/* * Driver for the ov9650 sensor * * Copyright (C) 2008 Erik Andrén * Copyright (C) 2007 Ilyes Gouta. Based on the m5603x Linux Driver Project. * Copyright (C) 2005 m5603x Linux Driver Project <m5602@x3ng.com.br> * * Portions of code to USB interface and ALi driver software, * Copyright (c) 2006 Willem Duinker * v4l2 interface modeled after the V4L2 driver * for SN9C10x PC Camera Controllers * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, version 2. * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include "m5602_ov9650.h" static int ov9650_s_ctrl(struct v4l2_ctrl *ctrl); static void ov9650_dump_registers(struct sd *sd); /* Vertically and horizontally flips the image if matched, needed for machines where the sensor is mounted upside down */ static const struct dmi_system_id ov9650_flip_dmi_table[] = { { .ident = "ASUS A6Ja", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "A6J") } }, { .ident = "ASUS A6JC", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "A6JC") } }, { .ident = "ASUS A6K", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "A6K") } }, { .ident = "ASUS A6Kt", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "A6Kt") } }, { .ident = "ASUS A6VA", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "A6VA") } }, { .ident = "ASUS A6VC", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "A6VC") } }, { .ident = "ASUS A6VM", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "A6VM") } }, { .ident = "ASUS A7V", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "A7V") } }, { .ident = "Alienware Aurora m9700", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "alienware"), DMI_MATCH(DMI_PRODUCT_NAME, "Aurora m9700") } }, {} }; static struct v4l2_pix_format ov9650_modes[] = { { 176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE, .sizeimage = 176 * 144, .bytesperline = 176, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 9 }, { 320, 240, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE, .sizeimage = 320 * 240, .bytesperline = 320, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 8 }, { 352, 288, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE, .sizeimage = 352 * 288, .bytesperline = 352, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 9 }, { 640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE, .sizeimage = 640 * 480, .bytesperline = 640, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 9 } }; static const struct v4l2_ctrl_ops ov9650_ctrl_ops = { .s_ctrl = ov9650_s_ctrl, }; int ov9650_probe(struct sd *sd) { int err = 0; u8 prod_id = 0, ver_id = 0, i; struct gspca_dev *gspca_dev = (struct gspca_dev *)sd; if (force_sensor) { if (force_sensor == OV9650_SENSOR) { pr_info("Forcing an %s sensor\n", ov9650.name); goto sensor_found; } /* If we want to force another sensor, don't try to probe this one */ return -ENODEV; } PDEBUG(D_PROBE, "Probing for an ov9650 sensor"); /* Run the pre-init before probing the sensor */ for (i = 0; i < ARRAY_SIZE(preinit_ov9650) && !err; i++) { u8 data = preinit_ov9650[i][2]; if (preinit_ov9650[i][0] == SENSOR) err = m5602_write_sensor(sd, preinit_ov9650[i][1], &data, 1); else err = m5602_write_bridge(sd, preinit_ov9650[i][1], data); } if (err < 0) return err; if (m5602_read_sensor(sd, OV9650_PID, &prod_id, 1)) return -ENODEV; if (m5602_read_sensor(sd, OV9650_VER, &ver_id, 1)) return -ENODEV; if ((prod_id == 0x96) && (ver_id == 0x52)) { pr_info("Detected an ov9650 sensor\n"); goto sensor_found; } return -ENODEV; sensor_found: sd->gspca_dev.cam.cam_mode = ov9650_modes; sd->gspca_dev.cam.nmodes = ARRAY_SIZE(ov9650_modes); return 0; } int ov9650_init(struct sd *sd) { int i, err = 0; u8 data; if (dump_sensor) ov9650_dump_registers(sd); for (i = 0; i < ARRAY_SIZE(init_ov9650) && !err; i++) { data = init_ov9650[i][2]; if (init_ov9650[i][0] == SENSOR) err = m5602_write_sensor(sd, init_ov9650[i][1], &data, 1); else err = m5602_write_bridge(sd, init_ov9650[i][1], data); } return 0; } int ov9650_init_controls(struct sd *sd) { struct v4l2_ctrl_handler *hdl = &sd->gspca_dev.ctrl_handler; sd->gspca_dev.vdev.ctrl_handler = hdl; v4l2_ctrl_handler_init(hdl, 9); sd->auto_white_bal = v4l2_ctrl_new_std(hdl, &ov9650_ctrl_ops, V4L2_CID_AUTO_WHITE_BALANCE, 0, 1, 1, 1); sd->red_bal = v4l2_ctrl_new_std(hdl, &ov9650_ctrl_ops, V4L2_CID_RED_BALANCE, 0, 255, 1, RED_GAIN_DEFAULT); sd->blue_bal = v4l2_ctrl_new_std(hdl, &ov9650_ctrl_ops, V4L2_CID_BLUE_BALANCE, 0, 255, 1, BLUE_GAIN_DEFAULT); sd->autoexpo = v4l2_ctrl_new_std_menu(hdl, &ov9650_ctrl_ops, V4L2_CID_EXPOSURE_AUTO, 1, 0, V4L2_EXPOSURE_AUTO); sd->expo = v4l2_ctrl_new_std(hdl, &ov9650_ctrl_ops, V4L2_CID_EXPOSURE, 0, 0x1ff, 4, EXPOSURE_DEFAULT); sd->autogain = v4l2_ctrl_new_std(hdl, &ov9650_ctrl_ops, V4L2_CID_AUTOGAIN, 0, 1, 1, 1); sd->gain = v4l2_ctrl_new_std(hdl, &ov9650_ctrl_ops, V4L2_CID_GAIN, 0, 0x3ff, 1, GAIN_DEFAULT); sd->hflip = v4l2_ctrl_new_std(hdl, &ov9650_ctrl_ops, V4L2_CID_HFLIP, 0, 1, 1, 0); sd->vflip = v4l2_ctrl_new_std(hdl, &ov9650_ctrl_ops, V4L2_CID_VFLIP, 0, 1, 1, 0); if (hdl->error) { pr_err("Could not initialize controls\n"); return hdl->error; } v4l2_ctrl_auto_cluster(3, &sd->auto_white_bal, 0, false); v4l2_ctrl_auto_cluster(2, &sd->autoexpo, 0, false); v4l2_ctrl_auto_cluster(2, &sd->autogain, 0, false); v4l2_ctrl_cluster(2, &sd->hflip); return 0; } int ov9650_start(struct sd *sd) { u8 data; int i, err = 0; struct cam *cam = &sd->gspca_dev.cam; int width = cam->cam_mode[sd->gspca_dev.curr_mode].width; int height = cam->cam_mode[sd->gspca_dev.curr_mode].height; int ver_offs = cam->cam_mode[sd->gspca_dev.curr_mode].priv; int hor_offs = OV9650_LEFT_OFFSET; struct gspca_dev *gspca_dev = (struct gspca_dev *)sd; if ((!dmi_check_system(ov9650_flip_dmi_table) && sd->vflip->val) || (dmi_check_system(ov9650_flip_dmi_table) && !sd->vflip->val)) ver_offs--; if (width <= 320) hor_offs /= 2; /* Synthesize the vsync/hsync setup */ for (i = 0; i < ARRAY_SIZE(res_init_ov9650) && !err; i++) { if (res_init_ov9650[i][0] == BRIDGE) err = m5602_write_bridge(sd, res_init_ov9650[i][1], res_init_ov9650[i][2]); else if (res_init_ov9650[i][0] == SENSOR) { data = res_init_ov9650[i][2]; err = m5602_write_sensor(sd, res_init_ov9650[i][1], &data, 1); } } if (err < 0) return err; err = m5602_write_bridge(sd, M5602_XB_VSYNC_PARA, ((ver_offs >> 8) & 0xff)); if (err < 0) return err; err = m5602_write_bridge(sd, M5602_XB_VSYNC_PARA, (ver_offs & 0xff)); if (err < 0) return err; err = m5602_write_bridge(sd, M5602_XB_VSYNC_PARA, 0); if (err < 0) return err; err = m5602_write_bridge(sd, M5602_XB_VSYNC_PARA, (height >> 8) & 0xff); if (err < 0) return err; err = m5602_write_bridge(sd, M5602_XB_VSYNC_PARA, (height & 0xff)); if (err < 0) return err; for (i = 0; i < 2 && !err; i++) err = m5602_write_bridge(sd, M5602_XB_VSYNC_PARA, 0); if (err < 0) return err; err = m5602_write_bridge(sd, M5602_XB_SIG_INI, 0); if (err < 0) return err; err = m5602_write_bridge(sd, M5602_XB_SIG_INI, 2); if (err < 0) return err; err = m5602_write_bridge(sd, M5602_XB_HSYNC_PARA, (hor_offs >> 8) & 0xff); if (err < 0) return err; err = m5602_write_bridge(sd, M5602_XB_HSYNC_PARA, hor_offs & 0xff); if (err < 0) return err; err = m5602_write_bridge(sd, M5602_XB_HSYNC_PARA, ((width + hor_offs) >> 8) & 0xff); if (err < 0) return err; err = m5602_write_bridge(sd, M5602_XB_HSYNC_PARA, ((width + hor_offs) & 0xff)); if (err < 0) return err; err = m5602_write_bridge(sd, M5602_XB_SIG_INI, 0); if (err < 0) return err; switch (width) { case 640: PDEBUG(D_CONF, "Configuring camera for VGA mode"); data = OV9650_VGA_SELECT | OV9650_RGB_SELECT | OV9650_RAW_RGB_SELECT; err = m5602_write_sensor(sd, OV9650_COM7, &data, 1); break; case 352: PDEBUG(D_CONF, "Configuring camera for CIF mode"); data = OV9650_CIF_SELECT | OV9650_RGB_SELECT | OV9650_RAW_RGB_SELECT; err = m5602_write_sensor(sd, OV9650_COM7, &data, 1); break; case 320: PDEBUG(D_CONF, "Configuring camera for QVGA mode"); data = OV9650_QVGA_SELECT | OV9650_RGB_SELECT | OV9650_RAW_RGB_SELECT; err = m5602_write_sensor(sd, OV9650_COM7, &data, 1); break; case 176: PDEBUG(D_CONF, "Configuring camera for QCIF mode"); data = OV9650_QCIF_SELECT | OV9650_RGB_SELECT | OV9650_RAW_RGB_SELECT; err = m5602_write_sensor(sd, OV9650_COM7, &data, 1); break; } return err; } int ov9650_stop(struct sd *sd) { u8 data = OV9650_SOFT_SLEEP | OV9650_OUTPUT_DRIVE_2X; return m5602_write_sensor(sd, OV9650_COM2, &data, 1); } void ov9650_disconnect(struct sd *sd) { ov9650_stop(sd); sd->sensor = NULL; } static int ov9650_set_exposure(struct gspca_dev *gspca_dev, __s32 val) { struct sd *sd = (struct sd *) gspca_dev; u8 i2c_data; int err; PDEBUG(D_CONF, "Set exposure to %d", val); /* The 6 MSBs */ i2c_data = (val >> 10) & 0x3f; err = m5602_write_sensor(sd, OV9650_AECHM, &i2c_data, 1); if (err < 0) return err; /* The 8 middle bits */ i2c_data = (val >> 2) & 0xff; err = m5602_write_sensor(sd, OV9650_AECH, &i2c_data, 1); if (err < 0) return err; /* The 2 LSBs */ i2c_data = val & 0x03; err = m5602_write_sensor(sd, OV9650_COM1, &i2c_data, 1); return err; } static int ov9650_set_gain(struct gspca_dev *gspca_dev, __s32 val) { int err; u8 i2c_data; struct sd *sd = (struct sd *) gspca_dev; PDEBUG(D_CONF, "Setting gain to %d", val); /* The 2 MSB */ /* Read the OV9650_VREF register first to avoid corrupting the VREF high and low bits */ err = m5602_read_sensor(sd, OV9650_VREF, &i2c_data, 1); if (err < 0) return err; /* Mask away all uninteresting bits */ i2c_data = ((val & 0x0300) >> 2) | (i2c_data & 0x3f); err = m5602_write_sensor(sd, OV9650_VREF, &i2c_data, 1); if (err < 0) return err; /* The 8 LSBs */ i2c_data = val & 0xff; err = m5602_write_sensor(sd, OV9650_GAIN, &i2c_data, 1); return err; } static int ov9650_set_red_balance(struct gspca_dev *gspca_dev, __s32 val) { int err; u8 i2c_data; struct sd *sd = (struct sd *) gspca_dev; PDEBUG(D_CONF, "Set red gain to %d", val); i2c_data = val & 0xff; err = m5602_write_sensor(sd, OV9650_RED, &i2c_data, 1); return err; } static int ov9650_set_blue_balance(struct gspca_dev *gspca_dev, __s32 val) { int err; u8 i2c_data; struct sd *sd = (struct sd *) gspca_dev; PDEBUG(D_CONF, "Set blue gain to %d", val); i2c_data = val & 0xff; err = m5602_write_sensor(sd, OV9650_BLUE, &i2c_data, 1); return err; } static int ov9650_set_hvflip(struct gspca_dev *gspca_dev) { int err; u8 i2c_data; struct sd *sd = (struct sd *) gspca_dev; int hflip = sd->hflip->val; int vflip = sd->vflip->val; PDEBUG(D_CONF, "Set hvflip to %d %d", hflip, vflip); if (dmi_check_system(ov9650_flip_dmi_table)) vflip = !vflip; i2c_data = (hflip << 5) | (vflip << 4); err = m5602_write_sensor(sd, OV9650_MVFP, &i2c_data, 1); if (err < 0) return err; /* When vflip is toggled we need to readjust the bridge hsync/vsync */ if (gspca_dev->streaming) err = ov9650_start(sd); return err; } static int ov9650_set_auto_exposure(struct gspca_dev *gspca_dev, __s32 val) { int err; u8 i2c_data; struct sd *sd = (struct sd *) gspca_dev; PDEBUG(D_CONF, "Set auto exposure control to %d", val); err = m5602_read_sensor(sd, OV9650_COM8, &i2c_data, 1); if (err < 0) return err; val = (val == V4L2_EXPOSURE_AUTO); i2c_data = ((i2c_data & 0xfe) | ((val & 0x01) << 0)); return m5602_write_sensor(sd, OV9650_COM8, &i2c_data, 1); } static int ov9650_set_auto_white_balance(struct gspca_dev *gspca_dev, __s32 val) { int err; u8 i2c_data; struct sd *sd = (struct sd *) gspca_dev; PDEBUG(D_CONF, "Set auto white balance to %d", val); err = m5602_read_sensor(sd, OV9650_COM8, &i2c_data, 1); if (err < 0) return err; i2c_data = ((i2c_data & 0xfd) | ((val & 0x01) << 1)); err = m5602_write_sensor(sd, OV9650_COM8, &i2c_data, 1); return err; } static int ov9650_set_auto_gain(struct gspca_dev *gspca_dev, __s32 val) { int err; u8 i2c_data; struct sd *sd = (struct sd *) gspca_dev; PDEBUG(D_CONF, "Set auto gain control to %d", val); err = m5602_read_sensor(sd, OV9650_COM8, &i2c_data, 1); if (err < 0) return err; i2c_data = ((i2c_data & 0xfb) | ((val & 0x01) << 2)); return m5602_write_sensor(sd, OV9650_COM8, &i2c_data, 1); } static int ov9650_s_ctrl(struct v4l2_ctrl *ctrl) { struct gspca_dev *gspca_dev = container_of(ctrl->handler, struct gspca_dev, ctrl_handler); struct sd *sd = (struct sd *) gspca_dev; int err; if (!gspca_dev->streaming) return 0; switch (ctrl->id) { case V4L2_CID_AUTO_WHITE_BALANCE: err = ov9650_set_auto_white_balance(gspca_dev, ctrl->val); if (err || ctrl->val) return err; err = ov9650_set_red_balance(gspca_dev, sd->red_bal->val); if (err) return err; err = ov9650_set_blue_balance(gspca_dev, sd->blue_bal->val); break; case V4L2_CID_EXPOSURE_AUTO: err = ov9650_set_auto_exposure(gspca_dev, ctrl->val); if (err || ctrl->val == V4L2_EXPOSURE_AUTO) return err; err = ov9650_set_exposure(gspca_dev, sd->expo->val); break; case V4L2_CID_AUTOGAIN: err = ov9650_set_auto_gain(gspca_dev, ctrl->val); if (err || ctrl->val) return err; err = ov9650_set_gain(gspca_dev, sd->gain->val); break; case V4L2_CID_HFLIP: err = ov9650_set_hvflip(gspca_dev); break; default: return -EINVAL; } return err; } static void ov9650_dump_registers(struct sd *sd) { int address; pr_info("Dumping the ov9650 register state\n"); for (address = 0; address < 0xa9; address++) { u8 value; m5602_read_sensor(sd, address, &value, 1); pr_info("register 0x%x contains 0x%x\n", address, value); } pr_info("ov9650 register state dump complete\n"); pr_info("Probing for which registers that are read/write\n"); for (address = 0; address < 0xff; address++) { u8 old_value, ctrl_value; u8 test_value[2] = {0xff, 0xff}; m5602_read_sensor(sd, address, &old_value, 1); m5602_write_sensor(sd, address, test_value, 1); m5602_read_sensor(sd, address, &ctrl_value, 1); if (ctrl_value == test_value[0]) pr_info("register 0x%x is writeable\n", address); else pr_info("register 0x%x is read only\n", address); /* Restore original value */ m5602_write_sensor(sd, address, &old_value, 1); } }