/*
 * T613 subdriver
 *
 * Copyright (C) 2010 Jean-Francois Moine (http://moinejf.free.fr)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 *
 *Notes: * t613  + tas5130A
 *	* Focus to light do not balance well as in win.
 *	  Quality in win is not good, but its kinda better.
 *	 * Fix some "extraneous bytes", most of apps will show the image anyway
 *	 * Gamma table, is there, but its really doing something?
 *	 * 7~8 Fps, its ok, max on win its 10.
 *			Costantino Leandro
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#define MODULE_NAME "t613"

#include <linux/input.h>
#include <linux/slab.h>
#include "gspca.h"

MODULE_AUTHOR("Leandro Costantino <le_costantino@pixartargentina.com.ar>");
MODULE_DESCRIPTION("GSPCA/T613 (JPEG Compliance) USB Camera Driver");
MODULE_LICENSE("GPL");

struct sd {
	struct gspca_dev gspca_dev;	/* !! must be the first item */
	struct v4l2_ctrl *freq;
	struct { /* awb / color gains control cluster */
		struct v4l2_ctrl *awb;
		struct v4l2_ctrl *gain;
		struct v4l2_ctrl *red_balance;
		struct v4l2_ctrl *blue_balance;
	};

	u8 sensor;
	u8 button_pressed;
};
enum sensors {
	SENSOR_OM6802,
	SENSOR_OTHER,
	SENSOR_TAS5130A,
	SENSOR_LT168G,		/* must verify if this is the actual model */
};

static const struct v4l2_pix_format vga_mode_t16[] = {
	{160, 120, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
		.bytesperline = 160,
		.sizeimage = 160 * 120 * 4 / 8 + 590,
		.colorspace = V4L2_COLORSPACE_JPEG,
		.priv = 4},
#if 0 /* HDG: broken with my test cam, so lets disable it */
	{176, 144, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
		.bytesperline = 176,
		.sizeimage = 176 * 144 * 3 / 8 + 590,
		.colorspace = V4L2_COLORSPACE_JPEG,
		.priv = 3},
#endif
	{320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
		.bytesperline = 320,
		.sizeimage = 320 * 240 * 3 / 8 + 590,
		.colorspace = V4L2_COLORSPACE_JPEG,
		.priv = 2},
#if 0 /* HDG: broken with my test cam, so lets disable it */
	{352, 288, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
		.bytesperline = 352,
		.sizeimage = 352 * 288 * 3 / 8 + 590,
		.colorspace = V4L2_COLORSPACE_JPEG,
		.priv = 1},
#endif
	{640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
		.bytesperline = 640,
		.sizeimage = 640 * 480 * 3 / 8 + 590,
		.colorspace = V4L2_COLORSPACE_JPEG,
		.priv = 0},
};

/* sensor specific data */
struct additional_sensor_data {
	const u8 n3[6];
	const u8 *n4, n4sz;
	const u8 reg80, reg8e;
	const u8 nset8[6];
	const u8 data1[10];
	const u8 data2[9];
	const u8 data3[9];
	const u8 data5[6];
	const u8 stream[4];
};

static const u8 n4_om6802[] = {
	0x09, 0x01, 0x12, 0x04, 0x66, 0x8a, 0x80, 0x3c,
	0x81, 0x22, 0x84, 0x50, 0x8a, 0x78, 0x8b, 0x68,
	0x8c, 0x88, 0x8e, 0x33, 0x8f, 0x24, 0xaa, 0xb1,
	0xa2, 0x60, 0xa5, 0x30, 0xa6, 0x3a, 0xa8, 0xe8,
	0xae, 0x05, 0xb1, 0x00, 0xbb, 0x04, 0xbc, 0x48,
	0xbe, 0x36, 0xc6, 0x88, 0xe9, 0x00, 0xc5, 0xc0,
	0x65, 0x0a, 0xbb, 0x86, 0xaf, 0x58, 0xb0, 0x68,
	0x87, 0x40, 0x89, 0x2b, 0x8d, 0xff, 0x83, 0x40,
	0xac, 0x84, 0xad, 0x86, 0xaf, 0x46
};
static const u8 n4_other[] = {
	0x66, 0x00, 0x7f, 0x00, 0x80, 0xac, 0x81, 0x69,
	0x84, 0x40, 0x85, 0x70, 0x86, 0x20, 0x8a, 0x68,
	0x8b, 0x58, 0x8c, 0x88, 0x8d, 0xff, 0x8e, 0xb8,
	0x8f, 0x28, 0xa2, 0x60, 0xa5, 0x40, 0xa8, 0xa8,
	0xac, 0x84, 0xad, 0x84, 0xae, 0x24, 0xaf, 0x56,
	0xb0, 0x68, 0xb1, 0x00, 0xb2, 0x88, 0xbb, 0xc5,
	0xbc, 0x4a, 0xbe, 0x36, 0xc2, 0x88, 0xc5, 0xc0,
	0xc6, 0xda, 0xe9, 0x26, 0xeb, 0x00
};
static const u8 n4_tas5130a[] = {
	0x80, 0x3c, 0x81, 0x68, 0x83, 0xa0, 0x84, 0x20,
	0x8a, 0x68, 0x8b, 0x58, 0x8c, 0x88, 0x8e, 0xb4,
	0x8f, 0x24, 0xa1, 0xb1, 0xa2, 0x30, 0xa5, 0x10,
	0xa6, 0x4a, 0xae, 0x03, 0xb1, 0x44, 0xb2, 0x08,
	0xb7, 0x06, 0xb9, 0xe7, 0xbb, 0xc4, 0xbc, 0x4a,
	0xbe, 0x36, 0xbf, 0xff, 0xc2, 0x88, 0xc5, 0xc8,
	0xc6, 0xda
};
static const u8 n4_lt168g[] = {
	0x66, 0x01, 0x7f, 0x00, 0x80, 0x7c, 0x81, 0x28,
	0x83, 0x44, 0x84, 0x20, 0x86, 0x20, 0x8a, 0x70,
	0x8b, 0x58, 0x8c, 0x88, 0x8d, 0xa0, 0x8e, 0xb3,
	0x8f, 0x24, 0xa1, 0xb0, 0xa2, 0x38, 0xa5, 0x20,
	0xa6, 0x4a, 0xa8, 0xe8, 0xaf, 0x38, 0xb0, 0x68,
	0xb1, 0x44, 0xb2, 0x88, 0xbb, 0x86, 0xbd, 0x40,
	0xbe, 0x26, 0xc1, 0x05, 0xc2, 0x88, 0xc5, 0xc0,
	0xda, 0x8e, 0xdb, 0xca, 0xdc, 0xa8, 0xdd, 0x8c,
	0xde, 0x44, 0xdf, 0x0c, 0xe9, 0x80
};

static const struct additional_sensor_data sensor_data[] = {
[SENSOR_OM6802] = {
	.n3 =
		{0x61, 0x68, 0x65, 0x0a, 0x60, 0x04},
	.n4 = n4_om6802,
	.n4sz = sizeof n4_om6802,
	.reg80 = 0x3c,
	.reg8e = 0x33,
	.nset8 = {0xa8, 0xf0, 0xc6, 0x88, 0xc0, 0x00},
	.data1 =
		{0xc2, 0x28, 0x0f, 0x22, 0xcd, 0x27, 0x2c, 0x06,
		 0xb3, 0xfc},
	.data2 =
		{0x80, 0xff, 0xff, 0x80, 0xff, 0xff, 0x80, 0xff,
		 0xff},
	.data3 =
		{0x80, 0xff, 0xff, 0x80, 0xff, 0xff, 0x80, 0xff,
		 0xff},
	.data5 =	/* this could be removed later */
		{0x0c, 0x03, 0xab, 0x13, 0x81, 0x23},
	.stream =
		{0x0b, 0x04, 0x0a, 0x78},
    },
[SENSOR_OTHER] = {
	.n3 =
		{0x61, 0xc2, 0x65, 0x88, 0x60, 0x00},
	.n4 = n4_other,
	.n4sz = sizeof n4_other,
	.reg80 = 0xac,
	.reg8e = 0xb8,
	.nset8 = {0xa8, 0xa8, 0xc6, 0xda, 0xc0, 0x00},
	.data1 =
		{0xc1, 0x48, 0x04, 0x1b, 0xca, 0x2e, 0x33, 0x3a,
		 0xe8, 0xfc},
	.data2 =
		{0x4e, 0x9c, 0xec, 0x40, 0x80, 0xc0, 0x48, 0x96,
		 0xd9},
	.data3 =
		{0x4e, 0x9c, 0xec, 0x40, 0x80, 0xc0, 0x48, 0x96,
		 0xd9},
	.data5 =
		{0x0c, 0x03, 0xab, 0x29, 0x81, 0x69},
	.stream =
		{0x0b, 0x04, 0x0a, 0x00},
    },
[SENSOR_TAS5130A] = {
	.n3 =
		{0x61, 0xc2, 0x65, 0x0d, 0x60, 0x08},
	.n4 = n4_tas5130a,
	.n4sz = sizeof n4_tas5130a,
	.reg80 = 0x3c,
	.reg8e = 0xb4,
	.nset8 = {0xa8, 0xf0, 0xc6, 0xda, 0xc0, 0x00},
	.data1 =
		{0xbb, 0x28, 0x10, 0x10, 0xbb, 0x28, 0x1e, 0x27,
		 0xc8, 0xfc},
	.data2 =
		{0x60, 0xa8, 0xe0, 0x60, 0xa8, 0xe0, 0x60, 0xa8,
		 0xe0},
	.data3 =
		{0x60, 0xa8, 0xe0, 0x60, 0xa8, 0xe0, 0x60, 0xa8,
		 0xe0},
	.data5 =
		{0x0c, 0x03, 0xab, 0x10, 0x81, 0x20},
	.stream =
		{0x0b, 0x04, 0x0a, 0x40},
    },
[SENSOR_LT168G] = {
	.n3 = {0x61, 0xc2, 0x65, 0x68, 0x60, 0x00},
	.n4 = n4_lt168g,
	.n4sz = sizeof n4_lt168g,
	.reg80 = 0x7c,
	.reg8e = 0xb3,
	.nset8 = {0xa8, 0xf0, 0xc6, 0xba, 0xc0, 0x00},
	.data1 = {0xc0, 0x38, 0x08, 0x10, 0xc0, 0x30, 0x10, 0x40,
		 0xb0, 0xf4},
	.data2 = {0x40, 0x80, 0xc0, 0x50, 0xa0, 0xf0, 0x53, 0xa6,
		 0xff},
	.data3 = {0x40, 0x80, 0xc0, 0x50, 0xa0, 0xf0, 0x53, 0xa6,
		 0xff},
	.data5 = {0x0c, 0x03, 0xab, 0x4b, 0x81, 0x2b},
	.stream = {0x0b, 0x04, 0x0a, 0x28},
    },
};

#define MAX_EFFECTS 7
static const u8 effects_table[MAX_EFFECTS][6] = {
	{0xa8, 0xe8, 0xc6, 0xd2, 0xc0, 0x00},	/* Normal */
	{0xa8, 0xc8, 0xc6, 0x52, 0xc0, 0x04},	/* Repujar */
	{0xa8, 0xe8, 0xc6, 0xd2, 0xc0, 0x20},	/* Monochrome */
	{0xa8, 0xe8, 0xc6, 0xd2, 0xc0, 0x80},	/* Sepia */
	{0xa8, 0xc8, 0xc6, 0x52, 0xc0, 0x02},	/* Croquis */
	{0xa8, 0xc8, 0xc6, 0xd2, 0xc0, 0x10},	/* Sun Effect */
	{0xa8, 0xc8, 0xc6, 0xd2, 0xc0, 0x40},	/* Negative */
};

#define GAMMA_MAX (15)
static const u8 gamma_table[GAMMA_MAX+1][17] = {
/* gamma table from cam1690.ini */
	{0x00, 0x00, 0x01, 0x04, 0x08, 0x0e, 0x16, 0x21,	/* 0 */
	 0x2e, 0x3d, 0x50, 0x65, 0x7d, 0x99, 0xb8, 0xdb,
	 0xff},
	{0x00, 0x01, 0x03, 0x08, 0x0e, 0x16, 0x21, 0x2d,	/* 1 */
	 0x3c, 0x4d, 0x60, 0x75, 0x8d, 0xa6, 0xc2, 0xe1,
	 0xff},
	{0x00, 0x01, 0x05, 0x0b, 0x12, 0x1c, 0x28, 0x35,	/* 2 */
	 0x45, 0x56, 0x69, 0x7e, 0x95, 0xad, 0xc7, 0xe3,
	 0xff},
	{0x00, 0x02, 0x07, 0x0f, 0x18, 0x24, 0x30, 0x3f,	/* 3 */
	 0x4f, 0x61, 0x73, 0x88, 0x9d, 0xb4, 0xcd, 0xe6,
	 0xff},
	{0x00, 0x04, 0x0b, 0x15, 0x20, 0x2d, 0x3b, 0x4a,	/* 4 */
	 0x5b, 0x6c, 0x7f, 0x92, 0xa7, 0xbc, 0xd2, 0xe9,
	 0xff},
	{0x00, 0x07, 0x11, 0x15, 0x20, 0x2d, 0x48, 0x58,	/* 5 */
	 0x68, 0x79, 0x8b, 0x9d, 0xb0, 0xc4, 0xd7, 0xec,
	 0xff},
	{0x00, 0x0c, 0x1a, 0x29, 0x38, 0x47, 0x57, 0x67,	/* 6 */
	 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee,
	 0xff},
	{0x00, 0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x70,	/* 7 */
	 0x80, 0x90, 0xa0, 0xb0, 0xc0, 0xd0, 0xe0, 0xf0,
	 0xff},
	{0x00, 0x15, 0x27, 0x38, 0x49, 0x59, 0x69, 0x79,	/* 8 */
	 0x88, 0x97, 0xa7, 0xb6, 0xc4, 0xd3, 0xe2, 0xf0,
	 0xff},
	{0x00, 0x1c, 0x30, 0x43, 0x54, 0x65, 0x75, 0x84,	/* 9 */
	 0x93, 0xa1, 0xb0, 0xbd, 0xca, 0xd8, 0xe5, 0xf2,
	 0xff},
	{0x00, 0x24, 0x3b, 0x4f, 0x60, 0x70, 0x80, 0x8e,	/* 10 */
	 0x9c, 0xaa, 0xb7, 0xc4, 0xd0, 0xdc, 0xe8, 0xf3,
	 0xff},
	{0x00, 0x2a, 0x3c, 0x5d, 0x6e, 0x7e, 0x8d, 0x9b,	/* 11 */
	 0xa8, 0xb4, 0xc0, 0xcb, 0xd6, 0xe1, 0xeb, 0xf5,
	 0xff},
	{0x00, 0x3f, 0x5a, 0x6e, 0x7f, 0x8e, 0x9c, 0xa8,	/* 12 */
	 0xb4, 0xbf, 0xc9, 0xd3, 0xdc, 0xe5, 0xee, 0xf6,
	 0xff},
	{0x00, 0x54, 0x6f, 0x83, 0x93, 0xa0, 0xad, 0xb7,	/* 13 */
	 0xc2, 0xcb, 0xd4, 0xdc, 0xe4, 0xeb, 0xf2, 0xf9,
	 0xff},
	{0x00, 0x6e, 0x88, 0x9a, 0xa8, 0xb3, 0xbd, 0xc6,	/* 14 */
	 0xcf, 0xd6, 0xdd, 0xe3, 0xe9, 0xef, 0xf4, 0xfa,
	 0xff},
	{0x00, 0x93, 0xa8, 0xb7, 0xc1, 0xca, 0xd2, 0xd8,	/* 15 */
	 0xde, 0xe3, 0xe8, 0xed, 0xf1, 0xf5, 0xf8, 0xfc,
	 0xff}
};

static const u8 tas5130a_sensor_init[][8] = {
	{0x62, 0x08, 0x63, 0x70, 0x64, 0x1d, 0x60, 0x09},
	{0x62, 0x20, 0x63, 0x01, 0x64, 0x02, 0x60, 0x09},
	{0x62, 0x07, 0x63, 0x03, 0x64, 0x00, 0x60, 0x09},
};

static u8 sensor_reset[] = {0x61, 0x68, 0x62, 0xff, 0x60, 0x07};

/* read 1 byte */
static u8 reg_r(struct gspca_dev *gspca_dev,
		   u16 index)
{
	usb_control_msg(gspca_dev->dev,
			usb_rcvctrlpipe(gspca_dev->dev, 0),
			0,		/* request */
			USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
			0,		/* value */
			index,
			gspca_dev->usb_buf, 1, 500);
	return gspca_dev->usb_buf[0];
}

static void reg_w(struct gspca_dev *gspca_dev,
		  u16 index)
{
	usb_control_msg(gspca_dev->dev,
			usb_sndctrlpipe(gspca_dev->dev, 0),
			0,
			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
			0, index,
			NULL, 0, 500);
}

static void reg_w_buf(struct gspca_dev *gspca_dev,
		  const u8 *buffer, u16 len)
{
	if (len <= USB_BUF_SZ) {
		memcpy(gspca_dev->usb_buf, buffer, len);
		usb_control_msg(gspca_dev->dev,
				usb_sndctrlpipe(gspca_dev->dev, 0),
				0,
			   USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
				0x01, 0,
				gspca_dev->usb_buf, len, 500);
	} else {
		u8 *tmpbuf;

		tmpbuf = kmemdup(buffer, len, GFP_KERNEL);
		if (!tmpbuf) {
			pr_err("Out of memory\n");
			return;
		}
		usb_control_msg(gspca_dev->dev,
				usb_sndctrlpipe(gspca_dev->dev, 0),
				0,
			   USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
				0x01, 0,
				tmpbuf, len, 500);
		kfree(tmpbuf);
	}
}

/* write values to consecutive registers */
static void reg_w_ixbuf(struct gspca_dev *gspca_dev,
			u8 reg,
			const u8 *buffer, u16 len)
{
	int i;
	u8 *p, *tmpbuf;

	if (len * 2 <= USB_BUF_SZ) {
		p = tmpbuf = gspca_dev->usb_buf;
	} else {
		p = tmpbuf = kmalloc(len * 2, GFP_KERNEL);
		if (!tmpbuf) {
			pr_err("Out of memory\n");
			return;
		}
	}
	i = len;
	while (--i >= 0) {
		*p++ = reg++;
		*p++ = *buffer++;
	}
	usb_control_msg(gspca_dev->dev,
			usb_sndctrlpipe(gspca_dev->dev, 0),
			0,
			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
			0x01, 0,
			tmpbuf, len * 2, 500);
	if (len * 2 > USB_BUF_SZ)
		kfree(tmpbuf);
}

static void om6802_sensor_init(struct gspca_dev *gspca_dev)
{
	int i;
	const u8 *p;
	u8 byte;
	u8 val[6] = {0x62, 0, 0x64, 0, 0x60, 0x05};
	static const u8 sensor_init[] = {
		0xdf, 0x6d,
		0xdd, 0x18,
		0x5a, 0xe0,
		0x5c, 0x07,
		0x5d, 0xb0,
		0x5e, 0x1e,
		0x60, 0x71,
		0xef, 0x00,
		0xe9, 0x00,
		0xea, 0x00,
		0x90, 0x24,
		0x91, 0xb2,
		0x82, 0x32,
		0xfd, 0x41,
		0x00			/* table end */
	};

	reg_w_buf(gspca_dev, sensor_reset, sizeof sensor_reset);
	msleep(100);
	i = 4;
	while (--i > 0) {
		byte = reg_r(gspca_dev, 0x0060);
		if (!(byte & 0x01))
			break;
		msleep(100);
	}
	byte = reg_r(gspca_dev, 0x0063);
	if (byte != 0x17) {
		pr_err("Bad sensor reset %02x\n", byte);
		/* continue? */
	}

	p = sensor_init;
	while (*p != 0) {
		val[1] = *p++;
		val[3] = *p++;
		if (*p == 0)
			reg_w(gspca_dev, 0x3c80);
		reg_w_buf(gspca_dev, val, sizeof val);
		i = 4;
		while (--i >= 0) {
			msleep(15);
			byte = reg_r(gspca_dev, 0x60);
			if (!(byte & 0x01))
				break;
		}
	}
	msleep(15);
	reg_w(gspca_dev, 0x3c80);
}

/* this function is called at probe time */
static int sd_config(struct gspca_dev *gspca_dev,
		     const struct usb_device_id *id)
{
	struct cam *cam  = &gspca_dev->cam;

	cam->cam_mode = vga_mode_t16;
	cam->nmodes = ARRAY_SIZE(vga_mode_t16);

	return 0;
}

static void setbrightness(struct gspca_dev *gspca_dev, s32 brightness)
{
	u8 set6[4] = { 0x8f, 0x24, 0xc3, 0x00 };

	if (brightness < 7) {
		set6[1] = 0x26;
		set6[3] = 0x70 - brightness * 0x10;
	} else {
		set6[3] = 0x00 + ((brightness - 7) * 0x10);
	}

	reg_w_buf(gspca_dev, set6, sizeof set6);
}

static void setcontrast(struct gspca_dev *gspca_dev, s32 contrast)
{
	u16 reg_to_write;

	if (contrast < 7)
		reg_to_write = 0x8ea9 - contrast * 0x200;
	else
		reg_to_write = 0x00a9 + (contrast - 7) * 0x200;

	reg_w(gspca_dev, reg_to_write);
}

static void setcolors(struct gspca_dev *gspca_dev, s32 val)
{
	u16 reg_to_write;

	reg_to_write = 0x80bb + val * 0x100;	/* was 0xc0 */
	reg_w(gspca_dev, reg_to_write);
}

static void setgamma(struct gspca_dev *gspca_dev, s32 val)
{
	PDEBUG(D_CONF, "Gamma: %d", val);
	reg_w_ixbuf(gspca_dev, 0x90,
		gamma_table[val], sizeof gamma_table[0]);
}

static void setawb_n_RGB(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;
	u8 all_gain_reg[8] = {
		0x87, 0x00, 0x88, 0x00, 0x89, 0x00, 0x80, 0x00 };
	s32 red_gain, blue_gain, green_gain;

	green_gain = sd->gain->val;

	red_gain = green_gain + sd->red_balance->val;
	if (red_gain > 0x40)
		red_gain = 0x40;
	else if (red_gain < 0x10)
		red_gain = 0x10;

	blue_gain = green_gain + sd->blue_balance->val;
	if (blue_gain > 0x40)
		blue_gain = 0x40;
	else if (blue_gain < 0x10)
		blue_gain = 0x10;

	all_gain_reg[1] = red_gain;
	all_gain_reg[3] = blue_gain;
	all_gain_reg[5] = green_gain;
	all_gain_reg[7] = sensor_data[sd->sensor].reg80;
	if (!sd->awb->val)
		all_gain_reg[7] &= ~0x04; /* AWB off */

	reg_w_buf(gspca_dev, all_gain_reg, sizeof all_gain_reg);
}

static void setsharpness(struct gspca_dev *gspca_dev, s32 val)
{
	u16 reg_to_write;

	reg_to_write = 0x0aa6 + 0x1000 * val;

	reg_w(gspca_dev, reg_to_write);
}

static void setfreq(struct gspca_dev *gspca_dev, s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;
	u8 reg66;
	u8 freq[4] = { 0x66, 0x00, 0xa8, 0xe8 };

	switch (sd->sensor) {
	case SENSOR_LT168G:
		if (val != 0)
			freq[3] = 0xa8;
		reg66 = 0x41;
		break;
	case SENSOR_OM6802:
		reg66 = 0xca;
		break;
	default:
		reg66 = 0x40;
		break;
	}
	switch (val) {
	case 0:				/* no flicker */
		freq[3] = 0xf0;
		break;
	case 2:				/* 60Hz */
		reg66 &= ~0x40;
		break;
	}
	freq[1] = reg66;

	reg_w_buf(gspca_dev, freq, sizeof freq);
}

/* this function is called at probe and resume time */
static int sd_init(struct gspca_dev *gspca_dev)
{
	/* some of this registers are not really neded, because
	 * they are overriden by setbrigthness, setcontrast, etc,
	 * but wont hurt anyway, and can help someone with similar webcam
	 * to see the initial parameters.*/
	struct sd *sd = (struct sd *) gspca_dev;
	const struct additional_sensor_data *sensor;
	int i;
	u16 sensor_id;
	u8 test_byte = 0;

	static const u8 read_indexs[] =
		{ 0x0a, 0x0b, 0x66, 0x80, 0x81, 0x8e, 0x8f, 0xa5,
		  0xa6, 0xa8, 0xbb, 0xbc, 0xc6, 0x00 };
	static const u8 n1[] =
			{0x08, 0x03, 0x09, 0x03, 0x12, 0x04};
	static const u8 n2[] =
			{0x08, 0x00};

	sensor_id = (reg_r(gspca_dev, 0x06) << 8)
			| reg_r(gspca_dev, 0x07);
	switch (sensor_id & 0xff0f) {
	case 0x0801:
		PDEBUG(D_PROBE, "sensor tas5130a");
		sd->sensor = SENSOR_TAS5130A;
		break;
	case 0x0802:
		PDEBUG(D_PROBE, "sensor lt168g");
		sd->sensor = SENSOR_LT168G;
		break;
	case 0x0803:
		PDEBUG(D_PROBE, "sensor 'other'");
		sd->sensor = SENSOR_OTHER;
		break;
	case 0x0807:
		PDEBUG(D_PROBE, "sensor om6802");
		sd->sensor = SENSOR_OM6802;
		break;
	default:
		pr_err("unknown sensor %04x\n", sensor_id);
		return -EINVAL;
	}

	if (sd->sensor == SENSOR_OM6802) {
		reg_w_buf(gspca_dev, n1, sizeof n1);
		i = 5;
		while (--i >= 0) {
			reg_w_buf(gspca_dev, sensor_reset, sizeof sensor_reset);
			test_byte = reg_r(gspca_dev, 0x0063);
			msleep(100);
			if (test_byte == 0x17)
				break;		/* OK */
		}
		if (i < 0) {
			pr_err("Bad sensor reset %02x\n", test_byte);
			return -EIO;
		}
		reg_w_buf(gspca_dev, n2, sizeof n2);
	}

