/* * Freescale i.MX23/i.MX28 Data Co-Processor driver * * Copyright (C) 2013 Marek Vasut <marex@denx.de> * * The code contained herein is licensed under the GNU General Public * License. You may obtain a copy of the GNU General Public License * Version 2 or later at the following locations: * * http://www.opensource.org/licenses/gpl-license.html * http://www.gnu.org/copyleft/gpl.html */ #include <linux/crypto.h> #include <linux/dma-mapping.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/kthread.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/stmp_device.h> #include <crypto/aes.h> #include <crypto/sha.h> #include <crypto/internal/hash.h> #define DCP_MAX_CHANS 4 #define DCP_BUF_SZ PAGE_SIZE /* DCP DMA descriptor. */ struct dcp_dma_desc { uint32_t next_cmd_addr; uint32_t control0; uint32_t control1; uint32_t source; uint32_t destination; uint32_t size; uint32_t payload; uint32_t status; }; /* Coherent aligned block for bounce buffering. */ struct dcp_coherent_block { uint8_t aes_in_buf[DCP_BUF_SZ]; uint8_t aes_out_buf[DCP_BUF_SZ]; uint8_t sha_in_buf[DCP_BUF_SZ]; uint8_t aes_key[2 * AES_KEYSIZE_128]; uint8_t sha_digest[SHA256_DIGEST_SIZE]; struct dcp_dma_desc desc[DCP_MAX_CHANS]; }; struct dcp { struct device *dev; void __iomem *base; uint32_t caps; struct dcp_coherent_block *coh; struct completion completion[DCP_MAX_CHANS]; struct mutex mutex[DCP_MAX_CHANS]; struct task_struct *thread[DCP_MAX_CHANS]; struct crypto_queue queue[DCP_MAX_CHANS]; }; enum dcp_chan { DCP_CHAN_HASH_SHA = 0, DCP_CHAN_CRYPTO = 2, }; struct dcp_async_ctx { /* Common context */ enum dcp_chan chan; uint32_t fill; /* SHA Hash-specific context */ struct mutex mutex; uint32_t alg; unsigned int hot:1; /* Crypto-specific context */ unsigned int enc:1; unsigned int ecb:1; struct crypto_ablkcipher *fallback; unsigned int key_len; uint8_t key[AES_KEYSIZE_128]; }; struct dcp_sha_req_ctx { unsigned int init:1; unsigned int fini:1; }; /* * There can even be only one instance of the MXS DCP due to the * design of Linux Crypto API. */ static struct dcp *global_sdcp; static DEFINE_MUTEX(global_mutex); /* DCP register layout. */ #define MXS_DCP_CTRL 0x00 #define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23) #define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22) #define MXS_DCP_STAT 0x10 #define MXS_DCP_STAT_CLR 0x18 #define MXS_DCP_STAT_IRQ_MASK 0xf #define MXS_DCP_CHANNELCTRL 0x20 #define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff #define MXS_DCP_CAPABILITY1 0x40 #define MXS_DCP_CAPABILITY1_SHA256 (4 << 16) #define MXS_DCP_CAPABILITY1_SHA1 (1 << 16) #define MXS_DCP_CAPABILITY1_AES128 (1 << 0) #define MXS_DCP_CONTEXT 0x50 #define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40)) #define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40)) #define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40)) #define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40)) /* DMA descriptor bits. */ #define MXS_DCP_CONTROL0_HASH_TERM (1 << 13) #define MXS_DCP_CONTROL0_HASH_INIT (1 << 12) #define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11) #define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8) #define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9) #define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6) #define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5) #define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1) #define MXS_DCP_CONTROL0_INTERRUPT (1 << 0) #define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16) #define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16) #define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4) #define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4) #define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0) static int mxs_dcp_start_dma(struct dcp_async_ctx *actx) { struct dcp *sdcp = global_sdcp; const int chan = actx->chan; uint32_t stat; int ret; struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan]; dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc), DMA_TO_DEVICE); reinit_completion(&sdcp->completion[chan]); /* Clear status register. */ writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan)); /* Load