/* Driver for Realtek PCI-Express card reader * * Copyright(c) 2009-2013 Realtek Semiconductor Corp. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2, or (at your option) any * later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see <http://www.gnu.org/licenses/>. * * Author: * Wei WANG <wei_wang@realsil.com.cn> */ #include <linux/pci.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/dma-mapping.h> #include <linux/highmem.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/idr.h> #include <linux/platform_device.h> #include <linux/mfd/core.h> #include <linux/mfd/rtsx_pci.h> #include <asm/unaligned.h> #include "rtsx_pcr.h" static bool msi_en = true; module_param(msi_en, bool, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(msi_en, "Enable MSI"); static DEFINE_IDR(rtsx_pci_idr); static DEFINE_SPINLOCK(rtsx_pci_lock); static struct mfd_cell rtsx_pcr_cells[] = { [RTSX_SD_CARD] = { .name = DRV_NAME_RTSX_PCI_SDMMC, }, [RTSX_MS_CARD] = { .name = DRV_NAME_RTSX_PCI_MS, }, }; static const struct pci_device_id rtsx_pci_ids[] = { { PCI_DEVICE(0x10EC, 0x5209), PCI_CLASS_OTHERS << 16, 0xFF0000 }, { PCI_DEVICE(0x10EC, 0x5229), PCI_CLASS_OTHERS << 16, 0xFF0000 }, { PCI_DEVICE(0x10EC, 0x5289), PCI_CLASS_OTHERS << 16, 0xFF0000 }, { PCI_DEVICE(0x10EC, 0x5227), PCI_CLASS_OTHERS << 16, 0xFF0000 }, { PCI_DEVICE(0x10EC, 0x5249), PCI_CLASS_OTHERS << 16, 0xFF0000 }, { PCI_DEVICE(0x10EC, 0x5287), PCI_CLASS_OTHERS << 16, 0xFF0000 }, { PCI_DEVICE(0x10EC, 0x5286), PCI_CLASS_OTHERS << 16, 0xFF0000 }, { 0, } }; MODULE_DEVICE_TABLE(pci, rtsx_pci_ids); void rtsx_pci_start_run(struct rtsx_pcr *pcr) { /* If pci device removed, don't queue idle work any more */ if (pcr->remove_pci) return; if (pcr->state != PDEV_STAT_RUN) { pcr->state = PDEV_STAT_RUN; if (pcr->ops->enable_auto_blink) pcr->ops->enable_auto_blink(pcr); if (pcr->aspm_en) rtsx_pci_write_config_byte(pcr, LCTLR, 0); } mod_delayed_work(system_wq, &pcr->idle_work, msecs_to_jiffies(200)); } EXPORT_SYMBOL_GPL(rtsx_pci_start_run); int rtsx_pci_write_register(struct rtsx_pcr *pcr, u16 addr, u8 mask, u8 data) { int i; u32 val = HAIMR_WRITE_START; val |= (u32)(addr & 0x3FFF) << 16; val |= (u32)mask << 8; val |= (u32)data; rtsx_pci_writel(pcr, RTSX_HAIMR, val); for (i = 0; i < MAX_RW_REG_CNT; i++) { val = rtsx_pci_readl(pcr, RTSX_HAIMR); if ((val & HAIMR_TRANS_END) == 0) { if (data != (u8)val) return -EIO; return 0; } } return -ETIMEDOUT; } EXPORT_SYMBOL_GPL(rtsx_pci_write_register); int rtsx_pci_read_register(struct rtsx_pcr *pcr, u16 addr, u8 *data) { u32 val = HAIMR_READ_START; int i; val |= (u32)(addr & 0x3FFF) << 16; rtsx_pci_writel(pcr, RTSX_HAIMR, val); for (i = 0; i < MAX_RW_REG_CNT; i++) { val = rtsx_pci_readl(pcr, RTSX_HAIMR); if ((val & HAIMR_TRANS_END) == 0) break; } if (i >= MAX_RW_REG_CNT) return -ETIMEDOUT; if (data) *data = (u8)(val & 0xFF); return 0; } EXPORT_SYMBOL_GPL(rtsx_pci_read_register); int rtsx_pci_write_phy_register(struct rtsx_pcr *pcr, u8 addr, u16 val) { int err, i, finished = 0; u8 tmp; rtsx_pci_init_cmd(pcr); rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, PHYDATA0, 0xFF, (u8)val); rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, PHYDATA1, 0xFF, (u8)(val >> 8)); rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, PHYADDR, 0xFF, addr); rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, PHYRWCTL, 0xFF, 0x81); err = rtsx_pci_send_cmd(pcr, 100); if (err < 0) return err; for (i = 0; i < 100000; i++) { err = rtsx_pci_read_register(pcr, PHYRWCTL, &tmp); if (err < 0) return err; if (!