/* GSPCA subdrivers for Genesys Logic webcams with the GL860 chip * Subdriver core * * 2009/09/24 Olivier Lorin <o.lorin@laposte.net> * GSPCA by Jean-Francois Moine <http://moinejf.free.fr> * Thanks BUGabundo and Malmostoso for your amazing help! * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include "gspca.h" #include "gl860.h" MODULE_AUTHOR("Olivier Lorin <o.lorin@laposte.net>"); MODULE_DESCRIPTION("Genesys Logic USB PC Camera Driver"); MODULE_LICENSE("GPL"); /*======================== static function declarations ====================*/ static void (*dev_init_settings)(struct gspca_dev *gspca_dev); static int sd_config(struct gspca_dev *gspca_dev, const struct usb_device_id *id); static int sd_init(struct gspca_dev *gspca_dev); static int sd_isoc_init(struct gspca_dev *gspca_dev); static int sd_start(struct gspca_dev *gspca_dev); static void sd_stop0(struct gspca_dev *gspca_dev); static void sd_pkt_scan(struct gspca_dev *gspca_dev, u8 *data, int len); static void sd_callback(struct gspca_dev *gspca_dev); static int gl860_guess_sensor(struct gspca_dev *gspca_dev, u16 vendor_id, u16 product_id); /*============================ driver options ==============================*/ static s32 AC50Hz = 0xff; module_param(AC50Hz, int, 0644); MODULE_PARM_DESC(AC50Hz, " Does AC power frequency is 50Hz? (0/1)"); static char sensor[7]; module_param_string(sensor, sensor, sizeof(sensor), 0644); MODULE_PARM_DESC(sensor, " Driver sensor ('MI1320'/'MI2020'/'OV9655'/'OV2640')"); /*============================ webcam controls =============================*/ static int sd_s_ctrl(struct v4l2_ctrl *ctrl) { struct gspca_dev *gspca_dev = container_of(ctrl->handler, struct gspca_dev, ctrl_handler); struct sd *sd = (struct sd *) gspca_dev; switch (ctrl->id) { case V4L2_CID_BRIGHTNESS: sd->vcur.brightness = ctrl->val; break; case V4L2_CID_CONTRAST: sd->vcur.contrast = ctrl->val; break; case V4L2_CID_SATURATION: sd->vcur.saturation = ctrl->val; break; case V4L2_CID_HUE: sd->vcur.hue = ctrl->val; break; case V4L2_CID_GAMMA: sd->vcur.gamma = ctrl->val; break; case V4L2_CID_HFLIP: sd->vcur.mirror = ctrl->val; break; case V4L2_CID_VFLIP: sd->vcur.flip = ctrl->val; break; case V4L2_CID_POWER_LINE_FREQUENCY: sd->vcur.AC50Hz = ctrl->val; break; case V4L2_CID_WHITE_BALANCE_TEMPERATURE: sd->vcur.whitebal = ctrl->val; break; case V4L2_CID_SHARPNESS: sd->vcur.sharpness = ctrl->val; break; case V4L2_CID_BACKLIGHT_COMPENSATION: sd->vcur.backlight = ctrl->val; break; default: return -EINVAL; } if (gspca_dev->streaming) sd->waitSet = 1; return 0; } static const struct v4l2_ctrl_ops sd_ctrl_ops = { .s_ctrl = sd_s_ctrl, }; static int sd_init_controls(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; struct v4l2_ctrl_handler *hdl = &gspca_dev->ctrl_handler; gspca_dev->vdev.ctrl_handler = hdl; v4l2_ctrl_handler_init(hdl, 11); if (sd->vmax.brightness) v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, V4L2_CID_BRIGHTNESS, 0, sd->vmax.brightness, 1, sd->vcur.brightness); if (sd->vmax.contrast) v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, V4L2_CID_CONTRAST, 0, sd->vmax.contrast, 1, sd->vcur.contrast); if (sd->vmax.saturation) v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, V4L2_CID_SATURATION, 0, sd->vmax.saturation, 1, sd->vcur.saturation); if (sd->vmax.hue) v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, V4L2_CID_HUE, 0, sd->vmax.hue, 1, sd->vcur.hue); if (sd->vmax.gamma) v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, V4L2_CID_GAMMA, 