/* * Glue Code for SSE2 assembler versions of Serpent Cipher * * Copyright (c) 2011 Jussi Kivilinna <jussi.kivilinna@mbnet.fi> * * Glue code based on aesni-intel_glue.c by: * Copyright (C) 2008, Intel Corp. * Author: Huang Ying <ying.huang@intel.com> * * CBC & ECB parts based on code (crypto/cbc.c,ecb.c) by: * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au> * CTR part based on code (crypto/ctr.c) by: * (C) Copyright IBM Corp. 2007 - Joy Latten <latten@us.ibm.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * USA * */ #include <linux/module.h> #include <linux/hardirq.h> #include <linux/types.h> #include <linux/crypto.h> #include <linux/err.h> #include <crypto/ablk_helper.h> #include <crypto/algapi.h> #include <crypto/serpent.h> #include <crypto/cryptd.h> #include <crypto/b128ops.h> #include <crypto/ctr.h> #include <crypto/lrw.h> #include <crypto/xts.h> #include <asm/crypto/serpent-sse2.h> #include <asm/crypto/glue_helper.h> static void serpent_decrypt_cbc_xway(void *ctx, u128 *dst, const u128 *src) { u128 ivs[SERPENT_PARALLEL_BLOCKS - 1]; unsigned int j; for (j = 0; j < SERPENT_PARALLEL_BLOCKS - 1; j++) ivs[j] = src[j]; serpent_dec_blk_xway(ctx, (u8 *)dst, (u8 *)src); for (j = 0; j < SERPENT_PARALLEL_BLOCKS - 1; j++) u128_xor(dst + (j + 1), dst + (j + 1), ivs + j); } static void serpent_crypt_ctr(void *ctx, u128 *dst, const u128 *src, le128 *iv) { be128 ctrblk; le128_to_be128(&ctrblk, iv); le128_inc(iv); __serpent_encrypt(ctx, (u8 *)&ctrblk, (u8 *)&ctrblk); u128_xor(dst, src, (u128 *)&ctrblk); } static void serpent_crypt_ctr_xway(void *ctx, u128 *dst, const u128 *src, le128 *iv) { be128 ctrblks[SERPENT_PARALLEL_BLOCKS]; unsigned int i; for (i = 0; i < SERPENT_PARALLEL_BLOCKS; i++) { if (dst != src) dst[i] = src[i]; le128_to_be128(&ctrblks[i], iv); le128_inc(iv); } serpent_enc_blk_xway_xor(ctx, (u8 *)dst, (u8 *)ctrblks); } static const struct common_glue_ctx serpent_enc = { .num_funcs = 2, .fpu_blocks_limit = SERPENT_PARALLEL_BLOCKS, .funcs = { { .num_blocks = SERPENT_PARALLEL_BLOCKS, .fn_u = { .ecb = GLUE_FUNC_CAST(serpent_enc_blk_xway) } }, { .num_blocks = 1, .fn_u = { .ecb = GLUE_FUNC_CAST(__serpent_encrypt) } } } }; static const struct common_glue_ctx serpent_ctr = { .num_funcs = 2, .fpu_blocks_limit = SERPENT_PARALLEL_BLOCKS, .funcs = { { .num_blocks = SERPENT_PARALLEL_BLOCKS, .fn_u = { .ctr = GLUE_CTR_FUNC_CAST(serpent_crypt_ctr_xway) } }, { .num_blocks = 1, .fn_u = { .ctr = GLUE_CTR_FUNC_CAST(serpent_crypt_ctr) } } } }; static const struct common_glue_ctx serpent_dec = { .num_funcs = 2, .fpu_blocks_limit = SERPENT_PARALLEL_BLOCKS, .funcs = { { .num_blocks = SERPENT_PARALLEL_BLOCKS, .fn_u = { .ecb = GLUE_FUNC_CAST(serpent_dec_blk_xway) } }, { .num_blocks = 1, .fn_u = { .ecb = GLUE_FUNC_CAST(__serpent_decrypt) } } } }; static const struct common_glue_ctx serpent_dec_cbc = { .num_funcs = 2, .fpu_blocks_limit = SERPENT_PARALLEL_BLOCKS, .funcs = { { .num_blocks = SERPENT_PARALLEL_BLOCKS, .fn_u = { .cbc = GLUE_CBC_FUNC_CAST(serpent_decrypt_cbc_xway) } }, { .num_blocks = 1, .fn_u = { .cbc = GLUE_CBC_FUNC_CAST(__serpent_decrypt) } } } }; static int ecb_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { return glue_ecb_crypt_128bit(&serpent_enc, desc, dst, src, nbytes); } static int ecb_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { return glue_ecb_crypt_128bit(&serpent_dec, desc, dst, src, nbytes); } static int cbc_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { return glue_cbc_encrypt_128bit(GLUE_FUNC_CAST(__serpent_encrypt), desc, dst, src, nbytes); } static int