(tmp & 0x80)) { finished = 1; break; } } if (!finished) return -ETIMEDOUT; return 0; } EXPORT_SYMBOL_GPL(rtsx_pci_write_phy_register); int rtsx_pci_read_phy_register(struct rtsx_pcr *pcr, u8 addr, u16 *val) { int err, i, finished = 0; u16 data; u8 *ptr, tmp; rtsx_pci_init_cmd(pcr); rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, PHYADDR, 0xFF, addr); rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, PHYRWCTL, 0xFF, 0x80); err = rtsx_pci_send_cmd(pcr, 100); if (err < 0) return err; for (i = 0; i < 100000; i++) { err = rtsx_pci_read_register(pcr, PHYRWCTL, &tmp); if (err < 0) return err; if (!(tmp & 0x80)) { finished = 1; break; } } if (!finished) return -ETIMEDOUT; rtsx_pci_init_cmd(pcr); rtsx_pci_add_cmd(pcr, READ_REG_CMD, PHYDATA0, 0, 0); rtsx_pci_add_cmd(pcr, READ_REG_CMD, PHYDATA1, 0, 0); err = rtsx_pci_send_cmd(pcr, 100); if (err < 0) return err; ptr = rtsx_pci_get_cmd_data(pcr); data = ((u16)ptr[1] << 8) | ptr[0]; if (val) *val = data; return 0; } EXPORT_SYMBOL_GPL(rtsx_pci_read_phy_register); void rtsx_pci_stop_cmd(struct rtsx_pcr *pcr) { rtsx_pci_writel(pcr, RTSX_HCBCTLR, STOP_CMD); rtsx_pci_writel(pcr, RTSX_HDBCTLR, STOP_DMA); rtsx_pci_write_register(pcr, DMACTL, 0x80, 0x80); rtsx_pci_write_register(pcr, RBCTL, 0x80, 0x80); } EXPORT_SYMBOL_GPL(rtsx_pci_stop_cmd); void rtsx_pci_add_cmd(struct rtsx_pcr *pcr, u8 cmd_type, u16 reg_addr, u8 mask, u8 data) { unsigned long flags; u32 val = 0; u32 *ptr = (u32 *)(pcr->host_cmds_ptr); val |= (u32)(cmd_type & 0x03) << 30; val |= (u32)(reg_addr & 0x3FFF) << 16; val |= (u32)mask << 8; val |= (u32)data; spin_lock_irqsave(&pcr->lock, flags); ptr += pcr->ci; if (pcr->ci < (HOST_CMDS_BUF_LEN / 4)) { put_unaligned_le32(val, ptr); ptr++; pcr->ci++; } spin_unlock_irqrestore(&pcr->lock, flags); } EXPORT_SYMBOL_GPL(rtsx_pci_add_cmd); void rtsx_pci_send_cmd_no_wait(struct rtsx_pcr *pcr) { u32 val = 1 << 31; rtsx_pci_writel(pcr, RTSX_HCBAR, pcr->host_cmds_addr); val |= (u32)(pcr->ci * 4) & 0x00FFFFFF; /* Hardware Auto Response */ val |= 0x40000000; rtsx_pci_writel(pcr, RTSX_HCBCTLR, val); } EXPORT_SYMBOL_GPL(rtsx_pci_send_cmd_no_wait); int rtsx_pci_send_cmd(struct rtsx_pcr *pcr, int timeout) { struct completion trans_done; u32 val = 1 << 31; long timeleft; unsigned long flags; int err = 0; spin_lock_irqsave(&pcr->lock, flags); /* set up data structures for the wakeup system */ pcr->done = &trans_done; pcr->trans_result = TRANS_NOT_READY; init_completion(&trans_done); rtsx_pci_writel(pcr, RTSX_HCBAR, pcr->host_cmds_addr); val |= (u32)(pcr->ci * 4) & 0x00FFFFFF; /* Hardware Auto Response */ val |= 0x40000000; rtsx_pci_writel(pcr, RTSX_HCBCTLR, val); spin_unlock_irqrestore(&pcr->lock, flags); /* Wait for TRANS_OK_INT */ timeleft = wait_for_completion_interruptible_timeout( &trans_done, msecs_to_jiffies(timeout)); if (timeleft <= 0) { dev_dbg(&(pcr->pci->dev), "Timeout (%s %d)\n", __func__, __LINE__); err = -ETIMEDOUT; goto finish_send_cmd; } spin_lock_irqsave(&pcr->lock, flags); if (pcr->trans_result == TRANS_RESULT_FAIL) err = -EINVAL; else if (pcr->trans_result == TRANS_RESULT_OK) err = 0; else if (pcr->trans_result == TRANS_NO_DEVICE) err = -ENODEV; spin_unlock_irqrestore(&pcr->lock, flags); finish_send_cmd: spin_lock_irqsave(&pcr->lock, flags); pcr->done = NULL; spin_unlock_irqrestore(&pcr->lock, flags); if ((err < 0) && (err != -ENODEV)) rtsx_pci_stop_cmd(pcr); if (pcr->finish_me) complete(pcr->finish_me); return err; } EXPORT_SYMBOL_GPL(rtsx_pci_send_cmd); static void rtsx_pci_add_sg_tbl(struct rtsx_pcr *pcr, dma_addr_t addr, unsigned int len, int end) { u64 *ptr = (u64 *)(pcr->host_sg_tbl_ptr) + pcr->sgi; u64 val; u8 option = SG_VALID | SG_TRANS_DATA; dev_dbg(&(pcr->pci->dev), "DMA addr: 0x%x, Len: 0x%x\n", (unsigned int)addr, len); if (end) option |= SG_END; val = ((u64)addr << 32) | ((u64)len << 12) | option; put_unaligned_le64(val, ptr); pcr->sgi++; } int rtsx_pci_transfer_data(struct rtsx_pcr *pcr, struct scatterlist *sglist, int num_sg, bool read, int timeout) { struct completion trans_done; u8 dir; int err = 0, i, count; long timeleft; unsigned long flags; struct