/* * Dmaengine driver base library for DMA controllers, found on SH-based SoCs * * extracted from shdma.c * * Copyright (C) 2011-2012 Guennadi Liakhovetski <g.liakhovetski@gmx.de> * Copyright (C) 2009 Nobuhiro Iwamatsu <iwamatsu.nobuhiro@renesas.com> * Copyright (C) 2009 Renesas Solutions, Inc. All rights reserved. * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved. * * This is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. */ #include <linux/delay.h> #include <linux/shdma-base.h> #include <linux/dmaengine.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/pm_runtime.h> #include <linux/slab.h> #include <linux/spinlock.h> #include "../dmaengine.h" /* DMA descriptor control */ enum shdma_desc_status { DESC_IDLE, DESC_PREPARED, DESC_SUBMITTED, DESC_COMPLETED, /* completed, have to call callback */ DESC_WAITING, /* callback called, waiting for ack / re-submit */ }; #define NR_DESCS_PER_CHANNEL 32 #define to_shdma_chan(c) container_of(c, struct shdma_chan, dma_chan) #define to_shdma_dev(d) container_of(d, struct shdma_dev, dma_dev) /* * For slave DMA we assume, that there is a finite number of DMA slaves in the * system, and that each such slave can only use a finite number of channels. * We use slave channel IDs to make sure, that no such slave channel ID is * allocated more than once. */ static unsigned int slave_num = 256; module_param(slave_num, uint, 0444); /* A bitmask with slave_num bits */ static unsigned long *shdma_slave_used; /* Called under spin_lock_irq(&schan->chan_lock") */ static void shdma_chan_xfer_ld_queue(struct shdma_chan *schan) { struct shdma_dev *sdev = to_shdma_dev(schan->dma_chan.device); const struct shdma_ops *ops = sdev->ops; struct shdma_desc *sdesc; /* DMA work check */ if (ops->channel_busy(schan)) return; /* Find the first not transferred descriptor */ list_for_each_entry(sdesc, &schan->ld_queue, node) if (sdesc->mark == DESC_SUBMITTED) { ops->start_xfer(schan, sdesc); break; } } static dma_cookie_t shdma_tx_submit(struct dma_async_tx_descriptor *tx) { struct shdma_desc *chunk, *c, *desc = container_of(tx, struct shdma_desc, async_tx), *last = desc; struct shdma_chan *schan = to_shdma_chan(tx->chan); dma_async_tx_callback callback = tx->callback; dma_cookie_t cookie; bool power_up; spin_lock_irq(&schan->chan_lock); power_up = list_empty(&schan->ld_queue); cookie = dma_cookie_assign(tx); /* Mark all chunks of this descriptor as submitted, move to the queue */ list_for_each_entry_safe(chunk, c, desc->node.prev, node) { /* * All chunks are on the global ld_free, so, we have to find * the end of the chain ourselves */ if (chunk != desc && (chunk->mark == DESC_IDLE || chunk->async_tx.cookie > 0 || chunk->async_tx.cookie == -EBUSY || &chunk->node == &schan->ld_free)) break; chunk->mark = DESC_SUBMITTED; /* Callback goes to the last chunk */ chunk->async_tx.callback = NULL; chunk->cookie = cookie; list_move_tail(&chunk->node, &schan->ld_queue); last = chunk; dev_dbg(schan->dev, "submit #%d@%p on %d\n", tx->cookie, &last->async_tx, schan->id); } last->async_tx.callback = callback; last->async_tx.callback_param = tx->callback_param; if (power_up) { int ret; schan->pm_state = SHDMA_PM_BUSY; ret = pm_runtime_get(schan->dev); spin_unlock_irq(&schan->chan_lock); if (ret < 0) dev_err(schan->dev, "%s(): GET = %d\n", __func__, ret); pm_runtime_barrier(schan->dev); spin_lock_irq(&schan->chan_lock); /* Have we been