cbc_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { return glue_cbc_decrypt_128bit(&serpent_dec_cbc, desc, dst, src, nbytes); } static int ctr_crypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { return glue_ctr_crypt_128bit(&serpent_ctr, desc, dst, src, nbytes); } static inline bool serpent_fpu_begin(bool fpu_enabled, unsigned int nbytes) { return glue_fpu_begin(SERPENT_BLOCK_SIZE, SERPENT_PARALLEL_BLOCKS, NULL, fpu_enabled, nbytes); } static inline void serpent_fpu_end(bool fpu_enabled) { glue_fpu_end(fpu_enabled); } struct crypt_priv { struct serpent_ctx *ctx; bool fpu_enabled; }; static void encrypt_callback(void *priv, u8 *srcdst, unsigned int nbytes) { const unsigned int bsize = SERPENT_BLOCK_SIZE; struct crypt_priv *ctx = priv; int i; ctx->fpu_enabled = serpent_fpu_begin(ctx->fpu_enabled, nbytes); if (nbytes == bsize * SERPENT_PARALLEL_BLOCKS) { serpent_enc_blk_xway(ctx->ctx, srcdst, srcdst); return; } for (i = 0; i < nbytes / bsize; i++, srcdst += bsize) __serpent_encrypt(ctx->ctx, srcdst, srcdst); } static void decrypt_callback(void *priv, u8 *srcdst, unsigned int nbytes) { const unsigned int bsize = SERPENT_BLOCK_SIZE; struct crypt_priv *ctx = priv; int i; ctx->fpu_enabled = serpent_fpu_begin(ctx->fpu_enabled, nbytes); if (nbytes == bsize * SERPENT_PARALLEL_BLOCKS) { serpent_dec_blk_xway(ctx->ctx, srcdst, srcdst); return; } for (i = 0; i < nbytes / bsize; i++, srcdst += bsize) __serpent_decrypt(ctx->ctx, srcdst, srcdst); } struct serpent_lrw_ctx { struct lrw_table_ctx lrw_table; struct serpent_ctx serpent_ctx; }; static int lrw_serpent_setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen) { struct serpent_lrw_ctx *ctx = crypto_tfm_ctx(tfm); int err; err = __serpent_setkey(&ctx->serpent_ctx, key, keylen - SERPENT_BLOCK_SIZE); if (err) return err; return lrw_init_table(&ctx->lrw_table, key + keylen - SERPENT_BLOCK_SIZE); } static int lrw_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct serpent_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); be128 buf[SERPENT_PARALLEL_BLOCKS]; struct crypt_priv crypt_ctx = { .ctx = &ctx->serpent_ctx, .fpu_enabled = false, }; struct lrw_crypt_req req = { .tbuf = buf, .tbuflen = sizeof(buf), .table_ctx = &ctx->lrw_table, .crypt_ctx = &crypt_ctx, .crypt_fn = encrypt_callback, }; int ret; desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; ret = lrw_crypt(desc, dst, src, nbytes, &req); serpent_fpu_end(crypt_ctx.fpu_enabled); return ret; } static int lrw_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct serpent_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); be128 buf[SERPENT_PARALLEL_BLOCKS]; struct crypt_priv crypt_ctx = { .ctx = &ctx->serpent_ctx, .fpu_enabled = false, }; struct lrw_crypt_req req = { .tbuf = buf, .tbuflen = sizeof(buf), .table_ctx = &ctx->lrw_table, .crypt_ctx = &crypt_ctx, .crypt_fn = decrypt_callback, }; int ret; desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; ret = lrw_crypt(desc, dst, src, nbytes, &req); serpent_fpu_end(crypt_ctx.fpu_enabled); return ret; } static void lrw_exit_tfm(struct crypto_tfm *tfm) { struct serpent_lrw_ctx *ctx = crypto_tfm_ctx(tfm); lrw_free_table(&ctx->lrw_table); } struct serpent_xts_ctx { struct serpent_ctx tweak_ctx; struct serpent_ctx crypt_ctx; }; static int xts_serpent_setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen) { struct serpent_xts_ctx *ctx = crypto_tfm_ctx(tfm); u32 *flags = &tfm->crt_flags; int err; /* key consists of keys of equal size concatenated, therefore * the length must be even */ if (keylen % 