the DMA descriptor. */ writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan)); /* Increment the semaphore to start the DMA transfer. */ writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan)); ret = wait_for_completion_timeout(&sdcp->completion[chan], msecs_to_jiffies(1000)); if (!ret) { dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n", chan, readl(sdcp->base + MXS_DCP_STAT)); return -ETIMEDOUT; } stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan)); if (stat & 0xff) { dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n", chan, stat); return -EINVAL; } dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE); return 0; } /* * Encryption (AES128) */ static int mxs_dcp_run_aes(struct dcp_async_ctx *actx, int init) { struct dcp *sdcp = global_sdcp; struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan]; int ret; dma_addr_t key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key, 2 * AES_KEYSIZE_128, DMA_TO_DEVICE); dma_addr_t src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf, DCP_BUF_SZ, DMA_TO_DEVICE); dma_addr_t dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf, DCP_BUF_SZ, DMA_FROM_DEVICE); /* Fill in the DMA descriptor. */ desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE | MXS_DCP_CONTROL0_INTERRUPT | MXS_DCP_CONTROL0_ENABLE_CIPHER; /* Payload contains the key. */ desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY; if (actx->enc) desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT; if (init) desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT; desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128; if (actx->ecb) desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB; else desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC; desc->next_cmd_addr = 0; desc->source = src_phys; desc->destination = dst_phys; desc->size = actx->fill; desc->payload = key_phys; desc->status = 0; ret = mxs_dcp_start_dma(actx); dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128, DMA_TO_DEVICE); dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE); dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE); return ret; } static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq) { struct dcp *sdcp = global_sdcp; struct ablkcipher_request *req = ablkcipher_request_cast(arq); struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm); struct scatterlist *dst = req->dst; struct scatterlist *src = req->src; const int nents = sg_nents(req->src); const int out_off = DCP_BUF_SZ; uint8_t *in_buf = sdcp->coh->aes_in_buf; uint8_t *out_buf = sdcp->coh->aes_out_buf; uint8_t *out_tmp, *src_buf, *dst_buf = NULL; uint32_t dst_off = 0; uint8_t *key = sdcp->coh->aes_key; int ret = 0; int split = 0; unsigned int i, len, clen, rem = 0; int init = 0; actx->fill = 0; /* Copy the key from the temporary location. */ memcpy(key, actx->key, actx->key_len); if (!actx->ecb) { /* Copy the CBC IV just past the key. */ memcpy(key + AES_KEYSIZE_128, req->info, AES_KEYSIZE_128); /* CBC needs the INIT set. */ init = 1; } else { memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128); } for_each_sg(req->src, src, nents, i) { src_buf = sg_virt(src); len = sg_dma_len(src); do { if (actx->fill + len > out_off) clen = out_off - actx->fill; else clen = len; memcpy(in_buf + actx->fill, src_buf, clen); len -= clen; src_buf += clen; actx->fill += clen; /* * If we filled the buffer or this is the last SG, * submit the buffer. */ if (actx->fill == out_off || sg_is_last(src)) { ret = mxs_dcp_run_aes(actx, init); if (ret) return ret; init = 0; out_tmp = out_buf; while (dst && actx->fill) { if (!split) { dst_buf = sg_virt(dst); dst_off = 0; } rem = min(sg_dma_len(dst) - dst_off, actx->fill); memcpy(dst_buf + dst_off, out_tmp, rem); out_tmp += rem; dst_off += rem; actx->fill -= rem; if (dst_off == sg_dma_len(dst)) { dst = sg_next(dst); split = 0; } else { split = 1; } } } } while (len); } return ret; } static int dcp_chan_thread_aes(void *data) { struct dcp *sdcp = global_sdcp; const int chan = DCP_CHAN_CRYPTO; struct crypto_async_request *backlog; struct crypto_async_request *arq; int ret; do { __set_current_state(TASK_INTERRUPTIBLE); mutex_lock(&sdcp->mutex[chan]); backlog = crypto_get_backlog(&sdcp->queue[chan]); arq = crypto_dequeue_request(&sdcp->queue[chan]); mutex_unlock(&sdcp->mutex[chan]); if (backlog) backlog->complete(backlog, -EINPROGRESS); if (arq) { ret = mxs_dcp_aes_block_crypt(arq); arq->complete(arq, ret); continue; } schedule(); } while (!kthread_should_stop()); return 0; } static int mxs_dcp_block_fallback(struct ablkcipher_request *req, int enc) { struct crypto_tfm *tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req)); struct dcp_async_ctx *ctx = crypto_ablkcipher_ctx( crypto_ablkcipher_reqtfm(req)); int ret; ablkcipher_request_set_tfm(req, ctx->fallback); if (enc) ret = crypto_ablkcipher_encrypt(req); else ret = crypto_ablkcipher_decrypt(req); ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(tfm)); return ret; } static int mxs_dcp_aes_enqueue(struct ablkcipher_request *req, int enc, int ecb) { struct dcp *sdcp = global_sdcp; struct crypto_async_request *arq = &req->base; struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm); int ret; if (unlikely(actx->key_len != AES_KEYSIZE_128)) return mxs_dcp_block_fallback(req, enc); actx->enc = enc; actx->ecb = ecb; actx->chan = DCP_CHAN_CRYPTO; mutex_lock(&sdcp->mutex[actx->chan]); ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base); mutex_unlock(&sdcp->mutex[actx->chan]); wake_up_process(sdcp->thread[actx->chan]); return -EINPROGRESS; } static int mxs_dcp_aes_ecb_decrypt(struct ablkcipher_request *req) { return mxs_dcp_aes_enqueue(req, 0, 1); } static int mxs_dcp_aes_ecb_encrypt(struct ablkcipher_request *req) { return mxs_dcp_aes_enqueue(req, 1, 1); } static int mxs_dcp_aes_cbc_decrypt(struct ablkcipher_request *req) { return mxs_dcp_aes_enqueue(req, 0, 0); } static int mxs_dcp_aes_cbc_encrypt(struct ablkcipher_request *req) { return mxs_dcp_aes_enqueue(req, 1, 0); } static int mxs_dcp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key, unsigned int len) { struct dcp_async_ctx *actx = crypto_ablkcipher_ctx(tfm); unsigned int ret; /* * AES 128 is supposed by the hardware, store key into temporary * buffer and exit. We must use the temporary buffer here, since * there can still be an operation in progress. */ actx->key_len = len; if (len == AES_KEYSIZE_128) { memcpy(actx->key, key, len); return 0; } /* Check if the key size is supported by kernel at all. */ if (len != AES_KEYSIZE_192 && len != AES_KEYSIZE_256) { tfm->base.crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; return -EINVAL; } /* * If the requested AES key size is not supported by the hardware, * but is supported by in-kernel software implementation, we use * software fallback. */ actx->fallback->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; actx->fallback->base.crt_flags |= tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK; ret = crypto_ablkcipher_setkey(actx->fallback, key, len); if (!ret) return 0; tfm->base.crt_flags &= ~CRYPTO_TFM_RES_MASK; tfm->base.crt_flags |= actx->fallback->base.crt_flags & CRYPTO_TFM_RES_MASK; return ret; } static int mxs_dcp_aes_fallback_init(struct crypto_tfm *tfm) { const char *name = tfm->__crt_alg->cra_name; const uint32_t flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK; struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm); struct crypto_ablkcipher *blk; blk = crypto_alloc_ablkcipher(name, 0, flags); if (IS_ERR(blk)) return PTR_ERR(blk); actx->fallback = blk; tfm->crt_ablkcipher.reqsize = sizeof(struct dcp_async_ctx); return 0; } static void mxs_dcp_aes_fallback_exit(struct crypto_tfm *tfm) { struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm); crypto_free_ablkcipher(actx->fallback); actx->fallback = NULL; } /* * Hashing (SHA1/SHA256) */ static int mxs_dcp_run_sha(struct ahash_request *req) { struct dcp *sdcp = global_sdcp; int ret; struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm); struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req); struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan]; dma_addr_t digest_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_digest, SHA256_DIGEST_SIZE, DMA_FROM_DEVICE); dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf, DCP_BUF_SZ, DMA_TO_DEVICE); /* Fill in the DMA descriptor. */ desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE | MXS_DCP_CONTROL0_INTERRUPT | MXS_DCP_CONTROL0_ENABLE_HASH; if (rctx->init) desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT; desc->control1 = actx->alg; desc->next_cmd_addr = 0; desc->source = buf_phys; desc->destination = 0; desc->size = actx->fill; desc->payload = 0; desc->status = 0; /* Set HASH_TERM bit for last transfer block. */ if (rctx->fini) { desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM; desc->payload = digest_phys; } ret = mxs_dcp_start_dma(actx); dma_unmap_single(sdcp->dev, digest_phys, SHA256_DIGEST_SIZE, DMA_FROM_DEVICE); dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE); return ret; } static int dcp_sha_req_to_buf(struct crypto_async_request *arq) { struct dcp *sdcp = global_sdcp; struct ahash_request *req = ahash_request_cast(arq); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm); struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req); struct hash_alg_common *halg = crypto_hash_alg_common(tfm); const int nents = sg_nents(req->src); uint8_t *digest = sdcp->coh->sha_digest; uint8_t *in_buf = sdcp->coh->sha_in_buf; uint8_t *src_buf; struct scatterlist *src; unsigned int i, len, clen; int ret; int fin = rctx->fini; if (fin) rctx->fini = 0; for_each_sg(req->src, src, nents, i) { src_buf = sg_virt(src); len = sg_dma_len(src); do { if (actx->fill + len > DCP_BUF_SZ) clen = DCP_BUF_SZ - actx->fill; else clen = len; memcpy(in_buf + actx->fill, src_buf, clen); len -= clen; src_buf += clen; actx->fill += clen; /* * If we filled the buffer and still have some * more data, submit the buffer. */ if (len && actx->fill == DCP_BUF_SZ) { ret = mxs_dcp_run_sha(req); if (ret) return ret; actx->fill = 0; rctx->init = 0; } } while (len); } if (fin) { rctx->fini = 1; /* Submit whatever is left. */ ret = mxs_dcp_run_sha(req); if (ret || !req->result) return ret; actx->fill = 0; /* For some reason, the result is flipped. */ for (i = 0; i < halg->digestsize; i++) req->result[i] = digest[halg->digestsize - i - 1]; } return 0; } static int dcp_chan_thread_sha(void *data) { struct dcp *sdcp = global_sdcp; const int chan = DCP_CHAN_HASH_SHA; struct crypto_async_request *backlog; struct crypto_async_request *arq; struct dcp_sha_req_ctx *rctx; struct ahash_request *req; int ret, fini; do { __set_current_state(TASK_INTERRUPTIBLE); mutex_lock(&sdcp->mutex[chan]); backlog = crypto_get_backlog(&sdcp->queue[chan]); arq = crypto_dequeue_request(&sdcp->queue[chan]); mutex_unlock(&sdcp->mutex[chan]); if (backlog) backlog->complete(backlog, -EINPROGRESS); if (arq) { req = ahash_request_cast(arq); rctx = ahash_request_ctx(req); ret = dcp_sha_req_to_buf(arq); fini = rctx->fini; arq->complete(arq, ret); if (!fini) continue; } schedule(); } while (!kthread_should_stop()); return 0; } static int dcp_sha_init(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm); struct hash_alg_common *halg = crypto_hash_alg_common(tfm); /* * Start hashing session. The code below only inits the * hashing session context, nothing more. */ memset(actx, 0, sizeof(*actx)); if (strcmp(halg->base.cra_name, "sha1") == 0) actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1; else actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256; actx->fill = 0; actx->hot = 0; actx->chan = DCP_CHAN_HASH_SHA; mutex_init(&actx->mutex); return 0; } static int dcp_sha_update_fx(struct ahash_request *req, int fini) { struct dcp *sdcp = global_sdcp; struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm); int ret; /* * Ignore requests that have no data in them and are not * the trailing requests in the stream of requests. */ if (!req->nbytes && !fini) return 0; mutex_lock(&actx->mutex); rctx->fini = fini; if (!actx->hot) { actx->hot = 1; rctx->init = 1; } mutex_lock(&sdcp->mutex[actx->chan]); ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base); mutex_unlock(&sdcp->mutex[actx->chan]); wake_up_process(sdcp->thread[actx->chan]); mutex_unlock(&actx->mutex); return -EINPROGRESS; } static int dcp_sha_update(struct ahash_request *req) { return dcp_sha_update_fx(req, 0); } static int dcp_sha_final(struct ahash_request *req) { ahash_request_set_crypt(req, NULL, req->result, 0); req->nbytes = 0; return dcp_sha_update_fx(req, 