#ifndef _ASM_IA64_PROCESSOR_H #define _ASM_IA64_PROCESSOR_H /* * Copyright (C) 1998-2004 Hewlett-Packard Co * David Mosberger-Tang <davidm@hpl.hp.com> * Stephane Eranian <eranian@hpl.hp.com> * Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com> * Copyright (C) 1999 Don Dugger <don.dugger@intel.com> * * 11/24/98 S.Eranian added ia64_set_iva() * 12/03/99 D. Mosberger implement thread_saved_pc() via kernel unwind API * 06/16/00 A. Mallick added csd/ssd/tssd for ia32 support */ #include <asm/intrinsics.h> #include <asm/kregs.h> #include <asm/ptrace.h> #include <asm/ustack.h> #define __ARCH_WANT_UNLOCKED_CTXSW #define ARCH_HAS_PREFETCH_SWITCH_STACK #define IA64_NUM_PHYS_STACK_REG 96 #define IA64_NUM_DBG_REGS 8 #define DEFAULT_MAP_BASE __IA64_UL_CONST(0x2000000000000000) #define DEFAULT_TASK_SIZE __IA64_UL_CONST(0xa000000000000000) /* * TASK_SIZE really is a mis-named. It really is the maximum user * space address (plus one). On IA-64, there are five regions of 2TB * each (assuming 8KB page size), for a total of 8TB of user virtual * address space. */ #define TASK_SIZE DEFAULT_TASK_SIZE /* * This decides where the kernel will search for a free chunk of vm * space during mmap's. */ #define TASK_UNMAPPED_BASE (current->thread.map_base) #define IA64_THREAD_FPH_VALID (__IA64_UL(1) << 0) /* floating-point high state valid? */ #define IA64_THREAD_DBG_VALID (__IA64_UL(1) << 1) /* debug registers valid? */ #define IA64_THREAD_PM_VALID (__IA64_UL(1) << 2) /* performance registers valid? */ #define IA64_THREAD_UAC_NOPRINT (__IA64_UL(1) << 3) /* don't log unaligned accesses */ #define IA64_THREAD_UAC_SIGBUS (__IA64_UL(1) << 4) /* generate SIGBUS on unaligned acc. */ #define IA64_THREAD_MIGRATION (__IA64_UL(1) << 5) /* require migration sync at ctx sw */ #define IA64_THREAD_FPEMU_NOPRINT (__IA64_UL(1) << 6) /* don't log any fpswa faults */ #define IA64_THREAD_FPEMU_SIGFPE (__IA64_UL(1) << 7) /* send a SIGFPE for fpswa faults */ #define IA64_THREAD_UAC_SHIFT 3 #define IA64_THREAD_UAC_MASK (IA64_THREAD_UAC_NOPRINT | IA64_THREAD_UAC_SIGBUS) #define IA64_THREAD_FPEMU_SHIFT 6 #define IA64_THREAD_FPEMU_MASK (IA64_THREAD_FPEMU_NOPRINT | IA64_THREAD_FPEMU_SIGFPE) /* * This shift should be large enough to be able to represent 1000000000/itc_freq with good * accuracy while being small enough to fit 10*1000000000<<IA64_NSEC_PER_CYC_SHIFT in 64 bits * (this will give enough slack to represent 10 seconds worth of time as a scaled number). */ #define IA64_NSEC_PER_CYC_SHIFT 30 #ifndef __ASSEMBLY__ #include <linux/cache.h> #include <linux/compiler.h> #include <linux/threads.h> #include <linux/types.h> #include <linux/bitops.h> #include <asm/fpu.h> #include <asm/page.h> #include <asm/percpu.h> #include <asm/rse.h> #include <asm/unwind.h> #include <linux/atomic.h> #ifdef CONFIG_NUMA #include <asm/nodedata.h> #endif /* like above but expressed as bitfields for more efficient access: */ struct ia64_psr { __u64 reserved0 : 1; __u64 be : 1; __u64 up : 1; __u64 ac : 1; __u64 mfl : 1; __u64 mfh : 1; __u64 reserved1 : 7; __u64 ic : 1; __u64 i : 1; __u64 pk : 1; __u64 reserved2 : 1; __u64 dt : 1; __u64 dfl : 1; __u64 dfh : 1; __u64 sp : 1; __u64 pp : 1; __u64 di : 1; __u64 si : 1; __u64 db : 1; __u64 lp : 1; __u64 tb : 1; __u64 rt : 1; __u64 reserved3 : 4; __u64 cpl : 2; __u64 is : 1; __u64 mc : 1; __u64 it : 1; __u64 id : 1; __u64 da : 1; __u64 dd : 1; __u64 ss : 1; __u64 ri : 2; __u64 ed : 1; __u64 bn : 1; __u64 reserved4 : 19; }; union ia64_isr { __u64 val; struct { __u64 code : 16; __u64 vector : 8; __u64 reserved1 : 8; __u64 x : 1; __u64 w : 1; __u64 r : 1; __u64 na : 1; __u64 sp : 1; __u64 rs : 1; __u64 ir : 1; __u64 ni : 1; __u64 so : 1; __u64 ei : 2; __u64 ed : 1; __u64 reserved2 : 20; }; }; union ia64_lid { __u64 val; struct { __u64 rv : 16; __u64 eid : 8; __u64 id : 8; __u64 ig : 32; }; }; union ia64_tpr { __u64 val; struct { __u64 ig0 : 4; __u64 mic : 4; __u64 rsv : 8; __u64 mmi : 1; __u64 ig1 : 47; }; }; union ia64_itir { __u64 val; struct { __u64 rv3 : 2; /* 0-1 */ __u64 ps : 6; /* 2-7 */ __u64 key : 24; /* 8-31 */ __u64 rv4 : 32; /* 32-63 */ }; }; union ia64_rr { __u64 val; struct { __u64 ve : 1; /* enable hw walker */ __u64 reserved0: 1; /* reserved */ __u64 ps : 6; /* log page size */ __u64 rid : 24; /* region id */ __u64 reserved1: 32; /* reserved */ }; }; /* * CPU type, hardware bug flags, and per-CPU state. Frequently used * state comes earlier: */ struct cpuinfo_ia64 { unsigned int softirq_pending; unsigned long itm_delta; /* # of clock cycles between clock ticks */ unsigned long itm_next; /* interval timer mask value to use for next clock tick */ unsigned long nsec_per_cyc; /* (1000000000<<IA64_NSEC_PER_CYC_SHIFT)/itc_freq */ unsigned long unimpl_va_mask; /* mask of unimplemented virtual address bits (from PAL) */ unsigned long unimpl_pa_mask; /* mask of unimplemented physical address bits (from PAL) */ unsigned long itc_freq; /* frequency of ITC counter */ unsigned long proc_freq; /* frequency of processor */ unsigned long cyc_per_usec; /* itc_freq/1000000 */ unsigned long ptce_base; unsigned int ptce_count[2]; unsigned int ptce_stride[2]; struct task_struct *ksoftirqd; /* kernel softirq daemon for this CPU */ #ifdef CONFIG_SMP unsigned long loops_per_jiffy; int cpu; unsigned int socket_id; /* physical processor socket id */ unsigned short core_id; /* core id */ unsigned short thread_id; /* thread id */ unsigned short num_log; /* Total number of logical processors on * this socket that were successfully booted */ unsigned char cores_per_socket; /* Cores per processor socket */ unsigned char threads_per_core; /* Threads per core */ #endif /* CPUID-derived information: */ unsigned long ppn; unsigned long features; unsigned char number; unsigned char revision; unsigned char model; unsigned char family; unsigned char archrev; char vendor[16]; char *model_name; #ifdef CONFIG_NUMA struct ia64_node_data *node_data; #endif }; DECLARE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info); /* * The "local" data variable. It refers to the per-CPU data of the currently executing * CPU, much like "current" points to the per-task data of the currently executing task. * Do not use the address of local_cpu_data, since it will be different from * cpu_data(smp_processor_id())! */ #define local_cpu_data (&__ia64_per_cpu_var(ia64_cpu_info)) #define cpu_data(cpu) (&per_cpu(ia64_cpu_info, cpu)) extern void print_cpu_info (struct cpuinfo_ia64 *); typedef struct { unsigned long seg; } mm_segment_t; #define SET_UNALIGN_CTL(task,value) \ ({ \ (task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_UAC_MASK) \ | (((value) << IA64_THREAD_UAC_SHIFT) & IA64_THREAD_UAC_MASK)); \ 0; \ }) #define GET_UNALIGN_CTL(task,addr) \ ({ \ put_user(((task)->thread.flags & IA64_THREAD_UAC_MASK) >> IA64_THREAD_UAC_SHIFT, \ (int __user *) (addr)); \ }) #define SET_FPEMU_CTL(task,value) \ ({ \ (task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_FPEMU_MASK) \ | (((value) << IA64_THREAD_FPEMU_SHIFT) & IA64_THREAD_FPEMU_MASK)); \ 0; \ }) #define GET_FPEMU_CTL(task,addr) \ ({ \ put_user(((task)->thread.flags & IA64_THREAD_FPEMU_MASK) >> IA64_THREAD_FPEMU_SHIFT, \ (int __user *) (addr)); \ }) struct thread_struct { __u32 flags; /* various thread flags (see IA64_THREAD_*) */ /* writing on_ustack is performance-critical, so it's worth spending 8 bits on it... */ __u8 on_ustack; /* executing on user-stacks? */ __u8 pad[3]; __u64 ksp; /* kernel stack pointer */ __u64 map_base; /* base address for get_unmapped_area() */ __u64 rbs_bot; /* the base address for the RBS */ int last_fph_cpu; /* CPU that may hold the contents of f32-f127 */ #ifdef CONFIG_PERFMON void *pfm_context; /* pointer to detailed PMU context */ unsigned long pfm_needs_checking; /* when >0, pending perfmon work on kernel exit */ # define INIT_THREAD_PM .pfm_context = NULL, \ .pfm_needs_checking = 0UL, #else # define INIT_THREAD_PM #endif unsigned long dbr[IA64_NUM_DBG_REGS]; unsigned long ibr[IA64_NUM_DBG_REGS]; struct ia64_fpreg fph[96]; /* saved/loaded on demand */ }; #define INIT_THREAD { \ .flags = 0, \ .on_ustack = 0, \ .ksp = 0, \ .map_base = DEFAULT_MAP_BASE, \ .rbs_bot = STACK_TOP - DEFAULT_USER_STACK_SIZE, \ .last_fph_cpu = -1, \ INIT_THREAD_PM \ .dbr = {0, }, \ .ibr = {0, }, \ .fph = {{{{0}}}, } \ } #define start_thread(regs,new_ip,new_sp) do { \ regs->cr_ipsr = ((regs->cr_ipsr | (IA64_PSR_BITS_TO_SET | IA64_PSR_CPL)) \ & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_RI | IA64_PSR_IS)); \ regs->cr_iip = new_ip; \ regs->ar_rsc = 0xf; /* eager mode, privilege level 3 */ \ regs->ar_rnat = 0; \ regs->ar_bspstore = current->thread.rbs_bot; \ regs->ar_fpsr = FPSR_DEFAULT; \ regs->loadrs = 0; \ regs->r8 = get_dumpable(current->mm); /* set "don't zap registers" flag */ \ regs->r12 = new_sp - 16; /* allocate 16 byte scratch area */ \ if (unlikely(get_dumpable(current->mm) != SUID_DUMP_USER)) { \ /* \ * Zap scratch regs to avoid leaking bits between processes with different \ * uid/privileges. \ */ \ regs->ar_pfs = 0; regs->b0 = 0; regs->pr = 0; \ regs->r1 = 0; regs->r9 = 0; regs->r11 = 0; regs->r13 = 0; regs->r15 = 0; \ } \ } while (0) /* Forward declarations, a strange C thing... */ struct mm_struct; struct task_struct; /* * Free all resources held by a thread. This is called after the * parent of DEAD_TASK has collected the exit status of the task via * wait(). */ #define release_thread(dead_task) /* Get wait channel for task P. */ extern unsigned long get_wchan (struct task_struct *p); /* Return instruction pointer of blocked task TSK. */ #define KSTK_EIP(tsk) \ ({ \ struct pt_regs *_regs = task_pt_regs(tsk); \ _regs->cr_iip + ia64_psr(_regs)->ri; \ }) /* Return stack pointer of blocked task TSK. */ #define KSTK_ESP(tsk) ((tsk)->thread.ksp) extern void ia64_getreg_unknown_kr (void); extern void ia64_setreg_unknown_kr (void); #define ia64_get_kr(regnum) \ ({ \ unsigned long r = 0; \ \ switch (regnum) { \ case 0: r = ia64_getreg(_IA64_REG_AR_KR0); break; \ case 1: r = ia64_getreg(_IA64_REG_AR_KR1); break; \ case 2: r = ia64_getreg(_IA64_REG_AR_KR2); break; \ case 3: r = ia64_getreg(_IA64_REG_AR_KR3); break; \ case 4: r = ia64_getreg(_IA64_REG_AR_KR4); break; \ case 5: r = ia64_getreg(_IA64_REG_AR_KR5); break; \ case 6: r = ia64_getreg(_IA64_REG_AR_KR6); break; \ case 7: r = ia64_getreg(_IA64_REG_AR_KR7); break; \ default: ia64_getreg_unknown_kr(); break; \ } \ r; \ }) #define ia64_set_kr(regnum, r) \ ({ \ switch (regnum) { \ case 0: ia64_setreg(_IA64_REG_AR_KR0, r); break; \ case 1: ia64_setreg(_IA64_REG_AR_KR1, r); break; \ case 2: ia64_setreg(_IA64_REG_AR_KR2, r); break; \ case 3: ia64_setreg(_IA64_REG_AR_KR3, r); break; \ case 4: ia64_setreg(_IA64_REG_AR_KR4, r); break; \ case 5: ia64_setreg(_IA64_REG_AR_KR5, r); break; \ case 6: ia64_setreg(_IA64_REG_AR_KR6, r); break; \ case 7: ia64_setreg(_IA64_REG_AR_KR7, r); break; \ default: ia64_setreg_unknown_kr(); break; \ } \ }) /* * The following three macros can't be inline functions because we don't have struct * task_struct at this point. */ /* * Return TRUE if task T owns the fph partition of the CPU we're running on. * Must be called from code that has preemption disabled. */ #define ia64_is_local_fpu_owner(t) \ ({ \ struct task_struct *__ia64_islfo_task = (t); \ (__ia64_islfo_task->thread.last_fph_cpu == smp_processor_id() \ && __ia64_islfo_task == (struct task_struct *) ia64_get_kr(IA64_KR_FPU_OWNER)); \ }) /* * Mark task T as owning the fph partition of the CPU we're running on. * Must be called from code that has preemption disabled. */ #define ia64_set_local_fpu_owner(t) do { \ struct task_struct *__ia64_slfo_task = (t); \ __ia64_slfo_task->thread.last_fph_cpu = smp_processor_id(); \ ia64_set_kr(IA64_KR_FPU_OWNER, (unsigned long) __ia64_slfo_task); \ } while (0) /* Mark the fph partition of task T as being invalid on all CPUs. */ #define ia64_drop_fpu(t) ((t)->thread.last_fph_cpu = -1) extern void __ia64_init_fpu (void); extern void __ia64_save_fpu (struct ia64_fpreg *fph); extern void __ia64_load_fpu (struct ia64_fpreg *fph); extern void ia64_save_debug_regs (unsigned long *save_area); extern void ia64_load_debug_regs (unsigned long *save_area); #define ia64_fph_enable() do { ia64_rsm(IA64_PSR_DFH); ia64_srlz_d(); } while (0) #define ia64_fph_disable() do { ia64_ssm(IA64_PSR_DFH); ia64_srlz_d(); } while (0) /* load fp 0.0 into fph */ static inline void ia64_init_fpu (void) { ia64_fph_enable(); __ia64_init_fpu(); ia64_fph_disable(); } /* save f32-f127 at FPH */ static inline void ia64_save_fpu (struct ia64_fpreg *fph) { ia64_fph_enable(); __ia64_save_fpu(fph); ia64_fph_disable(); } /* load f32-f127 from FPH */ static inline void ia64_load_fpu (struct ia64_fpreg *fph) { ia64_fph_enable(); __ia64_load_fpu(fph); ia64_fph_disable(); } static inline __u64 ia64_clear_ic (void) { __u64 psr; psr = ia64_getreg(_IA64_REG_PSR); ia64_stop(); ia64_rsm(IA64_PSR_I | IA64_PSR_IC); ia64_srlz_i(); return psr; } /* * Restore the psr. */ static inline void ia64_set_psr (__u64 psr) { ia64_stop(); ia64_setreg(_IA64_REG_PSR_L, psr); ia64_srlz_i(); } /* * Insert a translation into an instruction and/or data translation * register. */ static inline void ia64_itr (__u64 target_mask, __u64 tr_num, __u64 vmaddr, __u64 pte, __u64 log_page_size) { ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2)); ia64_setreg(_IA64_REG_CR_IFA, vmaddr); ia64_stop(); if (target_mask & 0x1) ia64_itri(tr_num, pte); if (target_mask & 0x2) ia64_itrd(tr_num, pte); } /* * Insert a translation into the instruction and/or data translation * cache. */ static inline void ia64_itc (__u64 target_mask, __u64 vmaddr, __u64 pte, __u64 log_page_size) { ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2)); ia64_setreg(_IA64_REG_CR_IFA, vmaddr); ia64_stop(); /* as per EAS2.6, itc must be the last instruction in an instruction group */ if (target_mask & 0x1) ia64_itci(pte); if (target_mask & 0x2) ia64_itcd(pte); } /* * Purge a range of addresses from instruction and/or data translation * register(s). */ static inline void ia64_ptr (__u64 target_mask, __u64 vmaddr, __u64 log_size) { if (target_mask & 0x1) ia64_ptri(vmaddr, (log_size << 2)); if (target_mask & 0x2) ia64_ptrd(vmaddr, (log_size << 2)); } /* Set the interrupt vector address. The