0, sd->vmax.gamma, 1, sd->vcur.gamma); if (sd->vmax.mirror) v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, V4L2_CID_HFLIP, 0, sd->vmax.mirror, 1, sd->vcur.mirror); if (sd->vmax.flip) v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, V4L2_CID_VFLIP, 0, sd->vmax.flip, 1, sd->vcur.flip); if (sd->vmax.AC50Hz) v4l2_ctrl_new_std_menu(hdl, &sd_ctrl_ops, V4L2_CID_POWER_LINE_FREQUENCY, sd->vmax.AC50Hz, 0, sd->vcur.AC50Hz); if (sd->vmax.whitebal) v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, V4L2_CID_WHITE_BALANCE_TEMPERATURE, 0, sd->vmax.whitebal, 1, sd->vcur.whitebal); if (sd->vmax.sharpness) v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, V4L2_CID_SHARPNESS, 0, sd->vmax.sharpness, 1, sd->vcur.sharpness); if (sd->vmax.backlight) v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, V4L2_CID_BACKLIGHT_COMPENSATION, 0, sd->vmax.backlight, 1, sd->vcur.backlight); if (hdl->error) { pr_err("Could not initialize controls\n"); return hdl->error; } return 0; } /*==================== sud-driver structure initialisation =================*/ static const struct sd_desc sd_desc_mi1320 = { .name = MODULE_NAME, .config = sd_config, .init = sd_init, .init_controls = sd_init_controls, .isoc_init = sd_isoc_init, .start = sd_start, .stop0 = sd_stop0, .pkt_scan = sd_pkt_scan, .dq_callback = sd_callback, }; static const struct sd_desc sd_desc_mi2020 = { .name = MODULE_NAME, .config = sd_config, .init = sd_init, .init_controls = sd_init_controls, .isoc_init = sd_isoc_init, .start = sd_start, .stop0 = sd_stop0, .pkt_scan = sd_pkt_scan, .dq_callback = sd_callback, }; static const struct sd_desc sd_desc_ov2640 = { .name = MODULE_NAME, .config = sd_config, .init = sd_init, .init_controls = sd_init_controls, .isoc_init = sd_isoc_init, .start = sd_start, .stop0 = sd_stop0, .pkt_scan = sd_pkt_scan, .dq_callback = sd_callback, }; static const struct sd_desc sd_desc_ov9655 = { .name = MODULE_NAME, .config = sd_config, .init = sd_init, .init_controls = sd_init_controls, .isoc_init = sd_isoc_init, .start = sd_start, .stop0 = sd_stop0, .pkt_scan = sd_pkt_scan, .dq_callback = sd_callback, }; /*=========================== sub-driver image sizes =======================*/ static struct v4l2_pix_format mi2020_mode[] = { { 640, 480, V4L2_PIX_FMT_SGBRG8, V4L2_FIELD_NONE, .bytesperline = 640, .sizeimage = 640 * 480, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 0 }, { 800, 598, V4L2_PIX_FMT_SGBRG8, V4L2_FIELD_NONE, .bytesperline = 800, .sizeimage = 800 * 598, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 1 }, {1280, 1024, V4L2_PIX_FMT_SGBRG8, V4L2_FIELD_NONE, .bytesperline = 1280, .sizeimage = 1280 * 1024, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 2 }, {1600, 1198, V4L2_PIX_FMT_SGBRG8, V4L2_FIELD_NONE, .bytesperline = 1600, .sizeimage = 1600 * 1198, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 3 }, }; static struct v4l2_pix_format ov2640_mode[] = { { 640, 480, V4L2_PIX_FMT_SGBRG8, V4L2_FIELD_NONE, .bytesperline = 640, .sizeimage = 640 * 480, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 0 }, { 800, 600, V4L2_PIX_FMT_SGBRG8, V4L2_FIELD_NONE, .bytesperline = 800, .sizeimage = 800 * 600, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 1 }, {1280, 960, V4L2_PIX_FMT_SGBRG8, V4L2_FIELD_NONE, .bytesperline = 1280, .sizeimage = 1280 * 960, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 2 }, {1600, 1200, V4L2_PIX_FMT_SGBRG8, V4L2_FIELD_NONE, .bytesperline = 1600, .sizeimage = 1600 * 1200, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 3 }, }; static struct v4l2_pix_format mi1320_mode[] = { { 640, 480, V4L2_PIX_FMT_SGBRG8, V4L2_FIELD_NONE, .bytesperline = 640, .sizeimage = 640 * 480, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 0 }, { 800, 600, V4L2_PIX_FMT_SGBRG8, V4L2_FIELD_NONE, .bytesperline = 800, .sizeimage = 800 * 600, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 1 }, {1280, 960, V4L2_PIX_FMT_SGBRG8, V4L2_FIELD_NONE, .bytesperline = 1280, .sizeimage = 1280 * 960, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 2 }, }; static struct v4l2_pix_format ov9655_mode[] = { { 640, 480, V4L2_PIX_FMT_SGBRG8, V4L2_FIELD_NONE, .bytesperline = 640, .sizeimage = 640 * 480, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 0 }, {1280, 960, V4L2_PIX_FMT_SGBRG8, V4L2_FIELD_NONE, .bytesperline = 1280, .sizeimage = 1280 * 960, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 1 }, }; /*========================= sud-driver functions ===========================*/ /* This function is called at probe time */ static int sd_config(struct gspca_dev *gspca_dev, const struct usb_device_id *id) { struct sd *sd = (struct sd *) gspca_dev; struct cam *cam; u16 vendor_id, product_id; /* Get USB VendorID and ProductID */ vendor_id = id->idVendor; product_id = id->idProduct; sd->nbRightUp = 1; sd->nbIm = -1; sd->sensor = 0xff; if (strcmp(sensor, "MI1320") == 0) sd->sensor = ID_MI1320; else if (strcmp(sensor, "OV2640") == 0) sd->sensor = ID_OV2640; else if (strcmp(sensor, "OV9655") == 0) sd->sensor = ID_OV9655; else if (strcmp(sensor, "MI2020") == 0) sd->sensor = ID_MI2020; /* Get sensor and set the suitable init/start/../stop functions */ if (gl860_guess_sensor(gspca_dev, vendor_id, product_id) == -1) return -1; cam = &gspca_dev->cam; switch (sd->sensor) { case ID_MI1320: gspca_dev->sd_desc = &sd_desc_mi1320; cam->cam_mode = mi1320_mode; cam->nmodes = ARRAY_SIZE(mi1320_mode); dev_init_settings = mi1320_init_settings; break; case ID_MI2020: gspca_dev->sd_desc = &sd_desc_mi2020; cam->cam_mode = mi2020_mode; cam->nmodes = ARRAY_SIZE(mi2020_mode); dev_init_settings = mi2020_init_settings; break; case ID_OV2640: gspca_dev->sd_desc = &sd_desc_ov2640; cam->cam_mode = ov2640_mode; cam->nmodes = ARRAY_SIZE(ov2640_mode); dev_init_settings = ov2640_init_settings; break; case ID_OV9655: gspca_dev->sd_desc = &sd_desc_ov9655; cam->cam_mode = ov9655_mode; cam->nmodes = ARRAY_SIZE(ov9655_mode); dev_init_settings = ov9655_init_settings; break; } dev_init_settings(gspca_dev); if (AC50Hz != 0xff) ((struct sd *) gspca_dev)->vcur.AC50Hz = AC50Hz; return 0; } /* This function is called at probe time after sd_config */ static int sd_init(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; return sd->dev_init_at_startup(gspca_dev); } /* This function is called before to choose the alt setting */ static int sd_isoc_init(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; return sd->dev_configure_alt(gspca_dev); } /* This function is called to start the webcam */ static int sd_start(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; return sd->dev_init_pre_alt(gspca_dev); } /* This function is called to stop the webcam */ static void sd_stop0(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; if (!sd->gspca_dev.present) return; return sd->dev_post_unset_alt(gspca_dev); } /* This function is called when an image is being received */ static void