1); } static int dcp_sha_finup(struct ahash_request *req) { return dcp_sha_update_fx(req, 1); } static int dcp_sha_digest(struct ahash_request *req) { int ret; ret = dcp_sha_init(req); if (ret) return ret; return dcp_sha_finup(req); } static int dcp_sha_cra_init(struct crypto_tfm *tfm) { crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct dcp_sha_req_ctx)); return 0; } static void dcp_sha_cra_exit(struct crypto_tfm *tfm) { } /* AES 128 ECB and AES 128 CBC */ static struct crypto_alg dcp_aes_algs[] = { { .cra_name = "ecb(aes)", .cra_driver_name = "ecb-aes-dcp", .cra_priority = 400, .cra_alignmask = 15, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_init = mxs_dcp_aes_fallback_init, .cra_exit = mxs_dcp_aes_fallback_exit, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct dcp_async_ctx), .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_u = { .ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = mxs_dcp_aes_setkey, .encrypt = mxs_dcp_aes_ecb_encrypt, .decrypt = mxs_dcp_aes_ecb_decrypt }, }, }, { .cra_name = "cbc(aes)", .cra_driver_name = "cbc-aes-dcp", .cra_priority = 400, .cra_alignmask = 15, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_init = mxs_dcp_aes_fallback_init, .cra_exit = mxs_dcp_aes_fallback_exit, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct dcp_async_ctx), .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_u = { .ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = mxs_dcp_aes_setkey, .encrypt = mxs_dcp_aes_cbc_encrypt, .decrypt = mxs_dcp_aes_cbc_decrypt, .ivsize = AES_BLOCK_SIZE, }, }, }, }; /* SHA1 */ static struct ahash_alg dcp_sha1_alg = { .init = dcp_sha_init, .update = dcp_sha_update, .final = dcp_sha_final, .finup = dcp_sha_finup, .digest = dcp_sha_digest, .halg = { .digestsize = SHA1_DIGEST_SIZE, .base = { .cra_name = "sha1", .cra_driver_name = "sha1-dcp", .cra_priority = 400, .cra_alignmask = 63, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct dcp_async_ctx), .cra_module = THIS_MODULE, .cra_init = dcp_sha_cra_init, .cra_exit = dcp_sha_cra_exit, }, }, }; /* SHA256 */ static struct ahash_alg dcp_sha256_alg = { .init = dcp_sha_init, .update = dcp_sha_update, .final = dcp_sha_final, .finup = dcp_sha_finup, .digest = dcp_sha_digest, .halg = { .digestsize = SHA256_DIGEST_SIZE, .base = { .cra_name = "sha256", .cra_driver_name = "sha256-dcp", .cra_priority = 400, .cra_alignmask = 63, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct dcp_async_ctx), .cra_module = THIS_MODULE, .cra_init = dcp_sha_cra_init, .cra_exit = dcp_sha_cra_exit, }, }, }; static irqreturn_t mxs_dcp_irq(int irq, void *context) { struct dcp *sdcp = context; uint32_t stat; int i; stat = readl(sdcp->base + MXS_DCP_STAT); stat &= MXS_DCP_STAT_IRQ_MASK; if (!stat) return IRQ_NONE; /* Clear the interrupts. */ writel(stat, sdcp->base + MXS_DCP_STAT_CLR); /* Complete the DMA requests that finished. */ for (i = 0; i < DCP_MAX_CHANS; i++) if (stat & (1 << i)) complete(&sdcp->completion[i]); return IRQ_HANDLED; } static int mxs_dcp_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct dcp *sdcp = NULL; int i, ret; struct resource *iores; int dcp_vmi_irq, dcp_irq; mutex_lock(&global_mutex); if (global_sdcp) { dev_err(dev, "Only one DCP instance allowed!\n"); ret = -ENODEV; goto err_mutex; } iores = platform_get_resource(pdev, IORESOURCE_MEM, 0); dcp_vmi_irq = platform_get_irq(pdev, 0); dcp_irq = platform_get_irq(pdev, 1); if (dcp_vmi_irq < 0 || dcp_irq < 0) { ret = -EINVAL; goto err_mutex; } sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL); if (!sdcp) { ret = -ENOMEM; goto err_mutex; } sdcp->dev = dev; sdcp->base = devm_ioremap_resource(dev, iores); if (IS_ERR(sdcp->base)) { ret = PTR_ERR(sdcp->base); goto err_mutex; } ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0, "dcp-vmi-irq", sdcp); if (ret) { dev_err(dev, "Failed to claim DCP VMI IRQ!\n"); goto err_mutex; } ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0, "dcp-irq", sdcp); if (ret) { dev_err(dev, "Failed to claim DCP IRQ!