reset, while waiting? */ if (schan->pm_state != SHDMA_PM_ESTABLISHED) { struct shdma_dev *sdev = to_shdma_dev(schan->dma_chan.device); const struct shdma_ops *ops = sdev->ops; dev_dbg(schan->dev, "Bring up channel %d\n", schan->id); /* * TODO: .xfer_setup() might fail on some platforms. * Make it int then, on error remove chunks from the * queue again */ ops->setup_xfer(schan, schan->slave_id); if (schan->pm_state == SHDMA_PM_PENDING) shdma_chan_xfer_ld_queue(schan); schan->pm_state = SHDMA_PM_ESTABLISHED; } } else { /* * Tell .device_issue_pending() not to run the queue, interrupts * will do it anyway */ schan->pm_state = SHDMA_PM_PENDING; } spin_unlock_irq(&schan->chan_lock); return cookie; } /* Called with desc_lock held */ static struct shdma_desc *shdma_get_desc(struct shdma_chan *schan) { struct shdma_desc *sdesc; list_for_each_entry(sdesc, &schan->ld_free, node) if (sdesc->mark != DESC_PREPARED) { BUG_ON(sdesc->mark != DESC_IDLE); list_del(&sdesc->node); return sdesc; } return NULL; } static int shdma_setup_slave(struct shdma_chan *schan, int slave_id, dma_addr_t slave_addr) { struct shdma_dev *sdev = to_shdma_dev(schan->dma_chan.device); const struct shdma_ops *ops = sdev->ops; int ret, match; if (schan->dev->of_node) { match = schan->hw_req; ret = ops->set_slave(schan, match, slave_addr, true); if (ret < 0) return ret; slave_id = schan->slave_id; } else { match = slave_id; } if (slave_id < 0 || slave_id >= slave_num) return -EINVAL; if (test_and_set_bit(slave_id, shdma_slave_used)) return -EBUSY; ret = ops->set_slave(schan, match, slave_addr, false); if (ret < 0) { clear_bit(slave_id, shdma_slave_used); return ret; } schan->slave_id = slave_id; return 0; } /* * This is the standard shdma filter function to be used as a replacement to the * "old" method, using the .private pointer. If for some reason you allocate a * channel without slave data, use something like ERR_PTR(-EINVAL) as a filter * parameter. If this filter is used, the slave driver, after calling * dma_request_channel(), will also have to call dmaengine_slave_config() with * .slave_id, .direction, and either .src_addr or .dst_addr set. * NOTE: this filter doesn't support multiple DMAC drivers with the DMA_SLAVE * capability! If this becomes a requirement, hardware glue drivers, using this * services would have to provide their own filters, which first would check * the device driver, similar to how other DMAC drivers, e.g., sa11x0-dma.c, do * this, and only then, in case of a match, call this common filter. * NOTE 2: This filter function is also used in the DT case by shdma_of_xlate(). * In that case the MID-RID value is used for slave channel filtering and is * passed to this function in the "arg" parameter. */ bool shdma_chan_filter(struct dma_chan *chan, void *arg) { struct shdma_chan *schan = to_shdma_chan(chan); struct shdma_dev *sdev = to_shdma_dev(schan->dma_chan.device); const struct shdma_ops *ops = sdev->ops; int match = (int)arg; int ret; if (match < 0) /* No slave requested - arbitrary channel */ return true; if (!schan->dev->of_node && match >= slave_num) return false; ret = ops->set_slave(schan, match, 0, true); if (ret < 0) return false; return true; } EXPORT_SYMBOL(shdma_chan_filter); static int shdma_alloc_chan_resources(struct dma_chan *chan) { struct shdma_chan *schan = to_shdma_chan(chan); struct shdma_dev *sdev = to_shdma_dev(schan->dma_chan.device); const