scatterlist *sg; enum dma_data_direction dma_dir; u32 val; dma_addr_t addr; unsigned int len; dev_dbg(&(pcr->pci->dev), "--> %s: num_sg = %d\n", __func__, num_sg); /* don't transfer data during abort processing */ if (pcr->remove_pci) return -EINVAL; if ((sglist == NULL) || (num_sg <= 0)) return -EINVAL; if (read) { dir = DEVICE_TO_HOST; dma_dir = DMA_FROM_DEVICE; } else { dir = HOST_TO_DEVICE; dma_dir = DMA_TO_DEVICE; } count = dma_map_sg(&(pcr->pci->dev), sglist, num_sg, dma_dir); if (count < 1) { dev_err(&(pcr->pci->dev), "scatterlist map failed\n"); return -EINVAL; } dev_dbg(&(pcr->pci->dev), "DMA mapping count: %d\n", count); val = ((u32)(dir & 0x01) << 29) | TRIG_DMA | ADMA_MODE; pcr->sgi = 0; for_each_sg(sglist, sg, count, i) { addr = sg_dma_address(sg); len = sg_dma_len(sg); rtsx_pci_add_sg_tbl(pcr, addr, len, i == count - 1); } spin_lock_irqsave(&pcr->lock, flags); pcr->done = &trans_done; pcr->trans_result = TRANS_NOT_READY; init_completion(&trans_done); rtsx_pci_writel(pcr, RTSX_HDBAR, pcr->host_sg_tbl_addr); rtsx_pci_writel(pcr, RTSX_HDBCTLR, val); spin_unlock_irqrestore(&pcr->lock, flags); timeleft = wait_for_completion_interruptible_timeout( &trans_done, msecs_to_jiffies(timeout)); if (timeleft <= 0) { dev_dbg(&(pcr->pci->dev), "Timeout (%s %d)\n", __func__, __LINE__); err = -ETIMEDOUT; goto out; } spin_lock_irqsave(&pcr->lock, flags); if (pcr->trans_result == TRANS_RESULT_FAIL) err = -EINVAL; else if (pcr->trans_result == TRANS_NO_DEVICE) err = -ENODEV; spin_unlock_irqrestore(&pcr->lock, flags); out: spin_lock_irqsave(&pcr->lock, flags); pcr->done = NULL; spin_unlock_irqrestore(&pcr->lock, flags); dma_unmap_sg(&(pcr->pci->dev), sglist, num_sg, dma_dir); if ((err < 0) && (err != -ENODEV)) rtsx_pci_stop_cmd(pcr); if (pcr->finish_me) complete(pcr->finish_me); return err; } EXPORT_SYMBOL_GPL(rtsx_pci_transfer_data); int rtsx_pci_read_ppbuf(struct rtsx_pcr *pcr, u8 *buf, int buf_len) { int err; int i, j; u16 reg; u8 *ptr; if (buf_len > 512) buf_len = 512; ptr = buf; reg = PPBUF_BASE2; for (i = 0; i < buf_len / 256; i++) { rtsx_pci_init_cmd(pcr); for (j = 0; j < 256; j++) rtsx_pci_add_cmd(pcr, READ_REG_CMD, reg++, 0, 0); err = rtsx_pci_send_cmd(pcr, 250); if (err < 0) return err; memcpy(ptr, rtsx_pci_get_cmd_data(pcr), 256); ptr += 256; } if (buf_len % 256) { rtsx_pci_init_cmd(pcr); for (j = 0; j < buf_len % 256; j++) rtsx_pci_add_cmd(pcr, READ_REG_CMD, reg++, 0, 0); err = rtsx_pci_send_cmd(pcr, 250); if (err < 0) return err; } memcpy(ptr, rtsx_pci_get_cmd_data(pcr), buf_len % 256); return 0; } EXPORT_SYMBOL_GPL(rtsx_pci_read_ppbuf); int rtsx_pci_write_ppbuf(struct rtsx_pcr *pcr, u8 *buf, int buf_len) { int err; int i, j; u16 reg; u8 *ptr; if (buf_len > 512) buf_len = 512; ptr = buf; reg = PPBUF_BASE2; for (i = 0; i < buf_len / 256; i++) { rtsx_pci_init_cmd(pcr); for (j = 0; j < 256; j++) { rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, reg++, 0xFF, *ptr); ptr++; } err = rtsx_pci_send_cmd(pcr, 250); if (err < 0) return err; } if (buf_len % 256) { rtsx_pci_init_cmd(pcr); for (j = 0; j < buf_len % 256; j++) { rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, reg++, 0xFF, *ptr); ptr++; } err = rtsx_pci_send_cmd(pcr, 250); if (err < 0) return err; } return 0; } EXPORT_SYMBOL_GPL(rtsx_pci_write_ppbuf); static int rtsx_pci_set_pull_ctl(struct rtsx_pcr *pcr, const u32 *tbl) { int err; rtsx_pci_init_cmd(pcr); while (*tbl & 0xFFFF0000) { rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, (u16)(*tbl >> 16), 0xFF, (u8)(*tbl)); tbl++; } err = rtsx_pci_send_cmd(pcr, 100); if (err < 0) return err; return 0; } int rtsx_pci_card_pull_ctl_enable(struct rtsx_pcr *pcr, int card) { const u32 *tbl; if (card == RTSX_SD_CARD) tbl = pcr->sd_pull_ctl_enable_tbl; else if (card == RTSX_MS_CARD) tbl = pcr->ms_pull_ctl_enable_tbl; else