/* * This file is subject to the terms and conditions of the GNU General * Public License. See the file "COPYING" in the main directory of this * archive for more details. * * Copyright (C) 2000 - 2001 by Kanoj Sarcar (kanoj@sgi.com) * Copyright (C) 2000 - 2001 by Silicon Graphics, Inc. */ #include <linux/init.h> #include <linux/sched.h> #include <linux/nodemask.h> #include <asm/page.h> #include <asm/processor.h> #include <asm/sn/arch.h> #include <asm/sn/gda.h> #include <asm/sn/intr.h> #include <asm/sn/klconfig.h> #include <asm/sn/launch.h> #include <asm/sn/mapped_kernel.h> #include <asm/sn/sn_private.h> #include <asm/sn/types.h> #include <asm/sn/sn0/hubpi.h> #include <asm/sn/sn0/hubio.h> #include <asm/sn/sn0/ip27.h> /* * Takes as first input the PROM assigned cpu id, and the kernel * assigned cpu id as the second. */ static void alloc_cpupda(cpuid_t cpu, int cpunum) { cnodeid_t node = get_cpu_cnode(cpu); nasid_t nasid = COMPACT_TO_NASID_NODEID(node); cputonasid(cpunum) = nasid; sn_cpu_info[cpunum].p_nodeid = node; cputoslice(cpunum) = get_cpu_slice(cpu); } static nasid_t get_actual_nasid(lboard_t *brd) { klhub_t *hub; if (!brd) return INVALID_NASID; /* find out if we are a completely disabled brd. */ hub = (klhub_t *)find_first_component(brd, KLSTRUCT_HUB); if (!hub) return INVALID_NASID; if (!(hub->hub_info.flags & KLINFO_ENABLE)) /* disabled node brd */ return hub->hub_info.physid; else return brd->brd_nasid; } static int do_cpumask(cnodeid_t cnode, nasid_t nasid, int highest) { static int tot_cpus_found = 0; lboard_t *brd; klcpu_t *acpu; int cpus_found = 0; cpuid_t cpuid; brd = find_lboard((lboard_t *)KL_CONFIG_INFO(nasid), KLTYPE_IP27); do { acpu = (klcpu_t *)find_first_component(brd, KLSTRUCT_CPU); while (acpu) { cpuid = acpu->cpu_info.virtid; /* cnode is not valid for completely disabled brds */ if (get_actual_nasid(brd) == brd->brd_nasid) cpuid_to_compact_node[cpuid] = cnode; if (cpuid > highest) highest = cpuid; /* Only let it join in if it's marked enabled */ if ((acpu->cpu_info.flags & KLINFO_ENABLE) && (tot_cpus_found != NR_CPUS)) { set_cpu_possible(cpuid, true); alloc_cpupda(cpuid, tot_cpus_found); cpus_found++; tot_cpus_found++; } acpu = (klcpu_t *)find_component(brd, (klinfo_t *)acpu, KLSTRUCT_CPU); } brd = KLCF_NEXT(brd); if (!brd) break; brd = find_lboard(brd, KLTYPE_IP27); } while (brd); return highest; } void cpu_node_probe(void) { int i, highest = 0; gda_t *gdap = GDA; /* * Initialize the arrays to invalid nodeid (-1) */ for (i = 0; i < MAX_COMPACT_NODES; i++) compact_to_nasid_node[i] = INVALID_NASID; for (i = 0; i < MAX_NASIDS; i++) nasid_to_compact_node[i] = INVALID_CNODEID; for (i = 0; i < MAXCPUS; i++) cpuid_to_compact_node[i] = INVALID_CNODEID; /* * MCD - this whole "compact node" stuff can probably be dropped, * as we can handle sparse numbering now */ nodes_clear(node_online_map); for (i = 0; i < MAX_COMPACT_NODES; i++) { nasid_t nasid = gdap->g_nasidtable[i]; if (nasid == INVALID_NASID) break; compact_to_nasid_node[i] = nasid; nasid_to_compact_node[nasid] = i; node_set_online(num_online_nodes()); highest = do_cpumask(i, nasid, highest); } printk("Discovered %d cpus on %d nodes\n", highest + 1, num_online_nodes()); } static __init void intr_clear_all(nasid_t nasid) { int i; REMOTE_HUB_S(nasid, PI_INT_MASK0_A, 0); REMOTE_HUB_S(nasid, PI_INT_MASK0_B, 0); REMOTE_HUB_S(nasid, PI_INT_MASK1_A, 0); REMOTE_HUB_S(nasid, PI_INT_MASK1_B, 0); for (i = 0; i < 128; i++) REMOTE_HUB_CLR_INTR(nasid, i); } static void ip27_send_ipi_single(int destid, unsigned int action) { int irq; switch (action) { case SMP_RESCHEDULE_YOURSELF: irq = CPU_RESCHED_A_IRQ; break; case SMP_CALL_FUNCTION: irq = CPU_CALL_A_IRQ; break; default: panic("sendintr"); } irq += cputoslice(destid); /* * Convert the compact hub number to the NASID to get the correct * part of the address space. Then set the interrupt bit associated * with the CPU we want to send the interrupt to. */ REMOTE_HUB_SEND_INTR(COMPACT_TO_NASID_NODEID(cpu_to_node(destid)), irq); } static void ip27_send_ipi_mask(const struct cpumask *mask, unsigned int action) { unsigned int i; for_each_cpu(i, mask) ip27_send_ipi_single(i, action); } static void ip27_init_secondary(void) { per_cpu_init(); } static void ip27_smp_finish(void) { extern void hub_rt_clock_event_init(void); hub_rt_clock_event_init(); local_irq_enable(); } static void __init ip27_cpus_done(void) { } /* * Launch a slave into smp_bootstrap(). It doesn't take an argument, and we * set sp to the kernel stack of the newly created idle process, gp to the proc * struct so that current_thread_info() will work. */ static void ip27_boot_secondary(int cpu, struct task_struct *idle) { unsigned long gp = (unsigned long)task_thread_info(idle); unsigned long sp = __KSTK_TOS(idle); LAUNCH_SLAVE(cputonasid(cpu), cputoslice(cpu), (launch_proc_t)MAPPED_KERN_RW_TO_K0(smp_bootstrap), 0, (void *) sp, (void *) gp); } static void __init ip27_smp_setup(void) { cnodeid_t cnode; for_each_online_node(cnode) { if (cnode == 0) continue; intr_clear_all(COMPACT_TO_NASID_NODEID(cnode)); } replicate_kernel_text(); /* * Assumption to be fixed: we're always booted on logical / physical * processor 0. While we're always running on logical processor 0 * this still means this is physical processor zero; it might for * example be disabled in the firmware. */ alloc_cpupda(0, 0); } static void __init ip27_prepare_cpus(unsigned int max_cpus) { /* We already did everything necessary earlier */ } struct plat_smp_ops ip27_smp_ops = { .send_ipi_single = ip27_send_ipi_single, .send_ipi_mask = ip27_send_ipi_mask, .init_secondary = ip27_init_secondary, .smp_finish = ip27_smp_finish, .cpus_done = ip27_cpus_done, .boot_secondary = ip27_boot_secondary, .smp_setup = ip27_smp_setup, .prepare_cpus = ip27_prepare_cpus, };