address must be suitably aligned (32KB). */ static inline void ia64_set_iva (void *ivt_addr) { ia64_setreg(_IA64_REG_CR_IVA, (__u64) ivt_addr); ia64_srlz_i(); } /* Set the page table address and control bits. */ static inline void ia64_set_pta (__u64 pta) { /* Note: srlz.i implies srlz.d */ ia64_setreg(_IA64_REG_CR_PTA, pta); ia64_srlz_i(); } static inline void ia64_eoi (void) { ia64_setreg(_IA64_REG_CR_EOI, 0); ia64_srlz_d(); } #define cpu_relax() ia64_hint(ia64_hint_pause) static inline int ia64_get_irr(unsigned int vector) { unsigned int reg = vector / 64; unsigned int bit = vector % 64; u64 irr; switch (reg) { case 0: irr = ia64_getreg(_IA64_REG_CR_IRR0); break; case 1: irr = ia64_getreg(_IA64_REG_CR_IRR1); break; case 2: irr = ia64_getreg(_IA64_REG_CR_IRR2); break; case 3: irr = ia64_getreg(_IA64_REG_CR_IRR3); break; } return test_bit(bit, &irr); } static inline void ia64_set_lrr0 (unsigned long val) { ia64_setreg(_IA64_REG_CR_LRR0, val); ia64_srlz_d(); } static inline void ia64_set_lrr1 (unsigned long val) { ia64_setreg(_IA64_REG_CR_LRR1, val); ia64_srlz_d(); } /* * Given the address to which a spill occurred, return the unat bit * number that corresponds to this address. */ static inline __u64 ia64_unat_pos (void *spill_addr) { return ((__u64) spill_addr >> 3) & 0x3f; } /* * Set the NaT bit of an integer register which was spilled at address * SPILL_ADDR. UNAT is the mask to be updated. */ static inline void ia64_set_unat (__u64 *unat, void *spill_addr, unsigned long nat) { __u64 bit = ia64_unat_pos(spill_addr); __u64 mask = 1UL << bit; *unat = (*unat & ~mask) | (nat << bit); } /* * Return saved PC of a blocked thread. * Note that the only way T can block is through a call to schedule() -> switch_to(). */ static inline unsigned long thread_saved_pc (struct task_struct *t) { struct unw_frame_info info; unsigned long ip; unw_init_from_blocked_task(&info, t); if (unw_unwind(&info) < 0) return 0; unw_get_ip(&info, &ip); return ip; } /* * Get the current instruction/program counter value. */ #define current_text_addr() \ ({ void *_pc; _pc = (void *)ia64_getreg(_IA64_REG_IP); _pc; }) static inline __u64 ia64_get_ivr (void) { __u64 r; ia64_srlz_d(); r = ia64_getreg(_IA64_REG_CR_IVR); ia64_srlz_d(); return r; } static inline void ia64_set_dbr (__u64 regnum, __u64 value) { __ia64_set_dbr(regnum, value); #ifdef CONFIG_ITANIUM ia64_srlz_d(); #endif } static inline __u64 ia64_get_dbr (__u64 regnum) { __u64 retval; retval = __ia64_get_dbr(regnum); #ifdef CONFIG_ITANIUM ia64_srlz_d(); #endif return retval; } static inline __u64 ia64_rotr (__u64 w, __u64 n) { return (w >> n) | (w << (64 - n)); } #define ia64_rotl(w,n) ia64_rotr((w), (64) - (n)) /* * Take a mapped kernel address and return the equivalent address * in the region 7 identity mapped virtual area. */ static inline void * ia64_imva (void *addr) { void *result; result = (void *) ia64_tpa(addr); return __va(result); } #define ARCH_HAS_PREFETCH #define ARCH_HAS_PREFETCHW #define ARCH_HAS_SPINLOCK_PREFETCH #define PREFETCH_STRIDE L1_CACHE_BYTES static inline void prefetch (const void *x) { ia64_lfetch(ia64_lfhint_none, x); } static inline void prefetchw (const void *x) { ia64_lfetch_excl(ia64_lfhint_none, x); } #define spin_lock_prefetch(x) prefetchw(x) extern unsigned long boot_option_idle_override; enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_FORCE_MWAIT, IDLE_NOMWAIT, IDLE_POLL}; void default_idle(void); #define ia64_platform_is(x) (strcmp(x, ia64_platform_name) == 0) #endif /* !__ASSEMBLY__ */ #endif /* _ASM_IA64_PROCESSOR_H */