sd_pkt_scan(struct gspca_dev *gspca_dev, u8 *data, int len) { struct sd *sd = (struct sd *) gspca_dev; static s32 nSkipped; s32 mode = (s32) gspca_dev->curr_mode; s32 nToSkip = sd->swapRB * (gspca_dev->cam.cam_mode[mode].bytesperline + 1); /* Test only against 0202h, so endianness does not matter */ switch (*(s16 *) data) { case 0x0202: /* End of frame, start a new one */ gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0); nSkipped = 0; if (sd->nbIm >= 0 && sd->nbIm < 10) sd->nbIm++; gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0); break; default: data += 2; len -= 2; if (nSkipped + len <= nToSkip) nSkipped += len; else { if (nSkipped < nToSkip && nSkipped + len > nToSkip) { data += nToSkip - nSkipped; len -= nToSkip - nSkipped; nSkipped = nToSkip + 1; } gspca_frame_add(gspca_dev, INTER_PACKET, data, len); } break; } } /* This function is called when an image has been read */ /* This function is used to monitor webcam orientation */ static void sd_callback(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; if (!_OV9655_) { u8 state; u8 upsideDown; /* Probe sensor orientation */ ctrl_in(gspca_dev, 0xc0, 2, 0x0000, 0x0000, 1, (void *)&state); /* C8/40 means upside-down (looking backwards) */ /* D8/50 means right-up (looking onwards) */ upsideDown = (state == 0xc8 || state == 0x40); if (upsideDown && sd->nbRightUp > -4) { if (sd->nbRightUp > 0) sd->nbRightUp = 0; if (sd->nbRightUp == -3) { sd->mirrorMask = 1; sd->waitSet = 1; } sd->nbRightUp--; } if (!upsideDown && sd->nbRightUp < 4) { if (sd->nbRightUp < 0) sd->nbRightUp = 0; if (sd->nbRightUp == 3) { sd->mirrorMask = 0; sd->waitSet = 1; } sd->nbRightUp++; } } if (sd->waitSet) sd->dev_camera_settings(gspca_dev); } /*=================== USB driver structure initialisation ==================*/ static const struct usb_device_id device_table[] = { {USB_DEVICE(0x05e3, 0x0503)}, {USB_DEVICE(0x05e3, 0xf191)}, {} }; MODULE_DEVICE_TABLE(usb, device_table); static int sd_probe(struct usb_interface *intf, const struct usb_device_id *id) { return gspca_dev_probe(intf, id, &sd_desc_mi1320, sizeof(struct sd), THIS_MODULE); } static void sd_disconnect(struct usb_interface *intf) { gspca_disconnect(intf); } static struct usb_driver sd_driver = { .name = MODULE_NAME, .id_table = device_table, .probe = sd_probe, .disconnect = sd_disconnect, #ifdef CONFIG_PM .suspend = gspca_suspend, .resume = gspca_resume, .reset_resume = gspca_resume, #endif }; /*====================== Init and Exit module functions ====================*/ module_usb_driver(sd_driver); /*==========================================================================*/ int gl860_RTx(struct gspca_dev *gspca_dev, unsigned char pref, u32 req, u16 val, u16 index, s32 len, void *pdata) { struct usb_device *udev = gspca_dev->dev; s32 r = 0; if (pref == 0x40) { /* Send */ if (len > 0) { memcpy(gspca_dev->usb_buf, pdata, len); r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), req, pref, val, index, gspca_dev->usb_buf, len, 400 + 200 * (len > 1)); } else { r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), req, pref, val, index, NULL, len, 400); } } else { /* Receive */ if (len > 0) { r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0), req, pref, val, index, gspca_dev->usb_buf, len, 400 + 200 * (len > 1)); memcpy(pdata, gspca_dev->usb_buf, len); } else { r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0), req, pref, val, index, NULL, len, 400); } } if (r < 0) pr_err("ctrl transfer