/* * Cryptographic API. * * Support for VIA PadLock hardware crypto engine. * * Copyright (c) 2006 Michal Ludvig <michal@logix.cz> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * */ #include <crypto/internal/hash.h> #include <crypto/padlock.h> #include <crypto/sha.h> #include <linux/err.h> #include <linux/module.h> #include <linux/init.h> #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/scatterlist.h> #include <asm/cpu_device_id.h> #include <asm/i387.h> struct padlock_sha_desc { struct shash_desc fallback; }; struct padlock_sha_ctx { struct crypto_shash *fallback; }; static int padlock_sha_init(struct shash_desc *desc) { struct padlock_sha_desc *dctx = shash_desc_ctx(desc); struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm); dctx->fallback.tfm = ctx->fallback; dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP; return crypto_shash_init(&dctx->fallback); } static int padlock_sha_update(struct shash_desc *desc, const u8 *data, unsigned int length) { struct padlock_sha_desc *dctx = shash_desc_ctx(desc); dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP; return crypto_shash_update(&dctx->fallback, data, length); } static int padlock_sha_export(struct shash_desc *desc, void *out) { struct padlock_sha_desc *dctx = shash_desc_ctx(desc); return crypto_shash_export(&dctx->fallback, out); } static int padlock_sha_import(struct shash_desc *desc, const void *in) { struct padlock_sha_desc *dctx = shash_desc_ctx(desc); struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm); dctx->fallback.tfm = ctx->fallback; dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP; return crypto_shash_import(&dctx->fallback, in); } static inline void padlock_output_block(uint32_t *src, uint32_t *dst, size_t count) { while (count--) *dst++ = swab32(*src++); } static int padlock_sha1_finup(struct shash_desc *desc, const u8 *in, unsigned int count, u8 *out) { /* We can't store directly to *out as it may be unaligned. */ /* BTW Don't reduce the buffer size below 128 Bytes! * PadLock microcode needs it that big. */ char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__ ((aligned(STACK_ALIGN))); char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT); struct padlock_sha_desc *dctx = shash_desc_ctx(desc); struct sha1_state state; unsigned int space; unsigned int leftover; int ts_state; int err; dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP; err = crypto_shash_export(&dctx->fallback, &state); if (err) goto out; if (state.count + count > ULONG_MAX) return crypto_shash_finup(&dctx->fallback, in, count, out); leftover = ((state.count - 1) & (SHA1_BLOCK_SIZE - 1)) + 1; space = SHA1_BLOCK_SIZE - leftover; if (space) { if (count > space) { err = crypto_shash_update(&dctx->fallback, in, space) ?: crypto_shash_export(&dctx->fallback, &state); if (err) goto out; count -= space; in += space; } else { memcpy(state.buffer + leftover, in, count); in = state.buffer; count += leftover; state.count &= ~(SHA1_BLOCK_SIZE - 1); } } memcpy(result, &state.state, SHA1_DIGEST_SIZE); /* prevent taking the spurious DNA fault with padlock. */ ts_state = irq_ts_save(); asm volatile (".byte 0xf3,0x0f,0xa6,0xc8" /* rep xsha1 */ : \ : "c"((unsigned long)state.count + count), \ "a"((unsigned long)state.count), \ "S"(in), "D"(result)); irq_ts_restore(ts_state); padlock_output_block((uint32_t *)result, (uint32_t *)out, 5); out: return err; } static int padlock_sha1_final(struct shash_desc *desc, u8 *out) { u8 buf[4]; return padlock_sha1_finup(desc, buf, 0, out); } static int padlock_sha256_finup(struct shash_desc *desc, const u8 *in, unsigned int count, u8 *out) { /* We can't store directly to *out as it may be unaligned. */ /* BTW Don't reduce the buffer size below 128 Bytes! * PadLock microcode needs it that big. */ char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__ ((aligned(STACK_ALIGN))); char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT); struct padlock_sha_desc *dctx = shash_desc_ctx(desc); struct sha256_state state; unsigned int space; unsigned int leftover; int ts_state; int err; dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP; err = crypto_shash_export(&dctx->fallback, &state); if (err) goto out; if (state.count + count > ULONG_MAX) return crypto_shash_finup(&dctx->fallback, in, count, out); leftover = ((state.count - 1) & (SHA256_BLOCK_SIZE - 1)) + 1; space = SHA256_BLOCK_SIZE - leftover; if (space) { if (count > space) { err = crypto_shash_update(&dctx->fallback, in, space) ?: crypto_shash_export(&dctx->fallback, &state); if (err) goto out; count -= space; in += space; } else { memcpy(state.buf + leftover, in, count); in = state.buf; count += leftover; state.count &= ~(SHA1_BLOCK_SIZE - 1); } } memcpy(result, &state.state, SHA256_DIGEST_SIZE); /* prevent taking the spurious DNA fault with padlock. */ ts_state = irq_ts_save(); asm volatile (".byte 0xf3,0x0f,0xa6,0xd0" /* rep xsha256 */ : \ : "c"((unsigned long)state.count + count), \ "a"((unsigned long)state.count), \ "S"(in), "D"(result)); irq_ts_restore(ts_state); padlock_output_block((uint32_t *)result, (uint32_t *)out, 8); out: return err; } static int padlock_sha256_final(struct shash_desc *desc, u8 *out) { u8 buf[4]; return padlock_sha256_finup(desc, buf, 0, out); } static int padlock_cra_init(struct crypto_tfm *tfm) { struct crypto_shash *hash = __crypto_shash_cast(tfm); const char *fallback_driver_name = tfm->__crt_alg->cra_name; struct padlock_sha_ctx *ctx = crypto_tfm_ctx(tfm); struct crypto_shash *fallback_tfm; int err = -ENOMEM; /* Allocate a fallback and abort if it failed. */ fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(fallback_tfm)) { printk(KERN_WARNING PFX "Fallback driver '%s' could not be loaded!\n", fallback_driver_name); err = PTR_ERR(fallback_tfm); goto out; } ctx->fallback = fallback_tfm; hash->descsize += crypto_shash_descsize(fallback_tfm); return 0; out: return err; } static void padlock_cra_exit(struct crypto_tfm *tfm) { struct padlock_sha_ctx *ctx = crypto_tfm_ctx(tfm); crypto_free_shash(ctx->fallback); } static struct shash_alg sha1_alg = { .digestsize = SHA1_DIGEST_SIZE, .init = padlock_sha_init, .update = padlock_sha_update, .finup = padlock_sha1_finup, .final = padlock_sha1_final, .export = padlock_sha_export, .import = padlock_sha_import, .descsize = sizeof(struct padlock_sha_desc), .statesize = sizeof(struct sha1_state), .base = { .cra_name = "sha1", .cra_driver_name = "sha1-padlock", .cra_priority = PADLOCK_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_TYPE_SHASH | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct padlock_sha_ctx), .cra_module = THIS_MODULE, .cra_init = padlock_cra_init, .cra_exit = padlock_cra_exit, } }; static struct shash_alg sha256_alg = { .digestsize = SHA256_DIGEST_SIZE, .init = padlock_sha_init, .update = padlock_sha_update, .finup = padlock_sha256_finup, .final = padlock_sha256_final, .export = padlock_sha_export, .import = padlock_sha_import, .descsize = sizeof(struct padlock_sha_desc), .statesize = sizeof(struct sha256_state), .base = { .cra_name = "sha256", .cra_driver_name = "sha256-padlock", .cra_priority = PADLOCK_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_TYPE_SHASH | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct padlock_sha_ctx), .cra_module = THIS_MODULE, .cra_init = padlock_cra_init, .cra_exit = padlock_cra_exit, } }; /* Add two shash_alg instance for hardware-implemented * * multiple-parts hash supported by VIA Nano Processor.