/* * Simple MTD partitioning layer * * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net> * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de> * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * */ #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/list.h> #include <linux/kmod.h> #include <linux/mtd/mtd.h> #include <linux/mtd/partitions.h> #include <linux/err.h> #include "mtdcore.h" /* Our partition linked list */ static LIST_HEAD(mtd_partitions); static DEFINE_MUTEX(mtd_partitions_mutex); /* Our partition node structure */ struct mtd_part { struct mtd_info mtd; struct mtd_info *master; uint64_t offset; struct list_head list; }; /* * Given a pointer to the MTD object in the mtd_part structure, we can retrieve * the pointer to that structure with this macro. */ #define PART(x) ((struct mtd_part *)(x)) /* * MTD methods which simply translate the effective address and pass through * to the _real_ device. */ static int part_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct mtd_part *part = PART(mtd); struct mtd_ecc_stats stats; int res; stats = part->master->ecc_stats; res = part->master->_read(part->master, from + part->offset, len, retlen, buf); if (unlikely(mtd_is_eccerr(res))) mtd->ecc_stats.failed += part->master->ecc_stats.failed - stats.failed; else mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected; return res; } static int part_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, void **virt, resource_size_t *phys) { struct mtd_part *part = PART(mtd); return part->master->_point(part->master, from + part->offset, len, retlen, virt, phys); } static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len) { struct mtd_part *part = PART(mtd); return part->master->_unpoint(part->master, from + part->offset, len); } static unsigned long part_get_unmapped_area(struct mtd_info *mtd, unsigned long len, unsigned long offset, unsigned long flags) { struct mtd_part *part = PART(mtd); offset += part->offset; return part->master->_get_unmapped_area(part->master, len, offset, flags); } static int part_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { struct mtd_part *part = PART(mtd); int res; if (from >= mtd->size) return -EINVAL; if (ops->datbuf && from + ops->len > mtd->size) return -EINVAL; /* * If OOB is also requested, make sure that we do not read past the end * of this partition. */ if (ops->oobbuf) { size_t len, pages; if (ops->mode == MTD_OPS_AUTO_OOB) len = mtd->oobavail; else len = mtd->oobsize; pages = mtd_div_by_ws(mtd->size, mtd); pages -= mtd_div_by_ws(from, mtd); if (ops->ooboffs + ops->ooblen > pages * len) return -EINVAL; } res = part->master->_read_oob(part->master, from + part->offset, ops); if (unlikely(res)) { if (mtd_is_bitflip(res)) mtd->ecc_stats.corrected++; if (mtd_is_eccerr(res)) mtd->ecc_stats.failed++; } return res; } static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct mtd_part *part = PART(mtd); return part->master->_read_user_prot_reg(part->master, from, len, retlen, buf); } static int part_get_user_prot_info(struct mtd_info *mtd, struct otp_info *buf, size_t len) { struct mtd_part *part = PART(mtd); return part->master->_get_user_prot_info(part->master, buf, len); } static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct mtd_part *part = PART(mtd); return part->master->_read_fact_prot_reg(part->master, from, len, retlen, buf); } static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf, size_t len) { struct mtd_part *part = PART(mtd); return part->master->_get_fact_prot_info(part->master, buf, len); } static int part_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { struct mtd_part *part = PART(mtd); return part->master->_write(part->master, to + part->offset, len, retlen, buf); } static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { struct mtd_part *part = PART(mtd); return part->master->_panic_write(part->master, to + part->offset, len, retlen, buf); } static int part_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) { struct mtd_part *part = PART(mtd); if (to >= mtd->size) return -EINVAL; if (ops->datbuf && to + ops->len > mtd->size) return -EINVAL; return part->master->_write_oob(part->master, to + part->offset, ops); } static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct mtd_part *part = PART(mtd); return part->master->_write_user_prot_reg(part->master, from, len, retlen, buf); } static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) { struct mtd_part *part = PART(mtd); return part->master->_lock_user_prot_reg(part->master, from, len); } static int part_writev(struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen) { struct mtd_part *part = PART(mtd); return part->master->_writev(part->master, vecs, count, to + part->offset, retlen); } static int part_erase(struct mtd_info *mtd, struct erase_info *instr) { struct mtd_part *part = PART(mtd); int ret; instr->addr += part->offset; ret = part->master->_erase(part->master, instr); if (ret) { if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) instr->fail_addr -= part->offset; instr->addr -= part->offset; } return ret; } void mtd_erase_callback(struct erase_info *instr) { if (instr->mtd->_erase == part_erase) { struct mtd_part *part = PART(instr->mtd); if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) instr->fail_addr -= part->offset; instr->addr -= part->offset; } if (instr->callback) instr->callback(instr); } EXPORT_SYMBOL_GPL(mtd_erase_callback); static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { struct mtd_part *part = PART(mtd); return part->master->_lock(part->master, ofs + part->offset, len); } static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { struct mtd_part *part = PART(mtd); return part->master->_unlock(part->master, ofs + part->offset, len); } static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) { struct mtd_part *part = PART(mtd); return part->master->_is_locked(part->master, ofs + part->offset, len); } static void part_sync(struct mtd_info *mtd) { struct mtd_part *part = PART(mtd); part->master->_sync(part->master); } static int part_suspend(struct mtd_info *mtd) { struct mtd_part *part = PART(mtd); return part->master->_suspend(part->master); } static void part_resume(struct mtd_info *mtd) { struct mtd_part *part = PART(mtd); part->master->_resume(part->master); } static int part_block_isbad(struct mtd_info *mtd, loff_t ofs) { struct mtd_part *part = PART(mtd); ofs += part->offset; return part->master->_block_isbad(part->master, ofs); } static int part_block_markbad(struct mtd_info *mtd, loff_t ofs) { struct mtd_part *part = PART(mtd); int res; ofs += part->offset; res = part->master->_block_markbad(part->master, ofs); if (!res) mtd->ecc_stats.badblocks++; return res; } static inline void free_partition(struct mtd_part *p) { kfree(p->mtd.name); kfree(p); } /* * This function unregisters and destroy all slave MTD objects which are * attached to the given master MTD object. */ int del_mtd_partitions(struct mtd_info *master) { struct mtd_part *slave, *next; int ret, err = 0; mutex_lock(&mtd_partitions_mutex); list_for_each_entry_safe(slave, next, &mtd_partitions, list) if (slave->master == master) { ret = del_mtd_device(&slave->mtd); if (ret < 0) { err = ret; continue; } list_del(&slave->list); free_partition(slave); } mutex_unlock(&mtd_partitions_mutex); return err; } static struct mtd_part *allocate_partition(struct mtd_info *master, const struct mtd_partition *part, int partno, uint64_t cur_offset) { struct mtd_part *slave; char *name; /* allocate the partition structure */ slave = kzalloc(sizeof(*slave), GFP_KERNEL); name = kstrdup(part->name, GFP_KERNEL); if (!name || !slave) { printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n", master->name); kfree(name); kfree(slave); return ERR_PTR(-ENOMEM); } /* set up the MTD object for this partition */ slave->mtd.type = master->type; slave->mtd.flags = master->flags & ~part->mask_flags; slave->mtd.size = part->size; slave->mtd.writesize = master->writesize; slave->mtd.writebufsize = master->writebufsize; slave->mtd.oobsize = master->oobsize; slave->mtd.oobavail = master->oobavail; slave->mtd.subpage_sft = master->subpage_sft; slave->mtd.name = name; slave->mtd.owner = master->owner; slave->mtd.backing_dev_info = master->backing_dev_info; /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone * to have the same data be in two different partitions. */ slave->mtd.dev.parent = master->dev.parent; slave->mtd._read = part_read; slave->mtd._write = part_write; if (master->_panic_write) slave->mtd._panic_write = part_panic_write; if (master->_point && master->_unpoint) { slave->mtd._point = part_point; slave->mtd._unpoint = part_unpoint; } if (master->_get_unmapped_area) slave->mtd._get_unmapped_area = part_get_unmapped_area; if (master->_read_oob) slave->mtd._read_oob = part_read_oob; if (master->_write_oob) slave->mtd._write_oob = part_write_oob; if (master->_read_user_prot_reg) slave->mtd._read_user_prot_reg = part_read_user_prot_reg; if (master->_read_fact_prot_reg) slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg; if (master->_write_user_prot_reg) slave->mtd._write_user_prot_reg = part_write_user_prot_reg; if (master->_lock_user_prot_reg) slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg; if (master->_get_user_prot_info) slave->mtd._get_user_prot_info = part_get_user_prot_info; if (master->_get_fact_prot_info) slave->mtd._get_fact_prot_info = part_get_fact_prot_info; if (master->_sync) slave->mtd._sync = part_sync; if (!partno && !master->dev.class && master->_suspend && master->_resume) { slave->mtd._suspend = part_suspend; slave->mtd._resume = part_resume; } if (master->_writev) slave->mtd._writev = part_writev; if (master->_lock) slave->mtd._lock = part_lock; if (master->_unlock) slave->mtd._unlock = part_unlock; if (master->_is_locked) slave->mtd._is_locked = part_is_locked; if (master->_block_isbad) slave->mtd._block_isbad = part_block_isbad; if (master->_block_markbad) slave->mtd._block_markbad = part_block_markbad; slave->mtd._erase = part_erase; slave->master = master; slave->offset = part->offset; if (slave->offset == MTDPART_OFS_APPEND) slave->offset = cur_offset; if (slave->offset == MTDPART_OFS_NXTBLK) { slave->offset = cur_offset; if (mtd_mod_by_eb(cur_offset, master) != 0) { /* Round up to next erasesize */ slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize; printk(KERN_NOTICE "Moving partition %d: " "0x%012llx -> 0x%012llx\n", partno, (unsigned long long)cur_offset, (unsigned long long)slave->offset); } } if (slave->offset == MTDPART_OFS_RETAIN) { slave->offset = cur_offset; if (master->size - slave->offset >= slave->mtd.size) { slave->mtd.size = master->size - slave->offset - slave->mtd.size; } else { printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n", part->name, master->size - slave->offset, slave->mtd.size); /* register to preserve ordering */ goto out_register; } } if (slave->mtd.size == MTDPART_SIZ_FULL) slave->mtd.size = master->size - slave->offset; printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset, (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name); /* let's do some sanity checks */ if (slave->offset >= master->size) { /* let's register it anyway to preserve ordering */ slave->offset = 0; slave->mtd.size = 0; printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n", part->name); goto out_register; } if (slave->offset + slave->mtd.size > master->size) { slave->mtd.size = master->size - slave->offset; printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n", part->name, master->name, (unsigned long long)slave->mtd.size); } if (master->numeraseregions > 1) { /* Deal with variable erase size stuff */ int i, max = master->numeraseregions; u64 end = slave->offset + slave->mtd.size; struct mtd_erase_region_info *regions = master->eraseregions; /* Find the first erase regions which is part of this * partition. */ for (i = 0; i < max && regions[i].offset <= slave->offset; i++) ; /* The loop searched for the region _behind_ the first one */ if (i > 0) i--; /* Pick biggest erasesize */ for (; i < max && regions[i].offset < end; i++) { if (slave->mtd.erasesize < regions[i].erasesize) { slave->mtd.erasesize = regions[i].erasesize; } } BUG_ON(slave->mtd.erasesize == 0); } else { /* Single erase size */ slave->mtd.erasesize = master->erasesize; } if ((slave->mtd.flags & MTD_WRITEABLE) && mtd_mod_by_eb(slave->offset, &slave->mtd)) { /* Doesn't start on a boundary of major erase size */ /* FIXME: Let it be writable if it is on a boundary of * _minor_ erase size though */ slave->mtd.flags &= ~MTD_WRITEABLE; printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n", part->name); } if ((slave->mtd.flags & MTD_WRITEABLE) && mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) { slave->mtd.flags &= ~MTD_WRITEABLE; printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n", part->name); } slave->mtd.ecclayout = master->ecclayout; slave->mtd.ecc_step_size = master->ecc_step_size; slave->mtd.ecc_strength = master->ecc_strength; slave->mtd.bitflip_threshold = master->bitflip_threshold; if (master->_block_isbad) { uint64_t offs = 0; while (offs < slave->mtd.size) { if (mtd_block_isbad(master, offs + slave->offset)) slave->mtd.ecc_stats.badblocks++; offs += slave->mtd.erasesize; } } out_register: return slave; } int mtd_add_partition(struct mtd_info *master, const char *name, long long offset, long long length) { struct mtd_partition part; struct mtd_part *p, *new; uint64_t start, end; int ret = 0; /* the direct offset is expected */ if (offset == MTDPART_OFS_APPEND || offset == MTDPART_OFS_NXTBLK) return -EINVAL; if (length == MTDPART_SIZ_FULL) length = master->size - offset; if (length <= 0) return -EINVAL; part.name = name; part.size = length; part.offset = offset; part.mask_flags = 0; part.ecclayout = NULL; new = allocate_partition(master, &part, -1, offset); if (IS_ERR(new)) return PTR_ERR(new); start = offset; end = offset + length; mutex_lock(&mtd_partitions_mutex); list_for_each_entry(p, &mtd_partitions, list) if (p->master == master) { if ((start >= p->offset) && (start < (p->offset + p->mtd.size))) goto err_inv; if ((end >= p->offset) && (end < (p->offset + p->mtd.size))) goto err_inv; } list_add(&new->list, &mtd_partitions); mutex_unlock(&mtd_partitions_mutex); add_mtd_device(&new->mtd); return ret; err_inv: mutex_unlock(&mtd_partitions_mutex); free_partition(new); return -EINVAL; } EXPORT_SYMBOL_GPL(mtd_add_partition); int mtd_del_partition(struct mtd_info *master, int partno) { struct mtd_part *slave, *next; int ret = -EINVAL; mutex_lock(&mtd_partitions_mutex); list_for_each_entry_safe(slave, next, &mtd_partitions, list) if ((slave->master == master) && (slave->mtd.index == partno)) { ret = del_mtd_device(&slave->mtd); if (ret < 0) break; list_del(&slave->list); free_partition(slave); break; } mutex_unlock(&mtd_partitions_mutex); return ret; } EXPORT_SYMBOL_GPL(mtd_del_partition); /* * This function, given a master MTD object and a partition table, creates * and registers slave MTD objects which are bound to the master according to * the partition definitions. * * We don't register the master, or expect the caller to have done so, * for reasons of data integrity. */ int add_mtd_partitions(struct mtd_info *master, const struct mtd_partition *parts, int nbparts) { struct mtd_part *slave; uint64_t cur_offset = 0; int i; printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name); for (i = 0; i < nbparts; i++) { slave = allocate_partition(master, parts + i, i, cur_offset); if (IS_ERR(slave)) return PTR_ERR(slave); mutex_lock(&mtd_partitions_mutex); list_add(&slave->list, &mtd_partitions); mutex_unlock(&mtd_partitions_mutex); add_mtd_device(&slave->mtd); cur_offset = slave->offset + slave->mtd.size; } return 0; } static DEFINE_SPINLOCK(part_parser_lock); static LIST_HEAD(part_parsers); static struct mtd_part_parser *get_partition_parser(const char *name) { struct mtd_part_parser *p, *ret = NULL; spin_lock(&part_parser_lock); list_for_each_entry(p, &part_parsers, list) if (!strcmp(p->name, name) && try_module_get(p->owner)) { ret = p; break; } spin_unlock(&part_parser_lock); return ret; } #define put_partition_parser(p) do { module_put((p)->owner); } while (0) void register_mtd_parser(struct mtd_part_parser *p) { spin_lock(&part_parser_lock); list_add(&p->list, &part_parsers); spin_unlock(&part_parser_lock); } EXPORT_SYMBOL_GPL(register_mtd_parser); void deregister_mtd_parser(struct mtd_part_parser *p) { spin_lock(&part_parser_lock); list_del(&p->list); spin_unlock(&part_parser_lock); } EXPORT_SYMBOL_GPL(deregister_mtd_parser); /* * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you * are changing this array! */ static const char * const default_mtd_part_types[] = { "cmdlinepart", "ofpart", NULL }; /** * parse_mtd_partitions - parse MTD partitions * @master: the master partition (describes whole MTD device) * @types: names of partition parsers to try or %NULL * @pparts: array of partitions found is returned here * @data: MTD partition parser-specific data * * This function tries to find partition on MTD device @master. It uses MTD * partition parsers, specified in @types. However, if @types is %NULL, then * the default list of parsers is used. The default list contains only the * "cmdlinepart" and "ofpart" parsers ATM. * Note: If there are more then one parser in @types, the kernel only takes the * partitions parsed out by the first parser. * * This function may return: * o a negative error code in case of failure * o zero if no partitions were found * o a positive number of found partitions, in which case on exit @pparts will * point to an array containing this number of &struct mtd_info objects. */ int parse_mtd_partitions(struct mtd_info *master, const char *const *types, struct mtd_partition **pparts, struct mtd_part_parser_data *data) { struct mtd_part_parser *parser; int ret = 0; if (!types) types = default_mtd_part_types; for ( ; ret <= 0 && *types; types++) { parser = get_partition_parser(*types); if (!parser && !request_module("%s", *types)) parser = get_partition_parser(*types); if (!parser) continue; ret = (*parser->parse_fn)(master, pparts, data); put_partition_parser(parser); if (ret > 0) { printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n", ret, parser->name, master->name); break; } } return ret; } int mtd_is_partition(const struct mtd_info *mtd) { struct mtd_part *part; int ispart = 0; mutex_lock(&mtd_partitions_mutex); list_for_each_entry(part, &mtd_partitions, list) if (&part->mtd == mtd) { ispart = 1; break; } mutex_unlock(&mtd_partitions_mutex); return ispart; } EXPORT_SYMBOL_GPL(mtd_is_partition); /* Returns the size of the entire flash chip */ uint64_t mtd_get_device_size(const struct mtd_info *mtd) { if (!mtd_is_partition(mtd)) return mtd->size; return PART(mtd)->master->size; } EXPORT_SYMBOL_GPL(mtd_get_device_size);