#ifndef _ASM_X86_SPINLOCK_H #define _ASM_X86_SPINLOCK_H #include <linux/jump_label.h> #include <linux/atomic.h> #include <asm/page.h> #include <asm/processor.h> #include <linux/compiler.h> #include <asm/paravirt.h> #include <asm/bitops.h> /* * Your basic SMP spinlocks, allowing only a single CPU anywhere * * Simple spin lock operations. There are two variants, one clears IRQ's * on the local processor, one does not. * * These are fair FIFO ticket locks, which support up to 2^16 CPUs. * * (the type definitions are in asm/spinlock_types.h) */ #ifdef CONFIG_X86_32 # define LOCK_PTR_REG "a" #else # define LOCK_PTR_REG "D" #endif #if defined(CONFIG_X86_32) && (defined(CONFIG_X86_PPRO_FENCE)) /* * On PPro SMP, we use a locked operation to unlock * (PPro errata 66, 92) */ # define UNLOCK_LOCK_PREFIX LOCK_PREFIX #else # define UNLOCK_LOCK_PREFIX #endif /* How long a lock should spin before we consider blocking */ #define SPIN_THRESHOLD (1 << 15) extern struct static_key paravirt_ticketlocks_enabled; static __always_inline bool static_key_false(struct static_key *key); #ifdef CONFIG_PARAVIRT_SPINLOCKS static inline void __ticket_enter_slowpath(arch_spinlock_t *lock) { set_bit(0, (volatile unsigned long *)&lock->tickets.tail); } #else /* !CONFIG_PARAVIRT_SPINLOCKS */ static __always_inline void __ticket_lock_spinning(arch_spinlock_t *lock, __ticket_t ticket) { } static inline void __ticket_unlock_kick(arch_spinlock_t *lock, __ticket_t ticket) { } #endif /* CONFIG_PARAVIRT_SPINLOCKS */ static __always_inline int arch_spin_value_unlocked(arch_spinlock_t lock) { return lock.tickets.head == lock.tickets.tail; } /* * Ticket locks are conceptually two parts, one indicating the current head of * the queue, and the other indicating the current tail. The lock is acquired * by atomically noting the tail and incrementing it by one (thus adding * ourself to the queue and noting our position), then waiting until the head * becomes equal to the the initial value of the tail. * * We use an xadd covering *both* parts of the lock, to increment the tail and * also load the position of the head, which takes care of memory ordering * issues and should be optimal for the uncontended case. Note the tail must be * in the high part, because a wide xadd increment of the low part would carry * up and contaminate the high part. */ static __always_inline void arch_spin_lock(arch_spinlock_t *lock) { register struct __raw_tickets inc = { .tail = TICKET_LOCK_INC }; inc = xadd(&lock->tickets, inc); if (likely(inc.head == inc.tail)) goto out; inc.tail &= ~TICKET_SLOWPATH_FLAG; for (;;) { unsigned count = SPIN_THRESHOLD; do { if (ACCESS_ONCE(lock->tickets.head) == inc.tail) goto out; cpu_relax(); } while (--count); __ticket_lock_spinning(lock, inc.tail); } out: barrier(); /* make sure nothing creeps before the lock is taken */ } static __always_inline int arch_spin_trylock(arch_spinlock_t *lock) { arch_spinlock_t old, new; old.tickets = ACCESS_ONCE(lock->tickets); if (old.tickets.head != (old.tickets.tail & ~TICKET_SLOWPATH_FLAG)) return 0; new.head_tail = old.head_tail + (TICKET_LOCK_INC << TICKET_SHIFT); /* cmpxchg is a full barrier, so nothing can move before it */ return cmpxchg(&lock->head_tail, old.head_tail, new.head_tail) == old.head_tail; } static inline void __ticket_unlock_slowpath(arch_spinlock_t *lock, arch_spinlock_t old) { arch_spinlock_t new; BUILD_BUG_ON(((__ticket_t)NR_CPUS) != NR_CPUS); /* Perform the unlock on the "before" copy */ old.tickets.head += TICKET_LOCK_INC; /* Clear the slowpath flag */ new.head_tail = old.head_tail & ~(TICKET_SLOWPATH_FLAG << TICKET_SHIFT); /* * If the lock is uncontended, clear the flag - use cmpxchg in * case it changes behind our back though. */ if (new.tickets.head != new.tickets.tail || cmpxchg(&lock->head_tail, old.head_tail, new.head_tail) != old.head_tail) { /* * Lock still has someone queued for it, so wake up an * appropriate waiter. */ __ticket_unlock_kick(lock, old.tickets.head); } } static __always_inline void arch_spin_unlock(arch_spinlock_t *lock) { if (TICKET_SLOWPATH_FLAG && static_key_false(¶virt_ticketlocks_enabled)) { arch_spinlock_t prev; prev = *lock; add_smp(&lock->tickets.head, TICKET_LOCK_INC); /* add_smp() is a full mb() */ if (unlikely(lock->tickets.tail & TICKET_SLOWPATH_FLAG)) __ticket_unlock_slowpath(lock, prev); } else __add(&lock->tickets.head, TICKET_LOCK_INC, UNLOCK_LOCK_PREFIX); } static inline int arch_spin_is_locked(arch_spinlock_t *lock) { struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets); return tmp.tail != tmp.head; } static inline int arch_spin_is_contended(arch_spinlock_t *lock) { struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets); return (__ticket_t)(tmp.tail - tmp.head) > TICKET_LOCK_INC; } #define arch_spin_is_contended arch_spin_is_contended static __always_inline void arch_spin_lock_flags(arch_spinlock_t *lock, unsigned long flags) { arch_spin_lock(lock); } static inline void arch_spin_unlock_wait(arch_spinlock_t *lock) { while (arch_spin_is_locked(lock)) cpu_relax(); } /* * Read-write spinlocks, allowing multiple readers * but only one writer. * * NOTE! it is quite common to have readers in interrupts * but no interrupt writers. For those circumstances we * can "mix" irq-safe locks - any writer needs to get a * irq-safe write-lock, but readers can get non-irqsafe * read-locks. * * On x86, we implement read-write locks as a 32-bit counter * with the high bit (sign) being the "contended" bit. */ /** * read_can_lock - would read_trylock() succeed? * @lock: the rwlock in question. */ static inline int arch_read_can_lock(arch_rwlock_t *lock) { return lock->lock > 0; } /** * write_can_lock - would write_trylock() succeed? * @lock: the rwlock in question. */ static inline int arch_write_can_lock(arch_rwlock_t *lock) { return lock->write == WRITE_LOCK_CMP; } static inline void arch_read_lock(arch_rwlock_t *rw) { asm volatile(LOCK_PREFIX READ_LOCK_SIZE(dec) " (%0)\n\t" "jns 1f\n" "call __read_lock_failed\n\t" "1:\n" ::LOCK_PTR_REG (rw) : "memory"); } static inline void arch_write_lock(arch_rwlock_t *rw) { asm volatile(LOCK_PREFIX WRITE_LOCK_SUB(%1) "(%0)\n\t" "jz 1f\n" "call __write_lock_failed\n\t" "1:\n" ::LOCK_PTR_REG (&rw->write), "i" (RW_LOCK_BIAS) : "memory"); } static inline int arch_read_trylock(arch_rwlock_t *lock) { READ_LOCK_ATOMIC(t) *count = (READ_LOCK_ATOMIC(t) *)lock; if (READ_LOCK_ATOMIC(dec_return)(count) >= 0) return 1; READ_LOCK_ATOMIC(inc)(count); return 0; } static inline int arch_write_trylock(arch_rwlock_t *lock) { atomic_t *count = (atomic_t *)&lock->write; if (atomic_sub_and_test(WRITE_LOCK_CMP, count)) return 1; atomic_add(WRITE_LOCK_CMP, count); return 0; } static inline void arch_read_unlock(arch_rwlock_t *rw) { asm volatile(LOCK_PREFIX READ_LOCK_SIZE(inc) " %0" :"+m" (rw->lock) : : "memory"); } static inline void arch_write_unlock(arch_rwlock_t *rw) { asm volatile(LOCK_PREFIX WRITE_LOCK_ADD(%1) "%0" : "+m" (rw->write) : "i" (RW_LOCK_BIAS) : "memory"); } #define arch_read_lock_flags(lock, flags) arch_read_lock(lock) #define arch_write_lock_flags(lock, flags) arch_write_lock(lock) #undef READ_LOCK_SIZE #undef READ_LOCK_ATOMIC #undef WRITE_LOCK_ADD #undef WRITE_LOCK_SUB #undef WRITE_LOCK_CMP #define arch_spin_relax(lock) cpu_relax() #define arch_read_relax(lock) cpu_relax() #define arch_write_relax(lock) cpu_relax() #endif /* _ASM_X86_SPINLOCK_H */