return -EINVAL; return rtsx_pci_set_pull_ctl(pcr, tbl); } EXPORT_SYMBOL_GPL(rtsx_pci_card_pull_ctl_enable); int rtsx_pci_card_pull_ctl_disable(struct rtsx_pcr *pcr, int card) { const u32 *tbl; if (card == RTSX_SD_CARD) tbl = pcr->sd_pull_ctl_disable_tbl; else if (card == RTSX_MS_CARD) tbl = pcr->ms_pull_ctl_disable_tbl; else return -EINVAL; return rtsx_pci_set_pull_ctl(pcr, tbl); } EXPORT_SYMBOL_GPL(rtsx_pci_card_pull_ctl_disable); static void rtsx_pci_enable_bus_int(struct rtsx_pcr *pcr) { pcr->bier = TRANS_OK_INT_EN | TRANS_FAIL_INT_EN | SD_INT_EN; if (pcr->num_slots > 1) pcr->bier |= MS_INT_EN; /* Enable Bus Interrupt */ rtsx_pci_writel(pcr, RTSX_BIER, pcr->bier); dev_dbg(&(pcr->pci->dev), "RTSX_BIER: 0x%08x\n", pcr->bier); } static inline u8 double_ssc_depth(u8 depth) { return ((depth > 1) ? (depth - 1) : depth); } static u8 revise_ssc_depth(u8 ssc_depth, u8 div) { if (div > CLK_DIV_1) { if (ssc_depth > (div - 1)) ssc_depth -= (div - 1); else ssc_depth = SSC_DEPTH_4M; } return ssc_depth; } int rtsx_pci_switch_clock(struct rtsx_pcr *pcr, unsigned int card_clock, u8 ssc_depth, bool initial_mode, bool double_clk, bool vpclk) { int err, clk; u8 n, clk_divider, mcu_cnt, div; u8 depth[] = { [RTSX_SSC_DEPTH_4M] = SSC_DEPTH_4M, [RTSX_SSC_DEPTH_2M] = SSC_DEPTH_2M, [RTSX_SSC_DEPTH_1M] = SSC_DEPTH_1M, [RTSX_SSC_DEPTH_500K] = SSC_DEPTH_500K, [RTSX_SSC_DEPTH_250K] = SSC_DEPTH_250K, }; if (initial_mode) { /* We use 250k(around) here, in initial stage */ clk_divider = SD_CLK_DIVIDE_128; card_clock = 30000000; } else { clk_divider = SD_CLK_DIVIDE_0; } err = rtsx_pci_write_register(pcr, SD_CFG1, SD_CLK_DIVIDE_MASK, clk_divider); if (err < 0) return err; card_clock /= 1000000; dev_dbg(&(pcr->pci->dev), "Switch card clock to %dMHz\n", card_clock); clk = card_clock; if (!initial_mode && double_clk) clk = card_clock * 2; dev_dbg(&(pcr->pci->dev), "Internal SSC clock: %dMHz (cur_clock = %d)\n", clk, pcr->cur_clock); if (clk == pcr->cur_clock) return 0; if (pcr->ops->conv_clk_and_div_n) n = (u8)pcr->ops->conv_clk_and_div_n(clk, CLK_TO_DIV_N); else n = (u8)(clk - 2); if ((clk <= 2) || (n > MAX_DIV_N_PCR)) return -EINVAL; mcu_cnt = (u8)(125/clk + 3); if (mcu_cnt > 15) mcu_cnt = 15; /* Make sure that the SSC clock div_n is not less than MIN_DIV_N_PCR */ div = CLK_DIV_1; while ((n < MIN_DIV_N_PCR) && (div < CLK_DIV_8)) { if (pcr->ops->conv_clk_and_div_n) { int dbl_clk = pcr->ops->conv_clk_and_div_n(n, DIV_N_TO_CLK) * 2; n = (u8)pcr->ops->conv_clk_and_div_n(dbl_clk, CLK_TO_DIV_N); } else { n = (n + 2) * 2 - 2; } div++; } dev_dbg(&(pcr->pci->dev), "n = %d, div = %d\n", n, div); ssc_depth = depth[ssc_depth]; if (double_clk) ssc_depth = double_ssc_depth(ssc_depth); ssc_depth = revise_ssc_depth(ssc_depth, div); dev_dbg(&(pcr->pci->dev), "ssc_depth = %d\n", ssc_depth); rtsx_pci_init_cmd(pcr); rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CLK_CTL, CLK_LOW_FREQ, CLK_LOW_FREQ); rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CLK_DIV, 0xFF, (div << 4) | mcu_cnt); rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SSC_CTL1, SSC_RSTB, 0); rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SSC_CTL2, SSC_DEPTH_MASK, ssc_depth); rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SSC_DIV_N_0, 0xFF, n); rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SSC_CTL1, SSC_RSTB, SSC_RSTB); if (vpclk) { rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SD_VPCLK0_CTL, PHASE_NOT_RESET, 0); rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SD_VPCLK0_CTL, PHASE_NOT_RESET, PHASE_NOT_RESET); } err = rtsx_pci_send_cmd(pcr, 2000); if (err < 0) return err; /* Wait SSC clock stable */ udelay(10); err = rtsx_pci_write_register(pcr, CLK_CTL, CLK_LOW_FREQ, 0); if (err < 0) return err; pcr->cur_clock = clk; return 0; } EXPORT_SYMBOL_GPL(rtsx_pci_switch_clock); int rtsx_pci_card_power_on(struct rtsx_pcr *pcr, int card) { if (pcr->ops->card_power_on) return pcr->ops->card_power_on(pcr, card); return 0; } EXPORT_SYMBOL_GPL(rtsx_pci_card_power_on); int rtsx_pci_card_power_off(struct rtsx_pcr *pcr, int card) { if (pcr->ops->card_power_off) return pcr->ops->card_power_off(pcr, card); return 0; } EXPORT_SYMBOL_GPL(rtsx_pci_card_power_off); int rtsx_pci_card_exclusive_check(struct rtsx_pcr *pcr, int card) { unsigned int cd_mask[] = { [RTSX_SD_CARD] = SD_EXIST, [RTSX_MS_CARD] = MS_EXIST }; if (!