struct shdma_ops *ops = sdev->ops; struct shdma_desc *desc; struct shdma_slave *slave = chan->private; int ret, i; /* * This relies on the guarantee from dmaengine that alloc_chan_resources * never runs concurrently with itself or free_chan_resources. */ if (slave) { /* Legacy mode: .private is set in filter */ ret = shdma_setup_slave(schan, slave->slave_id, 0); if (ret < 0) goto esetslave; } else { schan->slave_id = -EINVAL; } schan->desc = kcalloc(NR_DESCS_PER_CHANNEL, sdev->desc_size, GFP_KERNEL); if (!schan->desc) { ret = -ENOMEM; goto edescalloc; } schan->desc_num = NR_DESCS_PER_CHANNEL; for (i = 0; i < NR_DESCS_PER_CHANNEL; i++) { desc = ops->embedded_desc(schan->desc, i); dma_async_tx_descriptor_init(&desc->async_tx, &schan->dma_chan); desc->async_tx.tx_submit = shdma_tx_submit; desc->mark = DESC_IDLE; list_add(&desc->node, &schan->ld_free); } return NR_DESCS_PER_CHANNEL; edescalloc: if (slave) esetslave: clear_bit(slave->slave_id, shdma_slave_used); chan->private = NULL; return ret; } static dma_async_tx_callback __ld_cleanup(struct shdma_chan *schan, bool all) { struct shdma_desc *desc, *_desc; /* Is the "exposed" head of a chain acked? */ bool head_acked = false; dma_cookie_t cookie = 0; dma_async_tx_callback callback = NULL; void *param = NULL; unsigned long flags; spin_lock_irqsave(&schan->chan_lock, flags); list_for_each_entry_safe(desc, _desc, &schan->ld_queue, node) { struct dma_async_tx_descriptor *tx = &desc->async_tx; BUG_ON(tx->cookie > 0 && tx->cookie != desc->cookie); BUG_ON(desc->mark != DESC_SUBMITTED && desc->mark != DESC_COMPLETED && desc->mark != DESC_WAITING); /* * queue is ordered, and we use this loop to (1) clean up all * completed descriptors, and to (2) update descriptor flags of * any chunks in a (partially) completed chain */ if (!all && desc->mark == DESC_SUBMITTED && desc->cookie != cookie) break; if (tx->cookie > 0) cookie = tx->cookie; if (desc->mark == DESC_COMPLETED && desc->chunks == 1) { if (schan->dma_chan.completed_cookie != desc->cookie - 1) dev_dbg(schan->dev, "Completing cookie %d, expected %d\n", desc->cookie, schan->dma_chan.completed_cookie + 1); schan->dma_chan.completed_cookie = desc->cookie; } /* Call callback on the last chunk */ if (desc->mark == DESC_COMPLETED && tx->callback) { desc->mark = DESC_WAITING; callback = tx->callback; param = tx->callback_param; dev_dbg(schan->dev, "descriptor #%d@%p on %d callback\n", tx->cookie, tx, schan->id); BUG_ON(desc->chunks != 1); break; } if (tx->cookie > 0 || tx->cookie == -EBUSY) { if (desc->mark == DESC_COMPLETED) { BUG_ON(tx->cookie < 0); desc->mark = DESC_WAITING; } head_acked = async_tx_test_ack(tx); } else { switch (desc->mark) { case DESC_COMPLETED: desc->mark = DESC_WAITING; /* Fall through */ case DESC_WAITING: if (head_acked) async_tx_ack(&desc->async_tx); } } dev_dbg(schan->dev, "descriptor %p #%d completed.\n", tx, tx->cookie); if (((desc->mark == DESC_COMPLETED || desc->mark == DESC_WAITING) && async_tx_test_ack(&desc->async_tx)) || all) { /* Remove from ld_queue list */ desc->mark = DESC_IDLE; list_move(&desc->node, &schan->ld_free); if (list_empty(&schan->ld_queue)) { dev_dbg(schan->dev, "Bring down channel %d\n", schan->id); pm_runtime_put(schan->dev); schan->pm_state = SHDMA_PM_ESTABLISHED; } } } if (all && !callback) /* * Terminating and the loop completed normally: forgive * uncompleted cookies */ schan->dma_chan.completed_cookie = schan->dma_chan.cookie; spin_unlock_irqrestore(&schan->chan_lock, flags); if (callback) callback(param); return callback; } /* * shdma_chan_ld_cleanup - Clean up link descriptors * * Clean up the ld_queue of DMA channel. */ static void shdma_chan_ld_cleanup(struct shdma_chan *schan, bool all) { while (__ld_cleanup(schan, all)) ; } /* * shdma_free_chan_resources - Free all resources of the channel. */ static void shdma_free_chan_resources(struct dma_chan *chan) { struct shdma_chan *schan = to_shdma_chan(chan); struct shdma_dev *sdev = to_shdma_dev(chan->device); const struct shdma_ops *ops = sdev->ops; LIST_HEAD(list); /* Protect against ISR */ spin_lock_irq(&schan->chan_lock); ops->halt_channel(schan); spin_unlock_irq(&schan->chan_lock); /* Now no new interrupts will occur */ /* Prepared and not submitted descriptors can still be on the queue */ if (!list_empty(&schan->ld_queue)) shdma_chan_ld_cleanup(schan, true); if (schan->slave_id >= 0) { /* The caller is holding dma_list_mutex */ clear_bit(schan->slave_id, shdma_slave_used); chan->private = NULL; } spin_lock_irq(&schan->chan_lock); list_splice_init(&schan->ld_free, &list); schan->desc_num = 0; spin_unlock_irq(&schan->chan_lock); kfree(schan->desc); } /** * shdma_add_desc - get, set up and return one transfer descriptor * @schan: DMA channel * @flags: DMA transfer flags * @dst: destination DMA address, incremented when direction equals * DMA_DEV_TO_MEM or DMA_MEM_TO_MEM * @src: source DMA address, incremented when direction equals * DMA_MEM_TO_DEV or DMA_MEM_TO_MEM * @len: DMA transfer length * @first: if NULL, set to the current descriptor and cookie set to -EBUSY * @direction: needed for slave DMA to decide which address to keep constant, * equals DMA_MEM_TO_MEM for MEMCPY * Returns 0 or an error * Locks: called with desc_lock held */ static struct shdma_desc *shdma_add_desc(struct shdma_chan *schan, unsigned long flags, dma_addr_t *dst, dma_addr_t *src, size_t *len, struct shdma_desc **first, enum dma_transfer_direction direction) { struct shdma_dev *sdev = to_shdma_dev(schan->dma_chan.device); const struct shdma_ops *ops = sdev->ops; struct shdma_desc *new; size_t copy_size = *len; if (!copy_size) return NULL; /* Allocate the link descriptor from the free list */ new = shdma_get_desc(schan); if (!new) { dev_err(schan->dev, "No free link descriptor available\n"); return NULL; } ops->desc_setup(schan, new, *src, *dst, ©_size); if (!*first) { /* First desc */ new->async_tx.cookie = -EBUSY; *first = new; } else { /* Other desc - invisible to the user */ new->async_tx.cookie = -EINVAL; } dev_dbg(schan->dev, "chaining (%u/%u)@%x -> %x with %p, cookie %d\n", copy_size, *len, *src, *dst, &new->async_tx, new->async_tx.cookie); new->mark = DESC_PREPARED; new->async_tx.flags = flags; new->direction = direction; new->partial = 0; *len -= copy_size; if (direction == DMA_MEM_TO_MEM || direction == DMA_MEM_TO_DEV) *src += copy_size; if (direction == DMA_MEM_TO_MEM || direction == DMA_DEV_TO_MEM) *dst += copy_size; return new; } /* * shdma_prep_sg - prepare transfer descriptors from an SG list * * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also * converted to scatter-gather to guarantee consistent locking and a correct * list manipulation. For slave DMA direction carries the usual meaning, and, * logically, the SG list is RAM and the addr variable contains slave address, * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM * and the SG list contains only one element and points at the source buffer. */ static struct dma_async_tx_descriptor *shdma_prep_sg(struct shdma_chan *schan, struct scatterlist *sgl, unsigned int sg_len, dma_addr_t *addr, enum dma_transfer_direction direction, unsigned long flags) { struct scatterlist *sg; struct shdma_desc *first = NULL, *new = NULL /* compiler... */; LIST_HEAD(tx_list); int chunks = 0; unsigned long irq_flags; int i; for_each_sg(sgl, sg, sg_len, i) chunks += DIV_ROUND_UP(sg_dma_len(sg), schan->max_xfer_len); /* Have to lock the whole loop to protect against concurrent release */ spin_lock_irqsave(&schan->chan_lock, irq_flags); /* * Chaining: * first descriptor is what user is dealing with in all API calls, its * cookie is at first set to -EBUSY, at tx-submit to a positive * number * if more than one chunk is needed further chunks have cookie = -EINVAL * the last chunk, if not equal to the first, has cookie = -ENOSPC * all chunks are linked onto the tx_list head with their .node heads * only during this function, then they are immediately spliced * back onto the free list in form of a chain */ for_each_sg(sgl, sg, sg_len, i) { dma_addr_t sg_addr = sg_dma_address(sg); size_t len = sg_dma_len(sg); if (!len) goto err_get_desc; do { dev_dbg(schan->dev, "Add SG #%d@%p[%d], dma %llx\n", i, sg, len, (unsigned long long)sg_addr); if (direction == DMA_DEV_TO_MEM) new = shdma_add_desc(schan, flags, &sg_addr, addr, &len, &first, direction); else new = shdma_add_desc(schan, flags, addr, &sg_addr, &len, &first, direction); if (!new) goto err_get_desc; new->chunks = chunks--; list_add_tail(&new->node, &tx_list); } while (len); } if (new != first) new->async_tx.cookie = -ENOSPC; /* Put them back on the free list, so, they don't get lost */ list_splice_tail(&tx_list, &schan->ld_free); spin_unlock_irqrestore(&schan->chan_lock, irq_flags); return &first->async_tx; err_get_desc: list_for_each_entry(new, &tx_list, node) new->mark = DESC_IDLE; list_splice(&tx_list, &schan->ld_free); spin_unlock_irqrestore(&schan->chan_lock, irq_flags); return NULL; } static struct dma_async_tx_descriptor *shdma_prep_memcpy( struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t dma_src, size_t len, unsigned long flags) { struct shdma_chan *schan = to_shdma_chan(chan); struct scatterlist sg; if (!chan || !len) return NULL; BUG_ON(!schan->desc_num); sg_init_table(&sg, 1); sg_set_page(&sg, pfn_to_page(PFN_DOWN(dma_src)), len, offset_in_page(dma_src)); sg_dma_address(&sg) = dma_src; sg_dma_len(&sg) = len; return shdma_prep_sg(schan, &sg, 1, &dma_dest, DMA_MEM_TO_MEM, flags); } static struct dma_async_tx_descriptor *shdma_prep_slave_sg( struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction direction, unsigned long flags, void *context) { struct shdma_chan *schan = to_shdma_chan(chan); struct shdma_dev *sdev = to_shdma_dev(schan->dma_chan.device); const struct shdma_ops *ops = sdev->ops; int slave_id = schan->slave_id; dma_addr_t slave_addr; if (!chan) return NULL; BUG_ON(!schan->desc_num); /* Someone calling slave DMA on a generic channel? */ if (slave_id < 0 || !sg_len) { dev_warn(schan->dev, "%s: bad parameter: len=%d, id=%d\n", __func__, sg_len, slave_id); return NULL; } slave_addr = ops->slave_addr(schan); return shdma_prep_sg(schan, sgl, sg_len, &slave_addr, direction, flags); } static int shdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg) { struct shdma_chan *schan = to_shdma_chan(chan); struct shdma_dev *sdev = to_shdma_dev(chan->device); const struct shdma_ops *ops = sdev->ops; struct dma_slave_config *config; unsigned long flags; int ret; switch (cmd) { case DMA_TERMINATE_ALL: spin_lock_irqsave(&schan->chan_lock, flags); ops->halt_channel(schan); if (ops->get_partial && !list_empty(&schan->ld_queue)) { /* Record partial transfer */ struct shdma_desc *desc = list_first_entry(&schan->ld_queue, struct shdma_desc, node); desc->partial = ops->get_partial(schan, desc); } spin_unlock_irqrestore(&schan->chan_lock, flags); shdma_chan_ld_cleanup(schan, true); break; case DMA_SLAVE_CONFIG: /* * So far only .slave_id is used, but the slave drivers are * encouraged to also set a transfer direction and an address. */ if (!arg) return -EINVAL; /* * We could lock this, but you shouldn't be configuring the * channel, while using it... */ config = (struct dma_slave_config *)arg; ret = shdma_setup_slave(schan, config->slave_id, config->direction == DMA_DEV_TO_MEM ? config->src_addr : config->dst_addr); if (ret < 0) return ret; break; default: return -ENXIO; } return 0; } static void shdma_issue_pending(struct dma_chan *chan) { struct shdma_chan *schan = to_shdma_chan(chan); spin_lock_irq(&schan->chan_lock); if (schan->pm_state == SHDMA_PM_ESTABLISHED) shdma_chan_xfer_ld_queue(schan); else schan->pm_state = SHDMA_PM_PENDING; spin_unlock_irq(&schan->chan_lock); } static enum dma_status shdma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct shdma_chan *schan = to_shdma_chan(chan); enum dma_status status; unsigned long flags; shdma_chan_ld_cleanup(schan, false); spin_lock_irqsave(&schan->chan_lock, flags); status = dma_cookie_status(chan, cookie, txstate); /* * If we don't find cookie on the queue, it has been aborted and we have * to report error */ if (status != DMA_COMPLETE) { struct shdma_desc *sdesc; status = DMA_ERROR; list_for_each_entry(sdesc, &schan->ld_queue, node) if (sdesc->cookie == cookie) { status = DMA_IN_PROGRESS; break; } } spin_unlock_irqrestore(&schan->chan_lock, flags); return status; } /* Called from error IRQ or NMI */ bool shdma_reset(struct shdma_dev *sdev) { const struct shdma_ops *ops = sdev->ops; struct shdma_chan *schan; unsigned int handled = 0; int i; /* Reset all channels */ shdma_for_each_chan(schan, sdev, i) { struct shdma_desc *sdesc; LIST_HEAD(dl); if (!schan) continue; spin_lock(&schan->chan_lock); /* Stop the channel */ ops->halt_channel(schan); list_splice_init(&schan->ld_queue, &dl); if (!list_empty(&dl)) { dev_dbg(schan->dev, "Bring down channel %d\n", schan->id); pm_runtime_put(schan->dev); } schan->pm_state = SHDMA_PM_ESTABLISHED; spin_unlock(&schan->chan_lock); /* Complete all */ list_for_each_entry(sdesc, &dl, node) { struct dma_async_tx_descriptor *tx = &sdesc->async_tx; sdesc->mark = DESC_IDLE; if (tx->callback) tx->callback(tx->callback_param); } spin_lock(&schan->chan_lock); list_splice(&dl, &schan->ld_free); spin_unlock(&schan->chan_lock); handled++; } return !!handled; } EXPORT_SYMBOL(shdma_reset); static irqreturn_t chan_irq(int irq, void *dev) { struct shdma_chan *schan = dev; const struct shdma_ops *ops = to_shdma_dev(schan->dma_chan.device)->ops; irqreturn_t ret; spin_lock(&schan->chan_lock); ret = ops->chan_irq(schan, irq) ? IRQ_WAKE_THREAD : IRQ_NONE; spin_unlock(&schan->chan_lock); return