/* * Copyright (C) 2012 CERN (www.cern.ch) * Author: Alessandro Rubini <rubini@gnudd.com> * * Released according to the GNU GPL, version 2 or any later version. * * This work is part of the White Rabbit project, a research effort led * by CERN, the European Institute for Nuclear Research. */ #include <linux/module.h> #include <linux/slab.h> #include <linux/fmc.h> #include <linux/sdb.h> #include <linux/err.h> #include <linux/fmc-sdb.h> #include <asm/byteorder.h> static uint32_t __sdb_rd(struct fmc_device *fmc, unsigned long address, int convert) { uint32_t res = fmc_readl(fmc, address); if (convert) return __be32_to_cpu(res); return res; } static struct sdb_array *__fmc_scan_sdb_tree(struct fmc_device *fmc, unsigned long sdb_addr, unsigned long reg_base, int level) { uint32_t onew; int i, j, n, convert = 0; struct sdb_array *arr, *sub; onew = fmc_readl(fmc, sdb_addr); if (onew == SDB_MAGIC) { /* Uh! If we are little-endian, we must convert */ if (SDB_MAGIC != __be32_to_cpu(SDB_MAGIC)) convert = 1; } else if (onew == __be32_to_cpu(SDB_MAGIC)) { /* ok, don't convert */ } else { return ERR_PTR(-ENOENT); } /* So, the magic was there: get the count from offset 4*/ onew = __sdb_rd(fmc, sdb_addr + 4, convert); n = __be16_to_cpu(*(uint16_t *)&onew); arr = kzalloc(sizeof(*arr), GFP_KERNEL); if (!arr) return ERR_PTR(-ENOMEM); arr->record = kzalloc(sizeof(arr->record[0]) * n, GFP_KERNEL); arr->subtree = kzalloc(sizeof(arr->subtree[0]) * n, GFP_KERNEL); if (!arr->record || !arr->subtree) { kfree(arr->record); kfree(arr->subtree); kfree(arr); return ERR_PTR(-ENOMEM); } arr->len = n; arr->level = level; arr->fmc = fmc; for (i = 0; i < n; i++) { union sdb_record *r; for (j = 0; j < sizeof(arr->record[0]); j += 4) { *(uint32_t *)((void *)(arr->record + i) + j) = __sdb_rd(fmc, sdb_addr + (i * 64) + j, convert); } r = &arr->record[i]; arr->subtree[i] = ERR_PTR(-ENODEV); if (r->empty.record_type == sdb_type_bridge) { struct sdb_component *c = &r->bridge.sdb_component; uint64_t subaddr = __be64_to_cpu(r->bridge.sdb_child); uint64_t newbase = __be64_to_cpu(c->addr_first); subaddr += reg_base; newbase += reg_base; sub = __fmc_scan_sdb_tree(fmc, subaddr, newbase, level + 1); arr->subtree[i] = sub; /* may be error */ if (IS_ERR(sub)) continue; sub->parent = arr; sub->baseaddr = newbase; } } return arr; } int fmc_scan_sdb_tree(struct fmc_device *fmc, unsigned long address) { struct sdb_array *ret; if (fmc->sdb) return -EBUSY; ret = __fmc_scan_sdb_tree(fmc, address, 0 /* regs */, 0); if (IS_ERR(ret)) return PTR_ERR(ret); fmc->sdb = ret; return 0; } EXPORT_SYMBOL(fmc_scan_sdb_tree); static void __fmc_sdb_free(struct sdb_array *arr) { int i, n; if (!arr) return; n = arr->len; for (i = 0; i < n; i++) { if (IS_ERR(arr->subtree[i])) continue; __fmc_sdb_free(arr->subtree[i]); } kfree(arr->record); kfree(arr->subtree); kfree(arr); } int fmc_free_sdb_tree(struct fmc_device *fmc) { __fmc_sdb_free(fmc->sdb); fmc->sdb = NULL; return 0; } EXPORT_SYMBOL(fmc_free_sdb_tree); /* This helper calls reprogram and inizialized sdb as well */ int fmc_reprogram(struct