(pcr->flags & PCR_MS_PMOS)) { /* When using single PMOS, accessing card is not permitted * if the existing card is not the designated one. */ if (pcr->card_exist & (~cd_mask[card])) return -EIO; } return 0; } EXPORT_SYMBOL_GPL(rtsx_pci_card_exclusive_check); int rtsx_pci_switch_output_voltage(struct rtsx_pcr *pcr, u8 voltage) { if (pcr->ops->switch_output_voltage) return pcr->ops->switch_output_voltage(pcr, voltage); return 0; } EXPORT_SYMBOL_GPL(rtsx_pci_switch_output_voltage); unsigned int rtsx_pci_card_exist(struct rtsx_pcr *pcr) { unsigned int val; val = rtsx_pci_readl(pcr, RTSX_BIPR); if (pcr->ops->cd_deglitch) val = pcr->ops->cd_deglitch(pcr); return val; } EXPORT_SYMBOL_GPL(rtsx_pci_card_exist); void rtsx_pci_complete_unfinished_transfer(struct rtsx_pcr *pcr) { struct completion finish; pcr->finish_me = &finish; init_completion(&finish); if (pcr->done) complete(pcr->done); if (!pcr->remove_pci) rtsx_pci_stop_cmd(pcr); wait_for_completion_interruptible_timeout(&finish, msecs_to_jiffies(2)); pcr->finish_me = NULL; } EXPORT_SYMBOL_GPL(rtsx_pci_complete_unfinished_transfer); static void rtsx_pci_card_detect(struct work_struct *work) { struct delayed_work *dwork; struct rtsx_pcr *pcr; unsigned long flags; unsigned int card_detect = 0, card_inserted, card_removed; u32 irq_status; dwork = to_delayed_work(work); pcr = container_of(dwork, struct rtsx_pcr, carddet_work); dev_dbg(&(pcr->pci->dev), "--> %s\n", __func__); mutex_lock(&pcr->pcr_mutex); spin_lock_irqsave(&pcr->lock, flags); irq_status = rtsx_pci_readl(pcr, RTSX_BIPR); dev_dbg(&(pcr->pci->dev), "irq_status: 0x%08x\n", irq_status); irq_status &= CARD_EXIST; card_inserted = pcr->card_inserted & irq_status; card_removed = pcr->card_removed; pcr->card_inserted = 0; pcr->card_removed = 0; spin_unlock_irqrestore(&pcr->lock, flags); if (card_inserted || card_removed) { dev_dbg(&(pcr->pci->dev), "card_inserted: 0x%x, card_removed: 0x%x\n", card_inserted, card_removed); if (pcr->ops->cd_deglitch) card_inserted = pcr->ops->cd_deglitch(pcr); card_detect = card_inserted | card_removed; pcr->card_exist |= card_inserted; pcr->card_exist &= ~card_removed; } mutex_unlock(&pcr->pcr_mutex); if ((card_detect & SD_EXIST) && pcr->slots[RTSX_SD_CARD].card_event) pcr->slots[RTSX_SD_CARD].card_event( pcr->slots[RTSX_SD_CARD].p_dev); if ((card_detect & MS_EXIST) && pcr->slots[RTSX_MS_CARD].card_event) pcr->slots[RTSX_MS_CARD].card_event( pcr->slots[RTSX_MS_CARD].p_dev); } static irqreturn_t rtsx_pci_isr(int irq, void *dev_id) { struct rtsx_pcr *pcr = dev_id; u32 int_reg; if (!pcr) return IRQ_NONE; spin_lock(&pcr->lock); int_reg = rtsx_pci_readl(pcr, RTSX_BIPR); /* Clear interrupt flag */ rtsx_pci_writel(pcr, RTSX_BIPR, int_reg); if ((int_reg & pcr->bier) == 0) { spin_unlock(&pcr->lock); return IRQ_NONE; } if (int_reg == 0xFFFFFFFF) { spin_unlock(&pcr->lock); return IRQ_HANDLED; } int_reg &= (pcr->bier | 0x7FFFFF); if (int_reg & SD_INT) { if (int_reg & SD_EXIST) { pcr->card_inserted |= SD_EXIST; } else { pcr->card_removed |= SD_EXIST; pcr->card_inserted &= ~SD_EXIST; } } if (int_reg & MS_INT) { if (int_reg & MS_EXIST) { pcr->card_inserted |= MS_EXIST; } else { pcr->card_removed |= MS_EXIST; pcr->card_inserted &= ~MS_EXIST; } } if (int_reg & (NEED_COMPLETE_INT | DELINK_INT)) { if (int_reg & (TRANS_FAIL_INT | DELINK_INT)) { pcr->trans_result = TRANS_RESULT_FAIL; if (pcr->done) complete(pcr->done); } else if (int_reg & TRANS_OK_INT) { pcr->trans_result = TRANS_RESULT_OK; if (pcr->done) complete(pcr->done); } } if (pcr->card_inserted || pcr->card_removed) schedule_delayed_work(&pcr->carddet_work, msecs_to_jiffies(200)); spin_unlock(&pcr->lock); return IRQ_HANDLED; } static int rtsx_pci_acquire_irq(struct rtsx_pcr *pcr) { dev_info(&(pcr->pci->dev), "%s: pcr->msi_en = %d, pci->irq = %d\n", __func__, pcr->msi_en, pcr->pci->irq); if (request_irq(pcr->pci->irq, rtsx_pci_isr, pcr->msi_en ? 0 : IRQF_SHARED, DRV_NAME_RTSX_PCI, pcr)) { dev_err(&(pcr->pci->dev), "rtsx_sdmmc: unable to grab IRQ %d, disabling device\n", pcr->pci->irq); return -1; } pcr->irq = pcr->pci->irq; pci_intx(pcr->pci, !pcr->msi_en); return 0; } static void rtsx_pci_idle_work(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct rtsx_pcr *pcr = container_of(dwork, struct rtsx_pcr, idle_work); dev_dbg(&(pcr->pci->dev), "--> %s\n", __func__); mutex_lock(&pcr->pcr_mutex); pcr->state = PDEV_STAT_IDLE; if (pcr->ops->disable_auto_blink) pcr->ops->disable_auto_blink(pcr); if (pcr->ops->turn_off_led) pcr->ops->turn_off_led(pcr); if (pcr->aspm_en) rtsx_pci_write_config_byte(pcr, LCTLR, pcr->aspm_en); mutex_unlock(&pcr->pcr_mutex); } static void rtsx_pci_power_off(struct rtsx_pcr *pcr, u8 pm_state) { if (pcr->ops->turn_off_led) pcr->ops->turn_off_led(pcr); rtsx_pci_writel(pcr, RTSX_BIER, 0); pcr->bier = 0; rtsx_pci_write_register(pcr, PETXCFG, 0x08, 0x08); rtsx_pci_write_register(pcr, HOST_SLEEP_STATE, 0x03, pm_state); if (pcr->ops->force_power_down) pcr->ops->force_power_down(pcr, pm_state); } static int rtsx_pci_init_hw(struct rtsx_pcr *pcr) { int err; rtsx_pci_writel(pcr, RTSX_HCBAR, pcr->host_cmds_addr); rtsx_pci_enable_bus_int(pcr); /* Power on SSC */ err = rtsx_pci_write_register(pcr, FPDCTL, SSC_POWER_DOWN, 0); if (err < 0) return err; /* Wait SSC power stable */ udelay(200); if (pcr->ops->optimize_phy) { err = pcr->ops->optimize_phy(pcr); if (err < 0) return err; } rtsx_pci_init_cmd(pcr); /* Set mcu_cnt to 7 to ensure data can be sampled properly */ rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CLK_DIV, 0x07, 0x07); rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, HOST_SLEEP_STATE, 0x03, 0x00); /* Disable card clock */ rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CARD_CLK_EN, 0x1E, 0); /* Reset delink mode */ rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CHANGE_LINK_STATE, 0x0A, 0); /* Card driving select */ rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CARD_DRIVE_SEL, 0xFF, pcr->card_drive_sel); /* Enable SSC Clock */ rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SSC_CTL1, 0xFF, SSC_8X_EN | SSC_SEL_4M); rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SSC_CTL2, 0xFF, 0x12); /* Disable cd_pwr_save */ rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CHANGE_LINK_STATE, 0x16, 0x10); /* Clear Link Ready Interrupt */ rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, IRQSTAT0, LINK_RDY_INT, LINK_RDY_INT); /* Enlarge the estimation window of PERST# glitch * to reduce the chance of invalid card interrupt */ rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, PERST_GLITCH_WIDTH, 0xFF, 0x80); /* Update RC oscillator to 400k * bit[0] F_HIGH: for RC oscillator, Rst_value is 1'b1 * 1: 2M 0: 400k */ rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, RCCTL, 0x01, 0x00); /* Set interrupt write clear * bit 1: U_elbi_if_rd_clr_en * 1: Enable ELBI interrupt[31:22] & [7:0] flag read clear * 0: ELBI interrupt flag[31:22] & [7:0] only can be write clear */ rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, NFTS_TX_CTRL, 0x02, 0); err = rtsx_pci_send_cmd(pcr, 100); if (err < 0) return err; rtsx_pci_write_config_byte(pcr, LCTLR, 