2) { *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; return -EINVAL; } /* first half of xts-key is for crypt */ err = __serpent_setkey(&ctx->crypt_ctx, key, keylen / 2); if (err) return err; /* second half of xts-key is for tweak */ return __serpent_setkey(&ctx->tweak_ctx, key + keylen / 2, keylen / 2); } static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct serpent_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); be128 buf[SERPENT_PARALLEL_BLOCKS]; struct crypt_priv crypt_ctx = { .ctx = &ctx->crypt_ctx, .fpu_enabled = false, }; struct xts_crypt_req req = { .tbuf = buf, .tbuflen = sizeof(buf), .tweak_ctx = &ctx->tweak_ctx, .tweak_fn = XTS_TWEAK_CAST(__serpent_encrypt), .crypt_ctx = &crypt_ctx, .crypt_fn = encrypt_callback, }; int ret; desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; ret = xts_crypt(desc, dst, src, nbytes, &req); serpent_fpu_end(crypt_ctx.fpu_enabled); return ret; } static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct serpent_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); be128 buf[SERPENT_PARALLEL_BLOCKS]; struct crypt_priv crypt_ctx = { .ctx = &ctx->crypt_ctx, .fpu_enabled = false, }; struct xts_crypt_req req = { .tbuf = buf, .tbuflen = sizeof(buf), .tweak_ctx = &ctx->tweak_ctx, .tweak_fn = XTS_TWEAK_CAST(__serpent_encrypt), .crypt_ctx = &crypt_ctx, .crypt_fn = decrypt_callback, }; int ret; desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; ret = xts_crypt(desc, dst, src, nbytes, &req); serpent_fpu_end(crypt_ctx.fpu_enabled); return ret; } static struct crypto_alg serpent_algs[10] = { { .cra_name = "__ecb-serpent-sse2", .cra_driver_name = "__driver-ecb-serpent-sse2", .cra_priority = 0, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_blocksize = SERPENT_BLOCK_SIZE, .cra_ctxsize = sizeof(struct serpent_ctx), .cra_alignmask = 0, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_u = { .blkcipher = { .min_keysize = SERPENT_MIN_KEY_SIZE, .max_keysize = SERPENT_MAX_KEY_SIZE, .setkey = serpent_setkey, .encrypt = ecb_encrypt, .decrypt = ecb_decrypt, }, }, }, { .cra_name = "__cbc-serpent-sse2", .cra_driver_name = "__driver-cbc-serpent-sse2", .cra_priority = 0, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_blocksize = SERPENT_BLOCK_SIZE, .cra_ctxsize = sizeof(struct serpent_ctx), .cra_alignmask = 0, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_u = { .blkcipher = { .min_keysize = SERPENT_MIN_KEY_SIZE, .max_keysize = SERPENT_MAX_KEY_SIZE, .setkey = serpent_setkey, .encrypt = cbc_encrypt, .decrypt = cbc_decrypt, }, }, }, { .cra_name = "__ctr-serpent-sse2", .cra_driver_name = "__driver-ctr-serpent-sse2", .cra_priority = 0, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct serpent_ctx), .cra_alignmask = 0, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_u = { .blkcipher = { .min_keysize = SERPENT_MIN_KEY_SIZE, .max_keysize = SERPENT_MAX_KEY_SIZE, .ivsize = SERPENT_BLOCK_SIZE, .setkey = serpent_setkey, .encrypt = ctr_crypt, .decrypt = ctr_crypt, }, }, }, { .cra_name = "__lrw-serpent-sse2", .cra_driver_name = "__driver-lrw-serpent-sse2", .cra_priority = 0, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_blocksize = SERPENT_BLOCK_SIZE, .cra_ctxsize = sizeof(struct serpent_lrw_ctx), .cra_alignmask = 0, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_exit = lrw_exit_tfm, .cra_u = { .blkcipher = { .min_keysize = SERPENT_MIN_KEY_SIZE + SERPENT_BLOCK_SIZE, .max_keysize = SERPENT_MAX_KEY_SIZE + SERPENT_BLOCK_SIZE, .ivsize = SERPENT_BLOCK_SIZE, .setkey = lrw_serpent_setkey, .encrypt = lrw_encrypt, .decrypt = lrw_decrypt, }, }, }, { .cra_name = "__xts-serpent-sse2", .cra_driver_name = "__driver-xts-serpent-sse2", .cra_priority = 0, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_blocksize = SERPENT_BLOCK_SIZE, .cra_ctxsize = sizeof(struct serpent_xts_ctx), .cra_alignmask = 0, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_u = { .blkcipher = { .min_keysize = SERPENT_MIN_KEY_SIZE * 2, .max_keysize = SERPENT_MAX_KEY_SIZE * 2, .ivsize = SERPENT_BLOCK_SIZE, .setkey = xts_serpent_setkey, .encrypt = xts_encrypt, .decrypt = xts_decrypt, }, }, }, { .cra_name = "ecb(serpent)", .cra_driver_name = "ecb-serpent-sse2", .cra_priority = 400, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = SERPENT_BLOCK_SIZE, .cra_ctxsize = sizeof(struct async_helper_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = ablk_init, .cra_exit = ablk_exit, .cra_u = { .ablkcipher = { .min_keysize = SERPENT_MIN_KEY_SIZE, .max_keysize = SERPENT_MAX_KEY_SIZE, .setkey = ablk_set_key, .encrypt = ablk_encrypt, .decrypt = ablk_decrypt, }, }, }, { .cra_name = "cbc(serpent)", .cra_driver_name = "cbc-serpent-sse2", .cra_priority = 400, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = SERPENT_BLOCK_SIZE, .cra_ctxsize = sizeof(struct async_helper_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = ablk_init, .cra_exit = ablk_exit, .cra_u = { .ablkcipher = { .min_keysize = SERPENT_MIN_KEY_SIZE, .max_keysize = SERPENT_MAX_KEY_SIZE, .ivsize = SERPENT_BLOCK_SIZE, .setkey = ablk_set_key, .encrypt = __ablk_encrypt, .decrypt = ablk_decrypt, }, }, }, { .cra_name = "ctr(serpent)", .cra_driver_name = "ctr-serpent-sse2", .cra_priority = 400, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct async_helper_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = ablk_init, .cra_exit = ablk_exit, .cra_u = { .ablkcipher = { .min_keysize = SERPENT_MIN_KEY_SIZE, .max_keysize = SERPENT_MAX_KEY_SIZE, .ivsize = SERPENT_BLOCK_SIZE, .setkey = ablk_set_key, .encrypt = ablk_encrypt, .decrypt = ablk_encrypt, .geniv = "chainiv", }, }, }, { .cra_name = "lrw(serpent)", .cra_driver_name = "lrw-serpent-sse2", .cra_priority = 400, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = SERPENT_BLOCK_SIZE, .cra_ctxsize = sizeof(struct async_helper_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = ablk_init, .cra_exit = ablk_exit, .cra_u = { .ablkcipher = { .min_keysize = SERPENT_MIN_KEY_SIZE + SERPENT_BLOCK_SIZE, .max_keysize = SERPENT_MAX_KEY_SIZE + SERPENT_BLOCK_SIZE, .ivsize = SERPENT_BLOCK_SIZE, .setkey = ablk_set_key, .encrypt = ablk_encrypt, .decrypt = ablk_decrypt, }, }, }, { .cra_name = "xts(serpent)", .cra_driver_name = "xts-serpent-sse2", .cra_priority = 400, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = SERPENT_BLOCK_SIZE, .cra_ctxsize = sizeof(struct async_helper_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = ablk_init, .cra_exit = ablk_exit, .cra_u = { .ablkcipher = { .min_keysize = SERPENT_MIN_KEY_SIZE * 2, .max_keysize = SERPENT_MAX_KEY_SIZE * 2, .ivsize = SERPENT_BLOCK_SIZE, .setkey = ablk_set_key, .encrypt = ablk_encrypt, .decrypt = ablk_decrypt, }, }, } }; static int __init serpent_sse2_init(void) { if (!cpu_has_xmm2) { printk(KERN_INFO "SSE2 instructions are not detected.\n"); return -ENODEV; } return crypto_register_algs(serpent_algs, ARRAY_SIZE(serpent_algs)); } static void __exit serpent_sse2_exit(void) { crypto_unregister_algs(serpent_algs, ARRAY_SIZE(serpent_algs)); } module_init(serpent_sse2_init); module_exit(serpent_sse2_exit); MODULE_DESCRIPTION("Serpent Cipher Algorithm, SSE2 optimized"); MODULE_LICENSE("GPL"); MODULE_ALIAS("serpent");