ret; } static irqreturn_t chan_irqt(int irq, void *dev) { struct shdma_chan *schan = dev; const struct shdma_ops *ops = to_shdma_dev(schan->dma_chan.device)->ops; struct shdma_desc *sdesc; spin_lock_irq(&schan->chan_lock); list_for_each_entry(sdesc, &schan->ld_queue, node) { if (sdesc->mark == DESC_SUBMITTED && ops->desc_completed(schan, sdesc)) { dev_dbg(schan->dev, "done #%d@%p\n", sdesc->async_tx.cookie, &sdesc->async_tx); sdesc->mark = DESC_COMPLETED; break; } } /* Next desc */ shdma_chan_xfer_ld_queue(schan); spin_unlock_irq(&schan->chan_lock); shdma_chan_ld_cleanup(schan, false); return IRQ_HANDLED; } int shdma_request_irq(struct shdma_chan *schan, int irq, unsigned long flags, const char *name) { int ret = devm_request_threaded_irq(schan->dev, irq, chan_irq, chan_irqt, flags, name, schan); schan->irq = ret < 0 ? ret : irq; return ret; } EXPORT_SYMBOL(shdma_request_irq); void shdma_chan_probe(struct shdma_dev *sdev, struct shdma_chan *schan, int id) { schan->pm_state = SHDMA_PM_ESTABLISHED; /* reference struct dma_device */ schan->dma_chan.device = &sdev->dma_dev; dma_cookie_init(&schan->dma_chan); schan->dev = sdev->dma_dev.dev; schan->id = id; if (!schan->max_xfer_len) schan->max_xfer_len = PAGE_SIZE; spin_lock_init(&schan->chan_lock); /* Init descripter manage list */ INIT_LIST_HEAD(&schan->ld_queue); INIT_LIST_HEAD(&schan->ld_free); /* Add the channel to DMA device channel list */ list_add_tail(&schan->dma_chan.device_node, &sdev->dma_dev.channels); sdev->schan[sdev->dma_dev.chancnt++] = schan; } EXPORT_SYMBOL(shdma_chan_probe); void shdma_chan_remove(struct shdma_chan *schan) { list_del(&schan->dma_chan.device_node); } EXPORT_SYMBOL(shdma_chan_remove); int shdma_init(struct device *dev, struct shdma_dev *sdev, int chan_num) { struct dma_device *dma_dev = &sdev->dma_dev; /* * Require all call-backs for now, they can trivially be made optional * later as required */ if (!sdev->ops || !sdev->desc_size || !sdev->ops->embedded_desc || !sdev->ops->start_xfer || !sdev->ops->setup_xfer || !sdev->ops->set_slave || !sdev->ops->desc_setup || !sdev->ops->slave_addr || !sdev->ops->channel_busy || !sdev->ops->halt_channel || !sdev->ops->desc_completed) return -EINVAL; sdev->schan = kcalloc(chan_num, sizeof(*sdev->schan), GFP_KERNEL); if (!sdev->schan) return -ENOMEM; INIT_LIST_HEAD(&dma_dev->channels); /* Common and MEMCPY operations */ dma_dev->device_alloc_chan_resources = shdma_alloc_chan_resources; dma_dev->device_free_chan_resources = shdma_free_chan_resources; dma_dev->device_prep_dma_memcpy = shdma_prep_memcpy; dma_dev->device_tx_status = shdma_tx_status; dma_dev->device_issue_pending = shdma_issue_pending; /* Compulsory for DMA_SLAVE fields */ dma_dev->device_prep_slave_sg = shdma_prep_slave_sg; dma_dev->device_control = shdma_control; dma_dev->dev = dev; return 0; } EXPORT_SYMBOL(shdma_init); void shdma_cleanup(struct shdma_dev *sdev) { kfree(sdev->schan); } EXPORT_SYMBOL(shdma_cleanup); static int __init shdma_enter(void) { shdma_slave_used = kzalloc(DIV_ROUND_UP(slave_num, BITS_PER_LONG) * sizeof(long), GFP_KERNEL); if (!shdma_slave_used) return -ENOMEM; return 0; } module_init(shdma_enter); static void __exit shdma_exit(void) { kfree(shdma_slave_used); } module_exit(shdma_exit); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("SH-DMA driver base library"); MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");