/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com> * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org> * swiped from i386, and cloned for MIPS by Geert, polished by Ralf. */ #include <linux/types.h> #include <linux/dma-mapping.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/scatterlist.h> #include <linux/string.h> #include <linux/gfp.h> #include <linux/highmem.h> #include <asm/cache.h> #include <asm/cpu-type.h> #include <asm/io.h> #include <dma-coherence.h> #ifdef CONFIG_DMA_MAYBE_COHERENT int coherentio = 0; /* User defined DMA coherency from command line. */ EXPORT_SYMBOL_GPL(coherentio); int hw_coherentio = 0; /* Actual hardware supported DMA coherency setting. */ static int __init setcoherentio(char *str) { coherentio = 1; pr_info("Hardware DMA cache coherency (command line)\n"); return 0; } early_param("coherentio", setcoherentio); static int __init setnocoherentio(char *str) { coherentio = 0; pr_info("Software DMA cache coherency (command line)\n"); return 0; } early_param("nocoherentio", setnocoherentio); #endif static inline struct page *dma_addr_to_page(struct device *dev, dma_addr_t dma_addr) { return pfn_to_page( plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT); } /* * The affected CPUs below in 'cpu_needs_post_dma_flush()' can * speculatively fill random cachelines with stale data at any time, * requiring an extra flush post-DMA. * * Warning on the terminology - Linux calls an uncached area coherent; * MIPS terminology calls memory areas with hardware maintained coherency * coherent. */ static inline int cpu_needs_post_dma_flush(struct device *dev) { return !plat_device_is_coherent(dev) && (boot_cpu_type() == CPU_R10000 || boot_cpu_type() == CPU_R12000 || boot_cpu_type() == CPU_BMIPS5000); } static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp) { gfp_t dma_flag; /* ignore region specifiers */ gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM); #ifdef CONFIG_ISA if (dev == NULL) dma_flag = __GFP_DMA; else #endif #if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA) if (dev->coherent_dma_mask < DMA_BIT_MASK(32)) dma_flag = __GFP_DMA; else if (dev->coherent_dma_mask < DMA_BIT_MASK(64)) dma_flag = __GFP_DMA32; else #endif #if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA) if (dev->coherent_dma_mask < DMA_BIT_MASK(64)) dma_flag = __GFP_DMA32; else #endif #if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32) if (dev->coherent_dma_mask < DMA_BIT_MASK(64)) dma_flag = __GFP_DMA; else #endif dma_flag = 0; /* Don't invoke OOM killer */ gfp |= __GFP_NORETRY; return gfp | dma_flag; } void *dma_alloc_noncoherent(struct device *dev, size_t size, dma_addr_t * dma_handle, gfp_t gfp) { void *ret; gfp = massage_gfp_flags(dev, gfp); ret = (void *) __get_free_pages(gfp, get_order(size)); if (ret != NULL) { memset(ret, 0, size); *dma_handle = plat_map_dma_mem(dev, ret, size); } return ret; } EXPORT_SYMBOL(dma_alloc_noncoherent); static void *mips_dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t * dma_handle, gfp_t gfp, struct dma_attrs *attrs) { void *ret; if (dma_alloc_from_coherent(dev, size, dma_handle, &ret)) return ret; gfp = massage_gfp_flags(dev, gfp); ret = (void *) __get_free_pages(gfp, get_order(size)); if (ret) { memset(ret, 0, size); *dma_handle = plat_map_dma_mem(dev, ret, size); if (!plat_device_is_coherent(dev)) { dma_cache_wback_inv((unsigned long) ret, size); if (!hw_coherentio) ret = UNCAC_ADDR(ret); } } return ret; } void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle) { plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL); free_pages((unsigned long) vaddr, get_order(size)); } EXPORT_SYMBOL(dma_free_noncoherent); static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle, struct dma_attrs *attrs) { unsigned long addr = (unsigned long) vaddr; int order = get_order(size); if (dma_release_from_coherent(dev, order, vaddr)) return; plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL); if (!plat_device_is_coherent(dev) && !hw_coherentio) addr = CAC_ADDR(addr); free_pages(addr, get_order(size)); } static inline void __dma_sync_virtual(void *addr, size_t size, enum dma_data_direction direction) { switch (direction) { case DMA_TO_DEVICE: dma_cache_wback((unsigned long)addr, size); break; case DMA_FROM_DEVICE: dma_cache_inv((unsigned long)addr, size); break; case