	i = 0;
	while (read_indexs[i] != 0x00) {
		test_byte = reg_r(gspca_dev, read_indexs[i]);
		PDEBUG(D_STREAM, "Reg 0x%02x = 0x%02x", read_indexs[i],
		       test_byte);
		i++;
	}

	sensor = &sensor_data[sd->sensor];
	reg_w_buf(gspca_dev, sensor->n3, sizeof sensor->n3);
	reg_w_buf(gspca_dev, sensor->n4, sensor->n4sz);

	if (sd->sensor == SENSOR_LT168G) {
		test_byte = reg_r(gspca_dev, 0x80);
		PDEBUG(D_STREAM, "Reg 0x%02x = 0x%02x", 0x80,
		       test_byte);
		reg_w(gspca_dev, 0x6c80);
	}

	reg_w_ixbuf(gspca_dev, 0xd0, sensor->data1, sizeof sensor->data1);
	reg_w_ixbuf(gspca_dev, 0xc7, sensor->data2, sizeof sensor->data2);
	reg_w_ixbuf(gspca_dev, 0xe0, sensor->data3, sizeof sensor->data3);

	reg_w(gspca_dev, (sensor->reg80 << 8) + 0x80);
	reg_w(gspca_dev, (sensor->reg80 << 8) + 0x80);
	reg_w(gspca_dev, (sensor->reg8e << 8) + 0x8e);
	reg_w(gspca_dev, (0x20 << 8) + 0x87);
	reg_w(gspca_dev, (0x20 << 8) + 0x88);
	reg_w(gspca_dev, (0x20 << 8) + 0x89);

	reg_w_buf(gspca_dev, sensor->data5, sizeof sensor->data5);
	reg_w_buf(gspca_dev, sensor->nset8, sizeof sensor->nset8);
	reg_w_buf(gspca_dev, sensor->stream, sizeof sensor->stream);

	if (sd->sensor == SENSOR_LT168G) {
		test_byte = reg_r(gspca_dev, 0x80);
		PDEBUG(D_STREAM, "Reg 0x%02x = 0x%02x", 0x80,
		       test_byte);
		reg_w(gspca_dev, 0x6c80);
	}

	reg_w_ixbuf(gspca_dev, 0xd0, sensor->data1, sizeof sensor->data1);
	reg_w_ixbuf(gspca_dev, 0xc7, sensor->data2, sizeof sensor->data2);
	reg_w_ixbuf(gspca_dev, 0xe0, sensor->data3, sizeof sensor->data3);

	return 0;
}

static void setmirror(struct gspca_dev *gspca_dev, s32 val)
{
	u8 hflipcmd[8] =
		{0x62, 0x07, 0x63, 0x03, 0x64, 0x00, 0x60, 0x09};

	if (val)
		hflipcmd[3] = 0x01;

	reg_w_buf(gspca_dev, hflipcmd, sizeof hflipcmd);
}

static void seteffect(struct gspca_dev *gspca_dev, s32 val)
{
	int idx = 0;

	switch (val) {
	case V4L2_COLORFX_NONE:
		break;
	case V4L2_COLORFX_BW:
		idx = 2;
		break;
	case V4L2_COLORFX_SEPIA:
		idx = 3;
		break;
	case V4L2_COLORFX_SKETCH:
		idx = 4;
		break;
	case V4L2_COLORFX_NEGATIVE:
		idx = 6;
		break;
	default:
		break;
	}

	reg_w_buf(gspca_dev, effects_table[idx],
				sizeof effects_table[0]);

	if (val == V4L2_COLORFX_SKETCH)
		reg_w(gspca_dev, 0x4aa6);
	else
		reg_w(gspca_dev, 0xfaa6);
}

/* Is this really needed?
 * i added some module parameters for test with some users */
static void poll_sensor(struct gspca_dev *gspca_dev)
{
	static const u8 poll1[] =
		{0x67, 0x05, 0x68, 0x81, 0x69, 0x80, 0x6a, 0x82,
		 0x6b, 0x68, 0x6c, 0x69, 0x72, 0xd9, 0x73, 0x34,
		 0x74, 0x32, 0x75, 0x92, 0x76, 0x00, 0x09, 0x01,
		 0x60, 0x14};
	static const u8 poll2[] =
		{0x67, 0x02, 0x68, 0x71, 0x69, 0x72, 0x72, 0xa9,
		 0x73, 0x02, 0x73, 0x02, 0x60, 0x14};
	static const u8 noise03[] =	/* (some differences / ms-drv) */
		{0xa6, 0x0a, 0xea, 0xcf, 0xbe, 0x26, 0xb1, 0x5f,
		 0xa1, 0xb1, 0xda, 0x6b, 0xdb, 0x98, 0xdf, 0x0c,
		 0xc2, 0x80, 0xc3, 0x10};

