/* * Copyright 2010 Tilera Corporation. All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, version 2. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for * more details. * * TILE SMP support routines. */ #include <linux/smp.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/irq.h> #include <linux/module.h> #include <asm/cacheflush.h> #include <asm/homecache.h> /* * We write to width and height with a single store in head_NN.S, * so make the variable aligned to "long". */ HV_Topology smp_topology __write_once __aligned(sizeof(long)); EXPORT_SYMBOL(smp_topology); #if CHIP_HAS_IPI() static unsigned long __iomem *ipi_mappings[NR_CPUS]; #endif /* * Top-level send_IPI*() functions to send messages to other cpus. */ /* Set by smp_send_stop() to avoid recursive panics. */ static int stopping_cpus; static void __send_IPI_many(HV_Recipient *recip, int nrecip, int tag) { int sent = 0; while (sent < nrecip) { int rc = hv_send_message(recip, nrecip, (HV_VirtAddr)&tag, sizeof(tag)); if (rc < 0) { if (!stopping_cpus) /* avoid recursive panic */ panic("hv_send_message returned %d", rc); break; } WARN_ONCE(rc == 0, "hv_send_message() returned zero\n"); sent += rc; } } void send_IPI_single(int cpu, int tag) { HV_Recipient recip = { .y = cpu / smp_width, .x = cpu % smp_width, .state = HV_TO_BE_SENT }; __send_IPI_many(&recip, 1, tag); } void send_IPI_many(const struct cpumask *mask, int tag) { HV_Recipient recip[NR_CPUS]; int cpu; int nrecip = 0; int my_cpu = smp_processor_id(); for_each_cpu(cpu, mask) { HV_Recipient *r; BUG_ON(cpu == my_cpu); r = &recip[nrecip++]; r->y = cpu / smp_width; r->x = cpu % smp_width; r->state = HV_TO_BE_SENT; } __send_IPI_many(recip, nrecip, tag); } void send_IPI_allbutself(int tag) { struct cpumask mask; cpumask_copy(&mask, cpu_online_mask); cpumask_clear_cpu(smp_processor_id(), &mask); send_IPI_many(&mask, tag); } /* * Functions related to starting/stopping cpus. */ /* Handler to start the current cpu. */ static void smp_start_cpu_interrupt(void) { get_irq_regs()->pc = start_cpu_function_addr; } /* Handler to stop the current cpu. */ static void smp_stop_cpu_interrupt(void) { arch_local_irq_disable_all(); set_cpu_online(smp_processor_id(), 0); for (;;) asm("nap; nop"); } /* This function calls the 'stop' function on all other CPUs in the system. */ void smp_send_stop(void) { stopping_cpus = 1; send_IPI_allbutself(MSG_TAG_STOP_CPU); } /* On panic, just wait; we may get an smp_send_stop() later on. */ void panic_smp_self_stop(void) { while (1) asm("nap; nop"); } /* * Dispatch code called from hv_message_intr() for HV_MSG_TILE hv messages. */ void evaluate_message(int tag) { switch (tag) { case MSG_TAG_START_CPU: /* Start up a cpu */ smp_start_cpu_interrupt(); break; case MSG_TAG_STOP_CPU: /* Sent to shut down slave CPU's */ smp_stop_cpu_interrupt(); break; case MSG_TAG_CALL_FUNCTION_MANY: /* Call function on cpumask */ generic_smp_call_function_interrupt(); break; case MSG_TAG_CALL_FUNCTION_SINGLE: /* Call function on one other CPU */ generic_smp_call_function_single_interrupt(); break; default: panic("Unknown IPI message tag %d", tag); break; } } /* * flush_icache_range() code uses smp_call_function(). */ struct ipi_flush { unsigned long start; unsigned long end; }; static void ipi_flush_icache_range(void *info) { struct ipi_flush *flush = (struct ipi_flush *) info; __flush_icache_range(flush->start, flush->end); } void flush_icache_range(unsigned long start, unsigned long end) { struct ipi_flush flush = { start, end }; /* If invoked with irqs disabled, we can not issue IPIs. */ if (irqs_disabled()) flush_remote(0, HV_FLUSH_EVICT_L1I, NULL, 0, 0, 0, NULL, NULL, 0); else { preempt_disable(); on_each_cpu(ipi_flush_icache_range, &flush, 1); preempt_enable(); } } /* Called when smp_send_reschedule() triggers IRQ_RESCHEDULE. */ static irqreturn_t handle_reschedule_ipi(int irq, void *token) { __get_cpu_var(irq_stat).irq_resched_count++; scheduler_ipi(); return IRQ_HANDLED; } static struct irqaction resched_action = { .handler = handle_reschedule_ipi, .name = "resched", .dev_id = handle_reschedule_ipi /* unique token */, }; void __init ipi_init(void) { #if CHIP_HAS_IPI() int cpu; /* Map IPI trigger MMIO addresses. */ for_each_possible_cpu(cpu) { HV_Coord tile; HV_PTE pte; unsigned long offset; tile.x = cpu_x(cpu); tile.y = cpu_y(cpu); if (hv_get_ipi_pte(tile, KERNEL_PL, &pte) != 0) panic("Failed to initialize IPI for cpu %d\n", cpu); offset = PFN_PHYS(pte_pfn(pte)); ipi_mappings[cpu] = ioremap_prot(offset, PAGE_SIZE, pte); } #endif /* Bind handle_reschedule_ipi() to IRQ_RESCHEDULE. */ tile_irq_activate(IRQ_RESCHEDULE, TILE_IRQ_PERCPU); BUG_ON(setup_irq(IRQ_RESCHEDULE, &resched_action)); } #if CHIP_HAS_IPI() void smp_send_reschedule(int cpu) { WARN_ON(cpu_is_offline(cpu)); /* * We just want to do an MMIO store. The traditional writeq() * functions aren't really correct here, since they're always * directed at the PCI shim. For now, just do a raw store, * casting away the __iomem attribute. */ ((unsigned long __force *)ipi_mappings[cpu])[IRQ_RESCHEDULE] = 0; } #else void smp_send_reschedule(int cpu) { HV_Coord coord; WARN_ON(cpu_is_offline(cpu)); coord.y = cpu_y(cpu); coord.x = cpu_x(cpu); hv_trigger_ipi(coord, IRQ_RESCHEDULE); } #endif /* CHIP_HAS_IPI() */