_entry *entry) { struct frame_tail buftail; unsigned long err; /* Also check accessibility of one struct frame_tail beyond */ if (!access_ok(VERIFY_READ, tail, sizeof(buftail))) return NULL; pagefault_disable(); err = __copy_from_user_inatomic(&buftail, tail, sizeof(buftail)); pagefault_enable(); if (err) return NULL; perf_callchain_store(entry, buftail.lr); /* * Frame pointers should strictly progress back up the stack * (towards higher addresses). */ if (tail >= buftail.fp) return NULL; return buftail.fp; } void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs) { struct frame_tail __user *tail; if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) { /* We don't support guest os callchain now */ return; } perf_callchain_store(entry, regs->pc); tail = (struct frame_tail __user *)regs->regs[29]; while (entry->nr < PERF_MAX_STACK_DEPTH && tail && !((unsigned long)tail & 0xf)) tail = user_backtrace(tail, entry); } /* * Gets called by walk_stackframe() for every stackframe. This will be called * whist unwinding the stackframe and is like a subroutine return so we use * the PC. */ static int callchain_trace(struct stackframe *frame, void *data) { struct perf_callchain_entry *entry = data; perf_callchain_store(entry, frame->pc); return 0; } void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs) { struct stackframe frame; if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) { /* We don't support guest os callchain now */ return; } frame.fp = regs->regs[29]; frame.sp = regs->sp; frame.pc = regs->pc; walk_stackframe(&frame, callchain_trace, entry); } unsigned long perf_instruction_pointer(struct pt_regs *regs) { if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) return perf_guest_cbs->get_guest_ip(); return instruction_pointer(regs); } unsigned long perf_misc_flags(struct pt_regs *regs) { int misc = 0; if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) { if (perf_guest_cbs->is_user_mode()) misc |= PERF_RECORD_MISC_GUEST_USER; else misc |= PERF_RECORD_MISC_GUEST_KERNEL; } else { if (user_mode(regs)) misc |= PERF_RECORD_MISC_USER; else misc |= PERF_RECORD_MISC_KERNEL; } return misc; }