	PDEBUG(D_STREAM, "[Sensor requires polling]");
	reg_w_buf(gspca_dev, poll1, sizeof poll1);
	reg_w_buf(gspca_dev, poll2, sizeof poll2);
	reg_w_buf(gspca_dev, noise03, sizeof noise03);
}

static int sd_start(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;
	const struct additional_sensor_data *sensor;
	int i, mode;
	u8 t2[] = { 0x07, 0x00, 0x0d, 0x60, 0x0e, 0x80 };
	static const u8 t3[] =
		{ 0x07, 0x00, 0x88, 0x02, 0x06, 0x00, 0xe7, 0x01 };

	mode = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv;
	switch (mode) {
	case 0:		/* 640x480 (0x00) */
		break;
	case 1:		/* 352x288 */
		t2[1] = 0x40;
		break;
	case 2:		/* 320x240 */
		t2[1] = 0x10;
		break;
	case 3:		/* 176x144 */
		t2[1] = 0x50;
		break;
	default:
/*	case 4:		 * 160x120 */
		t2[1] = 0x20;
		break;
	}

	switch (sd->sensor) {
	case SENSOR_OM6802:
		om6802_sensor_init(gspca_dev);
		break;
	case SENSOR_TAS5130A:
		i = 0;
		for (;;) {
			reg_w_buf(gspca_dev, tas5130a_sensor_init[i],
					 sizeof tas5130a_sensor_init[0]);
			if (i >= ARRAY_SIZE(tas5130a_sensor_init) - 1)
				break;
			i++;
		}
		reg_w(gspca_dev, 0x3c80);
		/* just in case and to keep sync with logs (for mine) */
		reg_w_buf(gspca_dev, tas5130a_sensor_init[i],
				 sizeof tas5130a_sensor_init[0]);
		reg_w(gspca_dev, 0x3c80);
		break;
	}
	sensor = &sensor_data[sd->sensor];
	setfreq(gspca_dev, v4l2_ctrl_g_ctrl(sd->freq));
	reg_r(gspca_dev, 0x0012);
	reg_w_buf(gspca_dev, t2, sizeof t2);
	reg_w_ixbuf(gspca_dev, 0xb3, t3, sizeof t3);
	reg_w(gspca_dev, 0x0013);
	msleep(15);
	reg_w_buf(gspca_dev, sensor->stream, sizeof sensor->stream);
	reg_w_buf(gspca_dev, sensor->stream, sizeof sensor->stream);

	if (sd->sensor == SENSOR_OM6802)
		poll_sensor(gspca_dev);

	return 0;
}

static void sd_stopN(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;

	reg_w_buf(gspca_dev, sensor_data[sd->sensor].stream,
			sizeof sensor_data[sd->sensor].stream);
	reg_w_buf(gspca_dev, sensor_data[sd->sensor].stream,
			sizeof sensor_data[sd->sensor].stream);
	if (sd->sensor == SENSOR_OM6802) {
		msleep(20);
		reg_w(gspca_dev, 0x0309);
	}
#if IS_ENABLED(CONFIG_INPUT)
	/* If the last button state is pressed, release it now! */
	if (sd->button_pressed) {
		input_report_key(gspca_dev->input_dev, KEY_CAMERA, 0);
		input_sync(gspca_dev->input_dev);
		sd->button_pressed = 0;
	}
#endif
}

static void sd_pkt_scan(struct gspca_dev *gspca_dev,
			u8 *data,			/* isoc packet */
			int len)			/* iso packet length */
{
	struct sd *sd = (struct sd *) gspca_dev;
	int pkt_type;

	if (data[0] == 0x5a) {
#if IS_ENABLED(CONFIG_INPUT)
		if (len > 20) {
			u8 state = (data[20] & 0x80) ? 1 : 0;
			if (sd->button_pressed != state) {
				input_report_key(gspca_dev->input_dev,
						 KEY_CAMERA, state);
				input_sync(gspca_dev->input_dev);
				sd->button_pressed = state;
			}
		}
#endif
		/* Control Packet, after this came the header again,
		 * but extra bytes came in the packet before this,
		 * sometimes an EOF arrives, sometimes not... */
		return;
	}
	data += 2;
	len -= 2;
	if (data[0] == 0xff && data[1] == 0xd8)
		pkt_type = FIRST_PACKET;
	else if (data[len - 2] == 0xff && data[len - 1] == 0xd9)
		pkt_type = LAST_PACKET;
	else
		pkt_type = INTER_PACKET;
	gspca_frame_add(gspca_dev, pkt_type, data, len);
}

static int sd_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
{
	struct gspca_dev *gspca_dev =
		container_of(ctrl->handler, struct gspca_dev, ctrl_handler);
	struct sd *sd = (struct sd *)gspca_dev;
	s32 red_gain, blue_gain, green_gain;

	gspca_dev->usb_err = 0;

	switch (ctrl->id) {
	case V4L2_CID_AUTO_WHITE_BALANCE:
		red_gain = reg_r(gspca_dev, 0x0087);
		if (red_gain > 0x40)
			red_gain = 0x40;
		else if (red_gain < 0x10)
			red_gain = 0x10;

		blue_gain = reg_r(gspca_dev, 0x0088);
		if (blue_gain > 0x40)
			blue_gain = 0x40;
		else if (blue_gain < 0x10)
			blue_gain = 0x10;

		green_gain = reg_r(gspca_dev, 0x0089);
		if (green_gain > 0x40)
			green_gain = 0x40;
		else if (green_gain < 0x10)
			green_gain = 0x10;

		sd->gain->val = green_gain;
		sd->red_balance->val = red_gain - green_gain;
		sd->blue_balance->val = blue_gain - green_gain;
		break;
	}
	return 0;
}