fmc_device *fmc, struct fmc_driver *d, char *gw, int sdb_entry) { int ret; ret = fmc->op->reprogram(fmc, d, gw); if (ret < 0) return ret; if (sdb_entry < 0) return ret; /* We are required to find SDB at a given offset */ ret = fmc_scan_sdb_tree(fmc, sdb_entry); if (ret < 0) { dev_err(&fmc->dev, "Can't find SDB at address 0x%x\n", sdb_entry); return -ENODEV; } fmc_dump_sdb(fmc); return 0; } EXPORT_SYMBOL(fmc_reprogram); static void __fmc_show_sdb_tree(const struct fmc_device *fmc, const struct sdb_array *arr) { int i, j, n = arr->len, level = arr->level; const struct sdb_array *ap; for (i = 0; i < n; i++) { unsigned long base; union sdb_record *r; struct sdb_product *p; struct sdb_component *c; r = &arr->record[i]; c = &r->dev.sdb_component; p = &c->product; base = 0; for (ap = arr; ap; ap = ap->parent) base += ap->baseaddr; dev_info(&fmc->dev, "SDB: "); for (j = 0; j < level; j++) printk(KERN_CONT " "); switch (r->empty.record_type) { case sdb_type_interconnect: printk(KERN_CONT "%08llx:%08x %.19s\n", __be64_to_cpu(p->vendor_id), __be32_to_cpu(p->device_id), p->name); break; case sdb_type_device: printk(KERN_CONT "%08llx:%08x %.19s (%08llx-%08llx)\n", __be64_to_cpu(p->vendor_id), __be32_to_cpu(p->device_id), p->name, __be64_to_cpu(c->addr_first) + base, __be64_to_cpu(c->addr_last) + base); break; case sdb_type_bridge: printk(KERN_CONT "%08llx:%08x %.19s (bridge: %08llx)\n", __be64_to_cpu(p->vendor_id), __be32_to_cpu(p->device_id), p->name, __be64_to_cpu(c->addr_first) + base); if (IS_ERR(arr->subtree[i])) { printk(KERN_CONT "(bridge error %li)\n", PTR_ERR(arr->subtree[i])); break; } __fmc_show_sdb_tree(fmc, arr->subtree[i]); break; case sdb_type_integration: printk(KERN_CONT "integration\n"); break; case sdb_type_repo_url: printk(KERN_CONT "repo-url\n"); break; case sdb_type_synthesis: printk(KERN_CONT "synthesis-info\n"); break; case sdb_type_empty: printk(KERN_CONT "empty\n"); break; default: printk(KERN_CONT "UNKNOWN TYPE 0x%02x\n", r->empty.record_type); break; } } } void fmc_show_sdb_tree(const struct fmc_device *fmc) { if (!fmc->sdb) return; __fmc_show_sdb_tree(fmc, fmc->sdb); } EXPORT_SYMBOL(fmc_show_sdb_tree); signed long fmc_find_sdb_device(struct sdb_array *tree, uint64_t vid, uint32_t did, unsigned long *sz) { signed long res = -ENODEV; union sdb_record *r; struct sdb_product *p; struct sdb_component *c; int i, n = tree->len; uint64_t last, first; /* FIXME: what if the first interconnect is not at zero? */ for (i = 0; i < n; i++) { r = &tree->record[i]; c = &r->dev.sdb_component; p = &c->product; if (!IS_ERR(tree->subtree[i])) res = fmc_find_sdb_device(tree->subtree[i], vid, did, sz); if (res >= 0) return res + tree->baseaddr; if (r->empty.record_type != sdb_type_device) continue; if (__be64_to_cpu(p->vendor_id) != vid) continue; if (__be32_to_cpu(p->device_id) != did) continue; /* found */ last = __be64_to_cpu(c->addr_last); first = __be64_to_cpu(c->addr_first); if (sz) *sz = (typeof(*sz))(last + 1 - first); return first + tree->baseaddr; } return res; } EXPORT_SYMBOL(fmc_find_sdb_device);