DMA_BIDIRECTIONAL: dma_cache_wback_inv((unsigned long)addr, size); break; default: BUG(); } } /* * A single sg entry may refer to multiple physically contiguous * pages. But we still need to process highmem pages individually. * If highmem is not configured then the bulk of this loop gets * optimized out. */ static inline void __dma_sync(struct page *page, unsigned long offset, size_t size, enum dma_data_direction direction) { size_t left = size; do { size_t len = left; if (PageHighMem(page)) { void *addr; if (offset + len > PAGE_SIZE) { if (offset >= PAGE_SIZE) { page += offset >> PAGE_SHIFT; offset &= ~PAGE_MASK; } len = PAGE_SIZE - offset; } addr = kmap_atomic(page); __dma_sync_virtual(addr + offset, len, direction); kunmap_atomic(addr); } else __dma_sync_virtual(page_address(page) + offset, size, direction); offset = 0; page++; left -= len; } while (left); } static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size, enum dma_data_direction direction, struct dma_attrs *attrs) { if (cpu_needs_post_dma_flush(dev)) __dma_sync(dma_addr_to_page(dev, dma_addr), dma_addr & ~PAGE_MASK, size, direction); plat_unmap_dma_mem(dev, dma_addr, size, direction); } static int mips_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction direction, struct dma_attrs *attrs) { int i; for (i = 0; i < nents; i++, sg++) { if (!plat_device_is_coherent(dev)) __dma_sync(sg_page(sg), sg->offset, sg->length, direction); #ifdef CONFIG_NEED_SG_DMA_LENGTH sg->dma_length = sg->length; #endif sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) + sg->offset; } return nents; } static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction direction, struct dma_attrs *attrs) { if (!plat_device_is_coherent(dev)) __dma_sync(page, offset, size, direction); return plat_map_dma_mem_page(dev, page) + offset; } static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries, enum dma_data_direction direction, struct dma_attrs *attrs) { int i; for (i = 0; i < nhwentries; i++, sg++) { if (!plat_device_is_coherent(dev) && direction != DMA_TO_DEVICE) __dma_sync(sg_page(sg), sg->offset, sg->length, direction); plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction); } } static void mips_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction direction) { if (cpu_needs_post_dma_flush(dev)) __dma_sync(dma_addr_to_page(dev, dma_handle), dma_handle & ~PAGE_MASK, size, direction); } static void mips_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction direction) { if (!plat_device_is_coherent(dev)) __dma_sync(dma_addr_to_page(dev, dma_handle), dma_handle & ~PAGE_MASK, size, direction); } static void mips_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems, enum dma_data_direction direction) { int i; if (cpu_needs_post_dma_flush(dev)) for (i = 0; i < nelems; i++, sg++) __dma_sync(sg_page(sg), sg->offset, sg->length, direction); } static void mips_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems, enum dma_data_direction direction) { int i; if (!plat_device_is_coherent(dev)) for (i = 0; i < nelems; i++, sg++) __dma_sync(sg_page(sg), sg->offset, sg->length, direction); } int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) { return 0; } int mips_dma_supported(struct device *dev, u64 mask) { return plat_dma_supported(dev, mask); } void dma_cache_sync(struct device *dev, void *vaddr, size_t size, enum dma_data_direction direction) { BUG_ON(direction == DMA_NONE); if (!plat_device_is_coherent(dev)) __dma_sync_virtual(vaddr, size, direction); } EXPORT_SYMBOL(dma_cache_sync); static struct dma_map_ops mips_default_dma_map_ops = { .alloc = mips_dma_alloc_coherent, .free = mips_dma_free_coherent, .map_page = mips_dma_map_page, .unmap_page = mips_dma_unmap_page, .map_sg = mips_dma_map_sg, .unmap_sg = mips_dma_unmap_sg, .sync_single_for_cpu = mips_dma_sync_single_for_cpu, .sync_single_for_device = mips_dma_sync_single_for_device, .sync_sg_for_cpu = mips_dma_sync_sg_for_cpu, .sync_sg_for_device = mips_dma_sync_sg_for_device, .mapping_error = mips_dma_mapping_error, .dma_supported = mips_dma_supported }; struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops; EXPORT_SYMBOL(mips_dma_map_ops); #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16) static int __init mips_dma_init(void) { dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); return 0; } fs_initcall(mips_dma_init);