static int sd_s_ctrl(struct v4l2_ctrl *ctrl)
{
	struct gspca_dev *gspca_dev =
		container_of(ctrl->handler, struct gspca_dev, ctrl_handler);

	gspca_dev->usb_err = 0;

	if (!gspca_dev->streaming)
		return 0;

	switch (ctrl->id) {
	case V4L2_CID_BRIGHTNESS:
		setbrightness(gspca_dev, ctrl->val);
		break;
	case V4L2_CID_CONTRAST:
		setcontrast(gspca_dev, ctrl->val);
		break;
	case V4L2_CID_SATURATION:
		setcolors(gspca_dev, ctrl->val);
		break;
	case V4L2_CID_GAMMA:
		setgamma(gspca_dev, ctrl->val);
		break;
	case V4L2_CID_HFLIP:
		setmirror(gspca_dev, ctrl->val);
		break;
	case V4L2_CID_SHARPNESS:
		setsharpness(gspca_dev, ctrl->val);
		break;
	case V4L2_CID_POWER_LINE_FREQUENCY:
		setfreq(gspca_dev, ctrl->val);
		break;
	case V4L2_CID_BACKLIGHT_COMPENSATION:
		reg_w(gspca_dev, ctrl->val ? 0xf48e : 0xb48e);
		break;
	case V4L2_CID_AUTO_WHITE_BALANCE:
		setawb_n_RGB(gspca_dev);
		break;
	case V4L2_CID_COLORFX:
		seteffect(gspca_dev, ctrl->val);
		break;
	}
	return gspca_dev->usb_err;
}

static const struct v4l2_ctrl_ops sd_ctrl_ops = {
	.g_volatile_ctrl = sd_g_volatile_ctrl,
	.s_ctrl = sd_s_ctrl,
};

static int sd_init_controls(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *)gspca_dev;
	struct v4l2_ctrl_handler *hdl = &gspca_dev->ctrl_handler;

	gspca_dev->vdev.ctrl_handler = hdl;
	v4l2_ctrl_handler_init(hdl, 12);
	v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
			V4L2_CID_BRIGHTNESS, 0, 14, 1, 8);
	v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
			V4L2_CID_CONTRAST, 0, 0x0d, 1, 7);
	v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
			V4L2_CID_SATURATION, 0, 0xf, 1, 5);
	v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
			V4L2_CID_GAMMA, 0, GAMMA_MAX, 1, 10);
	/* Activate lowlight, some apps dont bring up the
	   backlight_compensation control) */
	v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
			V4L2_CID_BACKLIGHT_COMPENSATION, 0, 1, 1, 1);
	if (sd->sensor == SENSOR_TAS5130A)
		v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
				V4L2_CID_HFLIP, 0, 1, 1, 0);
	sd->awb = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
			V4L2_CID_AUTO_WHITE_BALANCE, 0, 1, 1, 1);
	sd->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
			V4L2_CID_GAIN, 0x10, 0x40, 1, 0x20);
	sd->blue_balance = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
			V4L2_CID_BLUE_BALANCE, -0x30, 0x30, 1, 0);
	sd->red_balance = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
			V4L2_CID_RED_BALANCE, -0x30, 0x30, 1, 0);
	v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
			V4L2_CID_SHARPNESS, 0, 15, 1, 6);
	v4l2_ctrl_new_std_menu(hdl, &sd_ctrl_ops,
			V4L2_CID_COLORFX, V4L2_COLORFX_SKETCH,
			~((1 << V4L2_COLORFX_NONE) |
			  (1 << V4L2_COLORFX_BW) |
			  (1 << V4L2_COLORFX_SEPIA) |
			  (1 << V4L2_COLORFX_SKETCH) |
			  (1 << V4L2_COLORFX_NEGATIVE)),
			V4L2_COLORFX_NONE);
	sd->freq = v4l2_ctrl_new_std_menu(hdl, &sd_ctrl_ops,
			V4L2_CID_POWER_LINE_FREQUENCY,
			V4L2_CID_POWER_LINE_FREQUENCY_60HZ, 1,
			V4L2_CID_POWER_LINE_FREQUENCY_50HZ);

	if (hdl->error) {
		pr_err("Could not initialize controls\n");
		return hdl->error;
	}

	v4l2_ctrl_auto_cluster(4, &sd->awb, 0, true);

	return 0;
}

/* sub-driver description */
static const struct sd_desc sd_desc = {
	.name = MODULE_NAME,
	.config = sd_config,
	.init = sd_init,
	.init_controls = sd_init_controls,
	.start = sd_start,
	.stopN = sd_stopN,
	.pkt_scan = sd_pkt_scan,
#if IS_ENABLED(CONFIG_INPUT)
	.other_input = 1,
#endif
};

/* -- module initialisation -- */
static const struct usb_device_id device_table[] = {
	{USB_DEVICE(0x17a1, 0x0128)},
	{}
};
MODULE_DEVICE_TABLE(usb, device_table);

/* -- device connect -- */
static int sd_probe(struct usb_interface *intf,
		    const struct usb_device_id *id)
{
	return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
			       THIS_MODULE);
}

static struct usb_driver sd_driver = {
	.name = MODULE_NAME,
	.id_table = device_table,
	.probe = sd_probe,
	.disconnect = gspca_disconnect,
#ifdef CONFIG_PM
	.suspend = gspca_suspend,
	.resume = gspca_resume,
	.reset_resume = gspca_resume,
#endif
};

module_usb_driver(sd_driver);