\n"); goto err_mutex; } /* Allocate coherent helper block. */ sdcp->coh = kzalloc(sizeof(struct dcp_coherent_block), GFP_KERNEL); if (!sdcp->coh) { dev_err(dev, "Error allocating coherent block\n"); ret = -ENOMEM; goto err_mutex; } /* Restart the DCP block. */ stmp_reset_block(sdcp->base); /* Initialize control register. */ writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES | MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf, sdcp->base + MXS_DCP_CTRL); /* Enable all DCP DMA channels. */ writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK, sdcp->base + MXS_DCP_CHANNELCTRL); /* * We do not enable context switching. Give the context buffer a * pointer to an illegal address so if context switching is * inadvertantly enabled, the DCP will return an error instead of * trashing good memory. The DCP DMA cannot access ROM, so any ROM * address will do. */ writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT); for (i = 0; i < DCP_MAX_CHANS; i++) writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i)); writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR); global_sdcp = sdcp; platform_set_drvdata(pdev, sdcp); for (i = 0; i < DCP_MAX_CHANS; i++) { mutex_init(&sdcp->mutex[i]); init_completion(&sdcp->completion[i]); crypto_init_queue(&sdcp->queue[i], 50); } /* Create the SHA and AES handler threads. */ sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha, NULL, "mxs_dcp_chan/sha"); if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) { dev_err(dev, "Error starting SHA thread!\n"); ret = PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]); goto err_free_coherent; } sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes, NULL, "mxs_dcp_chan/aes"); if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) { dev_err(dev, "Error starting SHA thread!\n"); ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]); goto err_destroy_sha_thread; } /* Register the various crypto algorithms. */ sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1); if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) { ret = crypto_register_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs)); if (ret) { /* Failed to register algorithm. */ dev_err(dev, "Failed to register AES crypto!\n"); goto err_destroy_aes_thread; } } if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) { ret = crypto_register_ahash(&dcp_sha1_alg); if (ret) { dev_err(dev, "Failed to register %s hash!\n", dcp_sha1_alg.halg.base.cra_name); goto err_unregister_aes; } } if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) { ret = crypto_register_ahash(&dcp_sha256_alg); if (ret) { dev_err(dev, "Failed to register %s hash!\n", dcp_sha256_alg.halg.base.cra_name); goto err_unregister_sha1; } } return 0; err_unregister_sha1: if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) crypto_unregister_ahash(&dcp_sha1_alg); err_unregister_aes: if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs)); err_destroy_aes_thread: kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]); err_destroy_sha_thread: kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]); err_free_coherent: kfree(sdcp->coh); err_mutex: mutex_unlock(&global_mutex); return ret; } static int mxs_dcp_remove(struct platform_device *pdev) { struct dcp *sdcp = platform_get_drvdata(pdev); kfree(sdcp->coh); if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) crypto_unregister_ahash(&dcp_sha256_alg); if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) crypto_unregister_ahash(&dcp_sha1_alg); if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs)); kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]); kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]); platform_set_drvdata(pdev, NULL); mutex_lock(&global_mutex); global_sdcp = NULL; mutex_unlock(&global_mutex); return 0; } static const struct of_device_id mxs_dcp_dt_ids[] = { { .compatible = "fsl,imx23-dcp", .data = NULL, }, { .compatible = "fsl,imx28-dcp", .data = NULL, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids); static struct platform_driver mxs_dcp_driver = { .probe = mxs_dcp_probe, .remove = mxs_dcp_remove, .driver = { .name = "mxs-dcp", .owner = THIS_MODULE, .of_match_table = mxs_dcp_dt_ids, }, }; module_platform_driver(mxs_dcp_driver); MODULE_AUTHOR("Marek Vasut <marex@denx.de>"); MODULE_DESCRIPTION("Freescale MXS DCP Driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:mxs-dcp");