0); /* Enable clk_request_n to enable clock power management */ rtsx_pci_write_config_byte(pcr, 0x81, 1); /* Enter L1 when host tx idle */ rtsx_pci_write_config_byte(pcr, 0x70F, 0x5B); if (pcr->ops->extra_init_hw) { err = pcr->ops->extra_init_hw(pcr); if (err < 0) return err; } /* No CD interrupt if probing driver with card inserted. * So we need to initialize pcr->card_exist here. */ if (pcr->ops->cd_deglitch) pcr->card_exist = pcr->ops->cd_deglitch(pcr); else pcr->card_exist = rtsx_pci_readl(pcr, RTSX_BIPR) & CARD_EXIST; return 0; } static int rtsx_pci_init_chip(struct rtsx_pcr *pcr) { int err; spin_lock_init(&pcr->lock); mutex_init(&pcr->pcr_mutex); switch (PCI_PID(pcr)) { default: case 0x5209: rts5209_init_params(pcr); break; case 0x5229: rts5229_init_params(pcr); break; case 0x5289: rtl8411_init_params(pcr); break; case 0x5227: rts5227_init_params(pcr); break; case 0x5249: rts5249_init_params(pcr); break; case 0x5287: rtl8411b_init_params(pcr); break; case 0x5286: rtl8402_init_params(pcr); break; } dev_dbg(&(pcr->pci->dev), "PID: 0x%04x, IC version: 0x%02x\n", PCI_PID(pcr), pcr->ic_version); pcr->slots = kcalloc(pcr->num_slots, sizeof(struct rtsx_slot), GFP_KERNEL); if (!pcr->slots) return -ENOMEM; if (pcr->ops->fetch_vendor_settings) pcr->ops->fetch_vendor_settings(pcr); dev_dbg(&(pcr->pci->dev), "pcr->aspm_en = 0x%x\n", pcr->aspm_en); dev_dbg(&(pcr->pci->dev), "pcr->sd30_drive_sel_1v8 = 0x%x\n", pcr->sd30_drive_sel_1v8); dev_dbg(&(pcr->pci->dev), "pcr->sd30_drive_sel_3v3 = 0x%x\n", pcr->sd30_drive_sel_3v3); dev_dbg(&(pcr->pci->dev), "pcr->card_drive_sel = 0x%x\n", pcr->card_drive_sel); dev_dbg(&(pcr->pci->dev), "pcr->flags = 0x%x\n", pcr->flags); pcr->state = PDEV_STAT_IDLE; err = rtsx_pci_init_hw(pcr); if (err < 0) { kfree(pcr->slots); return err; } return 0; } static int rtsx_pci_probe(struct pci_dev *pcidev, const struct pci_device_id *id) { struct rtsx_pcr *pcr; struct pcr_handle *handle; u32 base, len; int ret, i; dev_dbg(&(pcidev->dev), ": Realtek PCI-E Card Reader found at %s [%04x:%04x] (rev %x)\n", pci_name(pcidev), (int)pcidev->vendor, (int)pcidev->device, (int)pcidev->revision); ret = pci_set_dma_mask(pcidev, DMA_BIT_MASK(32)); if (ret < 0) return ret; ret = pci_enable_device(pcidev); if (ret) return ret; ret = pci_request_regions(pcidev, DRV_NAME_RTSX_PCI); if (ret) goto disable; pcr = kzalloc(sizeof(*pcr), GFP_KERNEL); if (!pcr) { ret = -ENOMEM; goto release_pci; } handle = kzalloc(sizeof(*handle), GFP_KERNEL); if (!handle) { ret = -ENOMEM; goto free_pcr; } handle->pcr = pcr; idr_preload(GFP_KERNEL); spin_lock(&rtsx_pci_lock); ret = idr_alloc(&rtsx_pci_idr, pcr, 0, 0, GFP_NOWAIT); if (ret >= 0) pcr->id = ret; spin_unlock(&rtsx_pci_lock); idr_preload_end(); if (ret < 0) goto free_handle; pcr->pci = pcidev; dev_set_drvdata(&pcidev->dev, handle); len = pci_resource_len(pcidev, 0); base = pci_resource_start(pcidev, 0); pcr->remap_addr = ioremap_nocache(base, len); if (!pcr->remap_addr) { ret = -ENOMEM; goto free_handle; } pcr->rtsx_resv_buf = dma_alloc_coherent(&(pcidev->dev), RTSX_RESV_BUF_LEN, &(pcr->rtsx_resv_buf_addr), GFP_KERNEL); if (pcr->rtsx_resv_buf == NULL) { ret = -ENXIO; goto unmap; } pcr->host_cmds_ptr = pcr->rtsx_resv_buf; pcr->host_cmds_addr = pcr->rtsx_resv_buf_addr; pcr->host_sg_tbl_ptr = pcr->rtsx_resv_buf + HOST_CMDS_BUF_LEN; pcr->host_sg_tbl_addr = pcr->rtsx_resv_buf_addr + HOST_CMDS_BUF_LEN; pcr->card_inserted = 0; pcr->card_removed = 0; INIT_DELAYED_WORK(&pcr->carddet_work, rtsx_pci_card_detect); INIT_DELAYED_WORK(&pcr->idle_work, rtsx_pci_idle_work); pcr->msi_en = msi_en; if (pcr->msi_en) { ret = pci_enable_msi(pcidev); if (ret < 0) pcr->msi_en = false; } ret = rtsx_pci_acquire_irq(pcr); if (ret < 0) goto disable_msi; pci_set_master(pcidev); synchronize_irq(pcr->irq); ret = rtsx_pci_init_chip(pcr); if (ret < 0) goto disable_irq; for (i = 0; i < ARRAY_SIZE(rtsx_pcr_cells); i++) { rtsx_pcr_cells[i].platform_data = handle; rtsx_pcr_cells[i].pdata_size = sizeof(*handle); } ret = mfd_add_devices(&pcidev->dev, pcr->id, rtsx_pcr_cells, ARRAY_SIZE(rtsx_pcr_cells), NULL, 0, NULL); if (ret < 0) goto disable_irq; schedule_delayed_work(&pcr->idle_work, msecs_to_jiffies(200)); return 0; disable_irq: free_irq(pcr->irq, (void *)pcr); disable_msi: if (pcr->msi_en) pci_disable_msi(pcr->pci); dma_free_coherent(&(pcr->pci->dev), RTSX_RESV_BUF_LEN, pcr->rtsx_resv_buf, pcr->rtsx_resv_buf_addr); unmap: iounmap(pcr->remap_addr); free_handle: kfree(handle); free_pcr: kfree(pcr); release_pci: pci_release_regions(pcidev); disable: pci_disable_device(pcidev); return ret; } static void rtsx_pci_remove(struct pci_dev *pcidev) { struct pcr_handle *handle = pci_get_drvdata(pcidev); struct rtsx_pcr *pcr = handle->pcr; pcr->remove_pci = true; /* Disable interrupts at the pcr level */ spin_lock_irq(&pcr->lock); rtsx_pci_writel(pcr, RTSX_BIER, 0); pcr->bier = 0; spin_unlock_irq(&pcr->lock); cancel_delayed_work_sync(&pcr->carddet_work); cancel_delayed_work_sync(&pcr->idle_work); mfd_remove_devices(&pcidev->dev); dma_free_coherent(&(pcr->pci->dev), RTSX_RESV_BUF_LEN, pcr->rtsx_resv_buf, pcr->rtsx_resv_buf_addr); free_irq(pcr->irq, (void *)pcr); if (pcr->msi_en) pci_disable_msi(pcr->pci); iounmap(pcr->remap_addr); pci_release_regions(pcidev); pci_disable_device(pcidev); spin_lock(&rtsx_pci_lock); idr_remove(&rtsx_pci_idr, pcr->id); spin_unlock(&rtsx_pci_lock); kfree(pcr->slots); kfree(pcr); kfree(handle); dev_dbg(&(pcidev->dev), ": Realtek PCI-E Card Reader at %s [%04x:%04x] has been removed\n", pci_name(pcidev), (int)pcidev->vendor, (int)pcidev->device); } #ifdef CONFIG_PM static int rtsx_pci_suspend(struct pci_dev *pcidev, pm_message_t state) { struct pcr_handle *handle; struct rtsx_pcr *pcr; dev_dbg(&(pcidev->dev), "--> %s\n", __func__); handle = pci_get_drvdata(pcidev); pcr = handle->pcr; cancel_delayed_work(&pcr->carddet_work); cancel_delayed_work(&pcr->idle_work); mutex_lock(&pcr->pcr_mutex); rtsx_pci_power_off(pcr, HOST_ENTER_S3); pci_save_state(pcidev); pci_enable_wake(pcidev, pci_choose_state(pcidev, state), 0); pci_disable_device(pcidev); pci_set_power_state(pcidev, pci_choose_state(pcidev, state)); mutex_unlock(&pcr->pcr_mutex); return 0; } static int rtsx_pci_resume(struct pci_dev *pcidev) { struct pcr_handle *handle; struct rtsx_pcr *pcr; int ret = 0; dev_dbg(&(pcidev->dev), "--> %s\n", __func__); handle = pci_get_drvdata(pcidev); pcr = handle->pcr; mutex_lock(&pcr->pcr_mutex); pci_set_power_state(pcidev, PCI_D0); pci_restore_state(pcidev); ret = pci_enable_device(pcidev); if (ret) goto out; pci_set_master(pcidev); ret = rtsx_pci_write_register(pcr, HOST_SLEEP_STATE, 0x03, 0x00); if (ret) goto out; ret = rtsx_pci_init_hw(pcr); if (ret) goto out; schedule_delayed_work(&pcr->idle_work, msecs_to_jiffies(200)); out: mutex_unlock(&pcr->pcr_mutex); return ret; } static void rtsx_pci_shutdown(struct pci_dev *pcidev) { struct pcr_handle *handle; struct rtsx_pcr *pcr; dev_dbg(&(pcidev->dev), "--> %s\n", __func__); handle = pci_get_drvdata(pcidev); pcr = handle->pcr; rtsx_pci_power_off(pcr, HOST_ENTER_S1); pci_disable_device(pcidev); } #else /* CONFIG_PM */ #define rtsx_pci_suspend NULL #define rtsx_pci_resume NULL #define rtsx_pci_shutdown NULL #endif /* CONFIG_PM */ static struct pci_driver rtsx_pci_driver = { .name = DRV_NAME_RTSX_PCI, .id_table = rtsx_pci_ids, .probe = rtsx_pci_probe, .remove = rtsx_pci_remove, .suspend = rtsx_pci_suspend, .resume = rtsx_pci_resume, .shutdown = rtsx_pci_shutdown, }; module_pci_driver(rtsx_pci_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Wei WANG <wei_wang@realsil.com.cn>"); MODULE_DESCRIPTION("Realtek PCI-E Card Reader Driver");