failed %4d [p%02x r%d v%04x i%04x len%d]\n", r, pref, req, val, index, len); else if (len > 1 && r < len) PERR("short ctrl transfer %d/%d", r, len); msleep(1); return r; } int fetch_validx(struct gspca_dev *gspca_dev, struct validx *tbl, int len) { int n; for (n = 0; n < len; n++) { if (tbl[n].idx != 0xffff) ctrl_out(gspca_dev, 0x40, 1, tbl[n].val, tbl[n].idx, 0, NULL); else if (tbl[n].val == 0xffff) break; else msleep(tbl[n].val); } return n; } int keep_on_fetching_validx(struct gspca_dev *gspca_dev, struct validx *tbl, int len, int n) { while (++n < len) { if (tbl[n].idx != 0xffff) ctrl_out(gspca_dev, 0x40, 1, tbl[n].val, tbl[n].idx, 0, NULL); else if (tbl[n].val == 0xffff) break; else msleep(tbl[n].val); } return n; } void fetch_idxdata(struct gspca_dev *gspca_dev, struct idxdata *tbl, int len) { int n; for (n = 0; n < len; n++) { if (memcmp(tbl[n].data, "\xff\xff\xff", 3) != 0) ctrl_out(gspca_dev, 0x40, 3, 0x7a00, tbl[n].idx, 3, tbl[n].data); else msleep(tbl[n].idx); } } static int gl860_guess_sensor(struct gspca_dev *gspca_dev, u16 vendor_id, u16 product_id) { struct sd *sd = (struct sd *) gspca_dev; u8 probe, nb26, nb96, nOV, ntry; if (product_id == 0xf191) sd->sensor = ID_MI1320; if (sd->sensor == 0xff) { ctrl_in(gspca_dev, 0xc0, 2, 0x0000, 0x0004, 1, &probe); ctrl_in(gspca_dev, 0xc0, 2, 0x0000, 0x0004, 1, &probe); ctrl_out(gspca_dev, 0x40, 1, 0x0000, 0x0000, 0, NULL); msleep(3); ctrl_out(gspca_dev, 0x40, 1, 0x0010, 0x0010, 0, NULL); msleep(3); ctrl_out(gspca_dev, 0x40, 1, 0x0008, 0x00c0, 0, NULL); msleep(3); ctrl_out(gspca_dev, 0x40, 1, 0x0001, 0x00c1, 0, NULL); msleep(3); ctrl_out(gspca_dev, 0x40, 1, 0x0001, 0x00c2, 0, NULL); msleep(3); ctrl_out(gspca_dev, 0x40, 1, 0x0020, 0x0006, 0, NULL); msleep(3); ctrl_out(gspca_dev, 0x40, 1, 0x006a, 0x000d, 0, NULL); msleep(56); PDEBUG(D_PROBE, "probing for sensor MI2020 or OVXXXX"); nOV = 0; for (ntry = 0; ntry < 4; ntry++) { ctrl_out(gspca_dev, 0x40, 1, 0x0040, 0x0000, 0, NULL); msleep(3); ctrl_out(gspca_dev, 0x40, 1, 0x0063, 0x0006, 0, NULL); msleep(3); ctrl_out(gspca_dev, 0x40, 1, 0x7a00, 0x8030, 0, NULL); msleep(10); ctrl_in(gspca_dev, 0xc0, 2, 0x7a00, 0x8030, 1, &probe); PDEBUG(D_PROBE, "probe=0x%02x", probe); if (probe == 0xff) nOV++; } if (nOV) { PDEBUG(D_PROBE, "0xff -> OVXXXX"); PDEBUG(D_PROBE, "probing for sensor OV2640 or OV9655"); nb26 = nb96 = 0; for (ntry = 0; ntry < 4; ntry++) { ctrl_out(gspca_dev, 0x40, 1, 0x0040, 0x0000, 0, NULL); msleep(3); ctrl_out(gspca_dev, 0x40, 1, 0x6000, 0x800a, 0, NULL); msleep(10); /* Wait for 26(OV2640) or 96(OV9655) */ ctrl_in(gspca_dev, 0xc0, 2, 0x6000, 0x800a, 1, &probe); if (probe == 0x26 || probe == 0x40) { PDEBUG(D_PROBE, "probe=0x%02x -> OV2640", probe); sd->sensor = ID_OV2640; nb26 += 4; break; } if (probe == 0x96 || probe == 0x55) { PDEBUG(D_PROBE, "probe=0x%02x -> OV9655", probe); sd->sensor = ID_OV9655; nb96 += 4; break; } PDEBUG(D_PROBE, "probe=0x%02x", probe); if (probe == 0x00) nb26++; if (probe == 0xff) nb96++; msleep(3); } if (nb26 < 4 && nb96 < 4) return -1; } else { PDEBUG(D_PROBE, "Not any 0xff -> MI2020"); sd->sensor = ID_MI2020; } } if (_MI1320_) { PDEBUG(D_PROBE, "05e3:f191 sensor MI1320 (1.3M)"); } else if (_MI2020_) { PDEBUG(D_PROBE, "05e3:0503 sensor MI2020 (2.0M)"); } else if (_OV9655_) { PDEBUG(D_PROBE, "05e3:0503 sensor OV9655 (1.3M)"); } else if (_OV2640_) { PDEBUG(D_PROBE, "05e3:0503 sensor OV2640 (2.0M)"); } else { PDEBUG(D_PROBE, "***** Unknown sensor *****"); return -1; } return 0; }