*/ static int padlock_sha1_init_nano(struct shash_desc *desc) { struct sha1_state *sctx = shash_desc_ctx(desc); *sctx = (struct sha1_state){ .state = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 }, }; return 0; } static int padlock_sha1_update_nano(struct shash_desc *desc, const u8 *data, unsigned int len) { struct sha1_state *sctx = shash_desc_ctx(desc); unsigned int partial, done; const u8 *src; /*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/ u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__ ((aligned(STACK_ALIGN))); u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT); int ts_state; partial = sctx->count & 0x3f; sctx->count += len; done = 0; src = data; memcpy(dst, (u8 *)(sctx->state), SHA1_DIGEST_SIZE); if ((partial + len) >= SHA1_BLOCK_SIZE) { /* Append the bytes in state's buffer to a block to handle */ if (partial) { done = -partial; memcpy(sctx->buffer + partial, data, done + SHA1_BLOCK_SIZE); src = sctx->buffer; ts_state = irq_ts_save(); asm volatile (".byte 0xf3,0x0f,0xa6,0xc8" : "+S"(src), "+D"(dst) \ : "a"((long)-1), "c"((unsigned long)1)); irq_ts_restore(ts_state); done += SHA1_BLOCK_SIZE; src = data + done; } /* Process the left bytes from the input data */ if (len - done >= SHA1_BLOCK_SIZE) { ts_state = irq_ts_save(); asm volatile (".byte 0xf3,0x0f,0xa6,0xc8" : "+S"(src), "+D"(dst) : "a"((long)-1), "c"((unsigned long)((len - done) / SHA1_BLOCK_SIZE))); irq_ts_restore(ts_state); done += ((len - done) - (len - done) % SHA1_BLOCK_SIZE); src = data + done; } partial = 0; } memcpy((u8 *)(sctx->state), dst, SHA1_DIGEST_SIZE); memcpy(sctx->buffer + partial, src, len - done); return 0; } static int padlock_sha1_final_nano(struct shash_desc *desc, u8 *out) { struct sha1_state *state = (struct sha1_state *)shash_desc_ctx(desc); unsigned int partial, padlen; __be64 bits; static const u8 padding[64] = { 0x80, }; bits = cpu_to_be64(state->count << 3); /* Pad out to 56 mod 64 */ partial = state->count & 0x3f; padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial); padlock_sha1_update_nano(desc, padding, padlen); /* Append length field bytes */ padlock_sha1_update_nano(desc, (const u8 *)&bits, sizeof(bits)); /* Swap to output */ padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 5); return 0; } static int padlock_sha256_init_nano(struct shash_desc *desc) { struct sha256_state *sctx = shash_desc_ctx(desc); *sctx = (struct sha256_state){ .state = { SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, \ SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7}, }; return 0; } static int padlock_sha256_update_nano(struct shash_desc *desc, const u8 *data, unsigned int len) { struct sha256_state *sctx = shash_desc_ctx(desc); unsigned int partial, done; const u8 *src; /*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/ u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__ ((aligned(STACK_ALIGN))); u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT); int ts_state; partial = sctx->count & 0x3f; sctx->count += len; done = 0; src = data; memcpy(dst, (u8 *)(sctx->state), SHA256_DIGEST_SIZE); if ((partial + len) >= SHA256_BLOCK_SIZE) { /* Append the bytes in state's buffer to a block to handle */ if (partial) { done = -partial; memcpy(sctx->buf + partial, data, done + SHA256_BLOCK_SIZE); src = sctx->buf; ts_state = irq_ts_save(); asm volatile (".byte 0xf3,0x0f,0xa6,0xd0" : "+S"(src), "+D"(dst) : "a"((long)-1), "c"((unsigned long)1)); irq_ts_restore(ts_state); done += SHA256_BLOCK_SIZE; src = data + done; } /* Process the left bytes from input data*/ if (len - done >= SHA256_BLOCK_SIZE) { ts_state = irq_ts_save(); asm volatile (".byte 0xf3,0x0f,0xa6,0xd0" : "+S"(src), "+D"(dst) : "a"((long)-1), "c"((unsigned long)((len - done) / 64))); irq_ts_restore(ts_state); done += ((len - done) - (len - done) % 64); src = data + done; } partial = 0; } memcpy((u8 *)(sctx->state), dst, SHA256_DIGEST_SIZE); memcpy(sctx->buf + partial, src, len - done); return 0; } static int padlock_sha256_final_nano(struct shash_desc *desc, u8 *out) { struct sha256_state *state = (struct sha256_state *)shash_desc_ctx(desc); unsigned int partial, padlen; __be64 bits; static const u8 padding[64] = { 0x80, }; bits = cpu_to_be64(state->count << 3); /* Pad out to 56 mod 64 */ partial = state->count & 0x3f; padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial); padlock_sha256_update_nano(desc, padding, padlen); /* Append length field bytes */ padlock_sha256_update_nano(desc, (const u8 *)&bits, sizeof(bits)); /* Swap to output */ padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 8); return 0; } static int padlock_sha_export_nano(struct shash_desc *desc, void *out) { int statesize = crypto_shash_statesize(desc->tfm); void *sctx = shash_desc_ctx(desc); memcpy(out, sctx, statesize); return 0; } static int padlock_sha_import_nano(struct shash_desc *desc, const void *in) { int statesize = crypto_shash_statesize(desc->tfm); void *sctx = shash_desc_ctx(desc); memcpy(sctx, in, statesize); return 0; } static struct shash_alg sha1_alg_nano = { .digestsize = SHA1_DIGEST_SIZE, .init = padlock_sha1_init_nano, .update = padlock_sha1_update_nano, .final = padlock_sha1_final_nano, .export = padlock_sha_export_nano, .import = padlock_sha_import_nano, .descsize = sizeof(struct sha1_state), .statesize = sizeof(struct sha1_state), .base = { .cra_name = "sha1", .cra_driver_name = "sha1-padlock-nano", .cra_priority = PADLOCK_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_TYPE_SHASH, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_module = THIS_MODULE, } }; static struct shash_alg sha256_alg_nano = { .digestsize = SHA256_DIGEST_SIZE, .init = padlock_sha256_init_nano, .update = padlock_sha256_update_nano, .final = padlock_sha256_final_nano, .export = padlock_sha_export_nano, .import = padlock_sha_import_nano, .descsize = sizeof(struct sha256_state), .statesize = sizeof(struct sha256_state), .base = { .cra_name = "sha256", .cra_driver_name = "sha256-padlock-nano", .cra_priority = PADLOCK_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_TYPE_SHASH, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_module = THIS_MODULE, } }; static struct x86_cpu_id padlock_sha_ids[] = { X86_FEATURE_MATCH(X86_FEATURE_PHE), {} }; MODULE_DEVICE_TABLE(x86cpu, padlock_sha_ids); static int __init padlock_init(void) { int rc = -ENODEV; struct cpuinfo_x86 *c = &cpu_data(0); struct shash_alg *sha1; struct shash_alg *sha256; if (!x86_match_cpu(padlock_sha_ids) || !cpu_has_phe_enabled) return -ENODEV; /* Register the newly added algorithm module if on * * VIA Nano processor, or else just do as before */ if (c->x86_model < 0x0f) { sha1 = &sha1_alg; sha256 = &sha256_alg; } else { sha1 = &sha1_alg_nano; sha256 = &sha256_alg_nano; } rc = crypto_register_shash(sha1); if (rc) goto out; rc = crypto_register_shash(sha256); if (rc) goto out_unreg1; printk(KERN_NOTICE PFX "Using VIA PadLock ACE for SHA1/SHA256 algorithms.\n"); return 0; out_unreg1: crypto_unregister_shash(sha1); out: printk(KERN_ERR PFX "VIA PadLock SHA1/SHA256 initialization failed.\n"); return rc; } static void __exit padlock_fini(void) { struct cpuinfo_x86 *c = &cpu_data(0); if (c->x86_model >= 0x0f) { crypto_unregister_shash(&sha1_alg_nano); crypto_unregister_shash(&sha256_alg_nano); } else { crypto_unregister_shash(&sha1_alg); crypto_unregister_shash(&sha256_alg); } } module_init(padlock_init); module_exit(padlock_fini); MODULE_DESCRIPTION("VIA PadLock SHA1/SHA256 algorithms support."); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Michal Ludvig"); MODULE_ALIAS("sha1-all"); MODULE_ALIAS("sha256-all"); MODULE_ALIAS("sha1-padlock"); MODULE_ALIAS("sha256-padlock");