/* * Xen SMP support * * This file implements the Xen versions of smp_ops. SMP under Xen is * very straightforward. Bringing a CPU up is simply a matter of * loading its initial context and setting it running. * * IPIs are handled through the Xen event mechanism. * * Because virtual CPUs can be scheduled onto any real CPU, there's no * useful topology information for the kernel to make use of. As a * result, all CPUs are treated as if they're single-core and * single-threaded. */ #include <linux/sched.h> #include <linux/err.h> #include <linux/slab.h> #include <linux/smp.h> #include <linux/irq_work.h> #include <linux/tick.h> #include <asm/paravirt.h> #include <asm/desc.h> #include <asm/pgtable.h> #include <asm/cpu.h> #include <xen/interface/xen.h> #include <xen/interface/vcpu.h> #include <asm/xen/interface.h> #include <asm/xen/hypercall.h> #include <xen/xen.h> #include <xen/page.h> #include <xen/events.h> #include <xen/hvc-console.h> #include "xen-ops.h" #include "mmu.h" cpumask_var_t xen_cpu_initialized_map; struct xen_common_irq { int irq; char *name; }; static DEFINE_PER_CPU(struct xen_common_irq, xen_resched_irq) = { .irq = -1 }; static DEFINE_PER_CPU(struct xen_common_irq, xen_callfunc_irq) = { .irq = -1 }; static DEFINE_PER_CPU(struct xen_common_irq, xen_callfuncsingle_irq) = { .irq = -1 }; static DEFINE_PER_CPU(struct xen_common_irq, xen_irq_work) = { .irq = -1 }; static DEFINE_PER_CPU(struct xen_common_irq, xen_debug_irq) = { .irq = -1 }; static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id); static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id); static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id); /* * Reschedule call back. */ static irqreturn_t xen_reschedule_interrupt(int irq, void *dev_id) { inc_irq_stat(irq_resched_count); scheduler_ipi(); return IRQ_HANDLED; } static void cpu_bringup(void) { int cpu; cpu_init(); touch_softlockup_watchdog(); preempt_disable(); /* PVH runs in ring 0 and allows us to do native syscalls. Yay! */ if (!xen_feature(XENFEAT_supervisor_mode_kernel)) { xen_enable_sysenter(); xen_enable_syscall(); } cpu = smp_processor_id(); smp_store_cpu_info(cpu); cpu_data(cpu).x86_max_cores = 1; set_cpu_sibling_map(cpu); xen_setup_cpu_clockevents(); notify_cpu_starting(cpu); set_cpu_online(cpu, true); this_cpu_write(cpu_state, CPU_ONLINE); wmb(); /* We can take interrupts now: we're officially "up". */ local_irq_enable(); wmb(); /* make sure everything is out */ } /* Note: cpu parameter is only relevant for PVH */ static void cpu_bringup_and_idle(int cpu) { #ifdef CONFIG_X86_64 if (xen_feature(XENFEAT_auto_translated_physmap) && xen_feature(XENFEAT_supervisor_mode_kernel)) xen_pvh_secondary_vcpu_init(cpu); #endif cpu_bringup(); cpu_startup_entry(CPUHP_ONLINE); } static void xen_smp_intr_free(unsigned int cpu) { if (per_cpu(xen_resched_irq, cpu).irq >= 0) { unbind_from_irqhandler(per_cpu(xen_resched_irq, cpu).irq, NULL); per_cpu(xen_resched_irq, cpu).irq = -1; kfree(per_cpu(xen_resched_irq, cpu).name); per_cpu(xen_resched_irq, cpu).name = NULL; } if (per_cpu(xen_callfunc_irq, cpu).irq >= 0) { unbind_from_irqhandler(per_cpu(xen_callfunc_irq, cpu).irq, NULL); per_cpu(xen_callfunc_irq, cpu).irq = -1; kfree(per_cpu(xen_callfunc_irq, cpu).name); per_cpu(xen_callfunc_irq, cpu).name = NULL; } if (per_cpu(xen_debug_irq, cpu).irq >= 0) { unbind_from_irqhandler(per_cpu(xen_debug_irq, cpu).irq, NULL); per_cpu(xen_debug_irq, cpu).irq = -1; kfree(per_cpu(xen_debug_irq, cpu).name); per_cpu(xen_debug_irq, cpu).name = NULL; } if (per_cpu(xen_callfuncsingle_irq, cpu).irq >= 0) { unbind_from_irqhandler(per_cpu(xen_callfuncsingle_irq, cpu).irq, NULL); per_cpu(xen_callfuncsingle_irq, cpu).irq = -1; kfree(per_cpu(xen_callfuncsingle_irq, cpu).name); per_cpu(xen_callfuncsingle_irq, cpu).name = NULL; } if (xen_hvm_domain()) return; if (per_cpu(xen_irq_work, cpu).irq >= 0) { unbind_from_irqhandler(per_cpu(xen_irq_work, cpu).irq, NULL); per_cpu(xen_irq_work, cpu).irq = -1; kfree(per_cpu(xen_irq_work, cpu).name); per_cpu(xen_irq_work, cpu).name = NULL; } }; static int xen_smp_intr_init(unsigned int cpu) { int rc; char *resched_name, *callfunc_name, *debug_name; resched_name = kasprintf(GFP_KERNEL, "resched%d", cpu); rc = bind_ipi_to_irqhandler(XEN_RESCHEDULE_VECTOR, cpu, xen_reschedule_interrupt, IRQF_PERCPU|IRQF_NOBALANCING, resched_name, NULL); if (rc < 0) goto fail; per_cpu(xen_resched_irq, cpu).irq = rc; per_cpu(xen_resched_irq, cpu).name = resched_name; callfunc_name = kasprintf(GFP_KERNEL, "callfunc%d", cpu); rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_VECTOR, cpu, xen_call_function_interrupt, IRQF_PERCPU|IRQF_NOBALANCING, callfunc_name, NULL); if (rc < 0) goto fail; per_cpu(xen_callfunc_irq, cpu).irq = rc; per_cpu(xen_callfunc_irq, cpu).name = callfunc_name; debug_name = kasprintf(GFP_KERNEL, "debug%d", cpu); rc = bind_virq_to_irqhandler(VIRQ_DEBUG, cpu, xen_debug_interrupt, IRQF_PERCPU | IRQF_NOBALANCING, debug_name, NULL); if (rc < 0) goto fail; per_cpu(xen_debug_irq, cpu).irq = rc; per_cpu(xen_debug_irq, cpu).name = debug_name; callfunc_name = kasprintf(GFP_KERNEL, "callfuncsingle%d", cpu); rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_SINGLE_VECTOR, cpu, xen_call_function_single_interrupt, IRQF_PERCPU|IRQF_NOBALANCING, callfunc_name, NULL); if (rc < 0) goto fail; per_cpu(xen_callfuncsingle_irq, cpu).irq = rc; per_cpu(xen_callfuncsingle_irq, cpu).name = callfunc_name; /* * The IRQ worker on PVHVM goes through the native path and uses the * IPI mechanism. */ if (xen_hvm_domain()) return 0; callfunc_name = kasprintf(GFP_KERNEL, "irqwork%d", cpu); rc = bind_ipi_to_irqhandler(XEN_IRQ_WORK_VECTOR, cpu, xen_irq_work_interrupt, IRQF_PERCPU|IRQF_NOBALANCING, callfunc_name, NULL); if (rc < 0) goto fail; per_cpu(xen_irq_work, cpu).irq = rc; per_cpu(xen_irq_work, cpu).name = callfunc_name; return 0; fail: xen_smp_intr_free(cpu); return rc; } static void __init xen_fill_possible_map(void) { int i, rc; if (xen_initial_domain()) return; for (i = 0; i < nr_cpu_ids; i++) { rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL); if (rc >= 0) { num_processors++; set_cpu_possible(i, true); } } } static void __init xen_filter_cpu_maps(void) { int i, rc; unsigned int subtract = 0; if (!xen_initial_domain()) return; num_processors = 0; disabled_cpus = 0; for (i = 0; i < nr_cpu_ids; i++) { rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL); if (rc >= 0) { num_processors++; set_cpu_possible(i, true); } else { set_cpu_possible(i, false); set_cpu_present(i, false); subtract++; } } #ifdef CONFIG_HOTPLUG_CPU /* This is akin to using 'nr_cpus' on the Linux command line. * Which is OK as when we use 'dom0_max_vcpus=X' we can only * have up to X, while nr_cpu_ids is greater than X. This * normally is not a problem, except when CPU hotplugging * is involved and then there might be more than X CPUs * in the guest - which will not work as there is no * hypercall to expand the max number of VCPUs an already * running guest has. So cap it up to X. */ if (subtract) nr_cpu_ids = nr_cpu_ids - subtract; #endif } static void __init xen_smp_prepare_boot_cpu(void) { BUG_ON(smp_processor_id() != 0); native_smp_prepare_boot_cpu(); if (xen_pv_domain()) { if (!xen_feature(XENFEAT_writable_page_tables)) /* We've switched to the "real" per-cpu gdt, so make * sure the old memory can be recycled. */ make_lowmem_page_readwrite(xen_initial_gdt); #ifdef CONFIG_X86_32 /* * Xen starts us with XEN_FLAT_RING1_DS, but linux code * expects __USER_DS */ loadsegment(ds, __USER_DS); loadsegment(es, __USER_DS); #endif xen_filter_cpu_maps(); xen_setup_vcpu_info_placement(); } /* * The alternative logic (which patches the unlock/lock) runs before * the smp bootup up code is activated. Hence we need to set this up * the core kernel is being patched. Otherwise we will have only * modules patched but not core code. */ xen_init_spinlocks(); } static void __init xen_smp_prepare_cpus(unsigned int max_cpus) { unsigned cpu; unsigned int i; if (skip_ioapic_setup) { char *m = (max_cpus == 0) ? "The nosmp parameter is incompatible with Xen; " \ "use Xen dom0_max_vcpus=1 parameter" : "The noapic parameter is incompatible with Xen"; xen_raw_printk(m); panic(m); } xen_init_lock_cpu(0); smp_store_boot_cpu_info(); cpu_data(0).x86_max_cores = 1; for_each_possible_cpu(i) { zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL); zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL); zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL); } set_cpu_sibling_map(0); if (xen_smp_intr_init(0)) BUG(); if (!alloc_cpumask_var(&xen_cpu_initialized_map, GFP_KERNEL)) panic("could not allocate xen_cpu_initialized_map\n"); cpumask_copy(xen_cpu_initialized_map, cpumask_of(0)); /* Restrict the possible_map according to max_cpus. */ while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) { for (cpu = nr_cpu_ids - 1; !cpu_possible(cpu); cpu--) continue; set_cpu_possible(cpu, false); } for_each_possible_cpu(cpu) set_cpu_present(cpu, true); } static int cpu_initialize_context(unsigned int cpu, struct task_struct *idle) { struct vcpu_guest_context *ctxt; struct desc_struct *gdt; unsigned long gdt_mfn; if (cpumask_test_and_set_cpu(cpu, xen_cpu_initialized_map)) return 0; ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); if (ctxt == NULL) return -ENOMEM; gdt = get_cpu_gdt_table(cpu); #ifdef CONFIG_X86_32 /* Note: PVH is not yet supported on x86_32. */ ctxt->user_regs.fs = __KERNEL_PERCPU; ctxt->user_regs.gs = __KERNEL_STACK_CANARY; #endif ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle; memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt)); if (!xen_feature(XENFEAT_auto_translated_physmap)) { ctxt->flags = VGCF_IN_KERNEL; ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */ ctxt->user_regs.ds = __USER_DS; ctxt->user_regs.es = __USER_DS; ctxt->user_regs.ss = __KERNEL_DS; xen_copy_trap_info(ctxt->trap_ctxt); ctxt->ldt_ents = 0; BUG_ON((unsigned long)gdt & ~PAGE_MASK); gdt_mfn = arbitrary_virt_to_mfn(gdt); make_lowmem_page_readonly(gdt); make_lowmem_page_readonly(mfn_to_virt(gdt_mfn)); ctxt->gdt_frames[0] = gdt_mfn; ctxt->gdt_ents = GDT_ENTRIES; ctxt->kernel_ss = __KERNEL_DS; ctxt->kernel_sp = idle->thread.sp0; #ifdef CONFIG_X86_32 ctxt->event_callback_cs = __KERNEL_CS; ctxt->failsafe_callback_cs = __KERNEL_CS; #else ctxt->gs_base_kernel = per_cpu_offset(cpu); #endif ctxt->event_callback_eip = (unsigned long)xen_hypervisor_callback; ctxt->failsafe_callback_eip = (unsigned long)xen_failsafe_callback; ctxt->user_regs.cs = __KERNEL_CS; per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir); #ifdef CONFIG_X86_32 } #else } else /* N.B. The user_regs.eip (cpu_bringup_and_idle) is called with * %rdi having the cpu number - which means are passing in * as the first parameter the cpu. Subtle! */ ctxt->user_regs.rdi = cpu; #endif ctxt->user_regs.esp = idle->thread.sp0 - sizeof(struct pt_regs); ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_mfn(swapper_pg_dir)); if (HYPERVISOR_vcpu_op(VCPUOP_initialise, cpu, ctxt)) BUG(); kfree(ctxt); return 0; } static int xen_cpu_up(unsigned int cpu, struct task_struct *idle) { int rc; per_cpu(current_task, cpu) = idle; #ifdef CONFIG_X86_32 irq_ctx_init(cpu); #else clear_tsk_thread_flag(idle, TIF_FORK); per_cpu(kernel_stack, cpu) = (unsigned long)task_stack_page(idle) - KERNEL_STACK_OFFSET + THREAD_SIZE; #endif xen_setup_runstate_info(cpu); xen_setup_timer(cpu); xen_init_lock_cpu(cpu); per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; /* make sure interrupts start blocked */ per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1; rc = cpu_initialize_context(cpu, idle); if (rc) return rc; if (num_online_cpus() == 1) /* Just in case we booted with a single CPU. */ alternatives_enable_smp(); rc = xen_smp_intr_init(cpu); if (rc) return rc; rc = HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL); BUG_ON(rc); while(per_cpu(cpu_state, cpu) != CPU_ONLINE) { HYPERVISOR_sched_op(SCHEDOP_yield, NULL); barrier(); } return 0; } static void xen_smp_cpus_done(unsigned int max_cpus) { } #ifdef CONFIG_HOTPLUG_CPU static int xen_cpu_disable(void) { unsigned int cpu = smp_processor_id(); if (cpu == 0) return -EBUSY; cpu_disable_common(); load_cr3(swapper_pg_dir); return 0; } static void xen_cpu_die(unsigned int cpu) { while (xen_pv_domain() && HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL)) { current->state = TASK_UNINTERRUPTIBLE; schedule_timeout(HZ/10); } xen_smp_intr_free(cpu); xen_uninit_lock_cpu(cpu); xen_teardown_timer(cpu); } static void xen_play_dead(void) /* used only with HOTPLUG_CPU */ { play_dead_common(); HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL); cpu_bringup(); /* * commit 4b0c0f294 (tick: Cleanup NOHZ per cpu data on cpu down) * clears certain data that the cpu_idle loop (which called us * and that we return from) expects. The only way to get that * data back is to call: */ tick_nohz_idle_enter(); } #else /* !CONFIG_HOTPLUG_CPU */ static int xen_cpu_disable(void) { return -ENOSYS; } static void xen_cpu_die(unsigned int cpu) { BUG(); } static void xen_play_dead(void) { BUG(); } #endif static void stop_self(void *v) { int cpu = smp_processor_id(); /* make sure we're not pinning something down */ load_cr3(swapper_pg_dir); /* should set up a minimal gdt */ set_cpu_online(cpu, false); HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL); BUG(); } static void xen_stop_other_cpus(int wait) { smp_call_function(stop_self, NULL, wait); } static void xen_smp_send_reschedule(int cpu) { xen_send_IPI_one(cpu, XEN_RESCHEDULE_VECTOR); } static void __xen_send_IPI_mask(const struct cpumask *mask, int vector) { unsigned cpu; for_each_cpu_and(cpu, mask, cpu_online_mask) xen_send_IPI_one(cpu, vector); } static void xen_smp_send_call_function_ipi(const struct cpumask *mask) { int cpu; __xen_send_IPI_mask(mask, XEN_CALL_FUNCTION_VECTOR); /* Make sure other vcpus get a chance to run if they need to. */ for_each_cpu(cpu, mask) { if (xen_vcpu_stolen(cpu)) { HYPERVISOR_sched_op(SCHEDOP_yield, NULL); break; } } } static void xen_smp_send_call_function_single_ipi(int cpu) { __xen_send_IPI_mask(cpumask_of(cpu), XEN_CALL_FUNCTION_SINGLE_VECTOR); } static inline int xen_map_vector(int vector) { int xen_vector; switch (vector) { case RESCHEDULE_VECTOR: xen_vector = XEN_RESCHEDULE_VECTOR; break; case CALL_FUNCTION_VECTOR: xen_vector = XEN_CALL_FUNCTION_VECTOR; break; case CALL_FUNCTION_SINGLE_VECTOR: xen_vector = XEN_CALL_FUNCTION_SINGLE_VECTOR; break; case IRQ_WORK_VECTOR: xen_vector = XEN_IRQ_WORK_VECTOR; break; #ifdef CONFIG_X86_64 case NMI_VECTOR: case APIC_DM_NMI: /* Some use that instead of NMI_VECTOR */ xen_vector = XEN_NMI_VECTOR; break; #endif default: xen_vector = -1; printk(KERN_ERR "xen: vector 0x%x is not implemented\n", vector); } return xen_vector; } void xen_send_IPI_mask(const struct cpumask *mask, int vector) { int xen_vector = xen_map_vector(vector); if (xen_vector >= 0) __xen_send_IPI_mask(mask, xen_vector); } void xen_send_IPI_all(int vector) { int xen_vector = xen_map_vector(vector); if (xen_vector >= 0) __xen_send_IPI_mask(cpu_online_mask, xen_vector); } void xen_send_IPI_self(int vector) { int xen_vector = xen_map_vector(vector); if (xen_vector >= 0) xen_send_IPI_one(smp_processor_id(), xen_vector); } void xen_send_IPI_mask_allbutself(const struct cpumask *mask, int vector) { unsigned cpu; unsigned int this_cpu = smp_processor_id(); int xen_vector = xen_map_vector(vector); if (!(num_online_cpus() > 1) || (xen_vector < 0)) return; for_each_cpu_and(cpu, mask, cpu_online_mask) { if (this_cpu == cpu) continue; xen_send_IPI_one(cpu, xen_vector); } } void xen_send_IPI_allbutself(int vector) { xen_send_IPI_mask_allbutself(cpu_online_mask, vector); } static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id) { irq_enter(); generic_smp_call_function_interrupt(); inc_irq_stat(irq_call_count); irq_exit(); return IRQ_HANDLED; } static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id) { irq_enter(); generic_smp_call_function_single_interrupt(); inc_irq_stat(irq_call_count); irq_exit(); return IRQ_HANDLED; } static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id) { irq_enter(); irq_work_run(); inc_irq_stat(apic_irq_work_irqs); irq_exit(); return IRQ_HANDLED; } static const struct smp_ops xen_smp_ops __initconst = { .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu, .smp_prepare_cpus = xen_smp_prepare_cpus, .smp_cpus_done = xen_smp_cpus_done, .cpu_up = xen_cpu_up, .cpu_die = xen_cpu_die, .cpu_disable = xen_cpu_disable, .play_dead = xen_play_dead, .stop_other_cpus = xen_stop_other_cpus, .smp_send_reschedule = xen_smp_send_reschedule, .send_call_func_ipi = xen_smp_send_call_function_ipi, .send_call_func_single_ipi = xen_smp_send_call_function_single_ipi, }; void __init xen_smp_init(void) { smp_ops = xen_smp_ops; xen_fill_possible_map(); } static void __init xen_hvm_smp_prepare_cpus(unsigned int max_cpus) { native_smp_prepare_cpus(max_cpus); WARN_ON(xen_smp_intr_init(0)); xen_init_lock_cpu(0); } static int xen_hvm_cpu_up(unsigned int cpu, struct task_struct *tidle) { int rc; /* * xen_smp_intr_init() needs to run before native_cpu_up() * so that IPI vectors are set up on the booting CPU before * it is marked online in native_cpu_up(). */ rc = xen_smp_intr_init(cpu); WARN_ON(rc); if (!rc) rc = native_cpu_up(cpu, tidle); /* * We must initialize the slowpath CPU kicker _after_ the native * path has executed. If we initialized it before none of the * unlocker IPI kicks would reach the booting CPU as the booting * CPU had not set itself 'online' in cpu_online_mask. That mask * is checked when IPIs are sent (on HVM at least). */ xen_init_lock_cpu(cpu); return rc; } static void xen_hvm_cpu_die(unsigned int cpu) { xen_cpu_die(cpu); native_cpu_die(cpu); } void __init xen_hvm_smp_init(void) { if (!xen_have_vector_callback) return; smp_ops.smp_prepare_cpus = xen_hvm_smp_prepare_cpus; smp_ops.smp_send_reschedule = xen_smp_send_reschedule; smp_ops.cpu_up = xen_hvm_cpu_up; smp_ops.cpu_die = xen_hvm_cpu_die; smp_ops.send_call_func_ipi = xen_smp_send_call_function_ipi; smp_ops.send_call_func_single_ipi = xen_smp_send_call_function_single_ipi; smp_ops.smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu; }