/* * Malta Platform-specific hooks for SMP operation */ #include <linux/irq.h> #include <linux/init.h> #include <asm/mipsregs.h> #include <asm/mipsmtregs.h> #include <asm/smtc.h> #include <asm/smtc_ipi.h> /* VPE/SMP Prototype implements platform interfaces directly */ /* * Cause the specified action to be performed on a targeted "CPU" */ static void msmtc_send_ipi_single(int cpu, unsigned int action) { /* "CPU" may be TC of same VPE, VPE of same CPU, or different CPU */ smtc_send_ipi(cpu, LINUX_SMP_IPI, action); } static void msmtc_send_ipi_mask(const struct cpumask *mask, unsigned int action) { unsigned int i; for_each_cpu(i, mask) msmtc_send_ipi_single(i, action); } /* * Post-config but pre-boot cleanup entry point */ static void msmtc_init_secondary(void) { int myvpe; /* Don't enable Malta I/O interrupts (IP2) for secondary VPEs */ myvpe = read_c0_tcbind() & TCBIND_CURVPE; if (myvpe != 0) { /* Ideally, this should be done only once per VPE, but... */ clear_c0_status(ST0_IM); set_c0_status((0x100 << cp0_compare_irq) | (0x100 << MIPS_CPU_IPI_IRQ)); if (cp0_perfcount_irq >= 0) set_c0_status(0x100 << cp0_perfcount_irq); } smtc_init_secondary(); } /* * Platform "CPU" startup hook */ static void msmtc_boot_secondary(int cpu, struct task_struct *idle) { smtc_boot_secondary(cpu, idle); } /* * SMP initialization finalization entry point */ static void msmtc_smp_finish(void) { smtc_smp_finish(); } /* * Hook for after all CPUs are online */ static void msmtc_cpus_done(void) { } /* * Platform SMP pre-initialization * * As noted above, we can assume a single CPU for now * but it may be multithreaded. */ static void __init msmtc_smp_setup(void) { /* * we won't get the definitive value until * we've run smtc_prepare_cpus later, but * we would appear to need an upper bound now. */ smp_num_siblings = smtc_build_cpu_map(0); } static void __init msmtc_prepare_cpus(unsigned int max_cpus) { smtc_prepare_cpus(max_cpus); } struct plat_smp_ops msmtc_smp_ops = { .send_ipi_single = msmtc_send_ipi_single, .send_ipi_mask = msmtc_send_ipi_mask, .init_secondary = msmtc_init_secondary, .smp_finish = msmtc_smp_finish, .cpus_done = msmtc_cpus_done, .boot_secondary = msmtc_boot_secondary, .smp_setup = msmtc_smp_setup, .prepare_cpus = msmtc_prepare_cpus, }; #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF /* * IRQ affinity hook */ int plat_set_irq_affinity(struct irq_data *d, const struct cpumask *affinity, bool force) { cpumask_t tmask; int cpu = 0; void smtc_set_irq_affinity(unsigned int irq, cpumask_t aff); /* * On the legacy Malta development board, all I/O interrupts * are routed through the 8259 and combined in a single signal * to the CPU daughterboard, and on the CoreFPGA2/3 34K models, * that signal is brought to IP2 of both VPEs. To avoid racing * concurrent interrupt service events, IP2 is enabled only on * one VPE, by convention VPE0. So long as no bits are ever * cleared in the affinity mask, there will never be any * interrupt forwarding. But as soon as a program or operator * sets affinity for one of the related IRQs, we need to make * sure that we don't ever try to forward across the VPE boundary, * at least not until we engineer a system where the interrupt * _ack() or _end() function can somehow know that it corresponds * to an interrupt taken on another VPE, and perform the appropriate * restoration of Status.IM state using MFTR/MTTR instead of the * normal local behavior. We also ensure that no attempt will * be made to forward to an offline "CPU". */ cpumask_copy(&tmask, affinity); for_each_cpu(cpu, affinity) { if ((cpu_data[cpu].vpe_id != 0) || !cpu_online(cpu)) cpu_clear(cpu, tmask); } cpumask_copy(d->affinity, &tmask); if (cpus_empty(tmask)) /* * We could restore a default mask here, but the * runtime code can anyway deal with the null set */ printk(KERN_WARNING "IRQ affinity leaves no legal CPU for IRQ %d\n", d->irq); /* Do any generic SMTC IRQ affinity setup */ smtc_set_irq_affinity(d->irq, tmask); return IRQ_SET_MASK_OK_NOCOPY; } #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */