/* * Copyright © 2012 Mike Dunn <mikedunn@newsguy.com> * * mtd nand driver for M-Systems DiskOnChip G4 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * Tested on the Palm Treo 680. The G4 is also present on Toshiba Portege, Asus * P526, some HTC smartphones (Wizard, Prophet, ...), O2 XDA Zinc, maybe others. * Should work on these as well. Let me know! * * TODO: * * Mechanism for management of password-protected areas * * Hamming ecc when reading oob only * * According to the M-Sys documentation, this device is also available in a * "dual-die" configuration having a 256MB capacity, but no mechanism for * detecting this variant is documented. Currently this driver assumes 128MB * capacity. * * Support for multiple cascaded devices ("floors"). Not sure which gadgets * contain multiple G4s in a cascaded configuration, if any. * */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/string.h> #include <linux/sched.h> #include <linux/delay.h> #include <linux/module.h> #include <linux/export.h> #include <linux/platform_device.h> #include <linux/io.h> #include <linux/bitops.h> #include <linux/mtd/partitions.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> #include <linux/bch.h> #include <linux/bitrev.h> #include <linux/jiffies.h> /* * In "reliable mode" consecutive 2k pages are used in parallel (in some * fashion) to store the same data. The data can be read back from the * even-numbered pages in the normal manner; odd-numbered pages will appear to * contain junk. Systems that boot from the docg4 typically write the secondary * program loader (SPL) code in this mode. The SPL is loaded by the initial * program loader (IPL, stored in the docg4's 2k NOR-like region that is mapped * to the reset vector address). This module parameter enables you to use this * driver to write the SPL. When in this mode, no more than 2k of data can be * written at a time, because the addresses do not increment in the normal * manner, and the starting offset must be within an even-numbered 2k region; * i.e., invalid starting offsets are 0x800, 0xa00, 0xc00, 0xe00, 0x1800, * 0x1a00, ... Reliable mode is a special case and should not be used unless * you know what you're doing. */ static bool reliable_mode; module_param(reliable_mode, bool, 0); MODULE_PARM_DESC(reliable_mode, "pages are programmed in reliable mode"); /* * You'll want to ignore badblocks if you're reading a partition that contains * data written by the TrueFFS library (i.e., by PalmOS, Windows, etc), since * it does not use mtd nand's method for marking bad blocks (using oob area). * This will also skip the check of the "page written" flag. */ static bool ignore_badblocks; module_param(ignore_badblocks, bool, 0); MODULE_PARM_DESC(ignore_badblocks, "no badblock checking performed"); struct docg4_priv { struct mtd_info *mtd; struct device *dev; void __iomem *virtadr; int status; struct { unsigned int command; int column; int page; } last_command; uint8_t oob_buf[16]; uint8_t ecc_buf[7]; int oob_page; struct bch_control *bch; }; /* * Defines prefixed with DOCG4 are unique to the diskonchip G4. All others are * shared with other diskonchip devices (P3, G3 at least). * * Functions with names prefixed with docg4_ are mtd / nand interface functions * (though they may also be called internally). All others are internal. */ #define DOC_IOSPACE_DATA 0x0800 /* register offsets */ #define DOC_CHIPID 0x1000 #define DOC_DEVICESELECT 0x100a #define DOC_ASICMODE 0x100c #define DOC_DATAEND 0x101e #define DOC_NOP 0x103e #define DOC_FLASHSEQUENCE 0x1032 #define DOC_FLASHCOMMAND 0x1034 #define DOC_FLASHADDRESS 0x1036 #define DOC_FLASHCONTROL 0x1038 #define DOC_ECCCONF0 0x1040 #define DOC_ECCCONF1 0x1042 #define DOC_HAMMINGPARITY 0x1046 #define DOC_BCH_SYNDROM(idx) (0x1048 + idx) #define DOC_ASICMODECONFIRM 0x1072 #define DOC_CHIPID_INV 0x1074 #define DOC_POWERMODE 0x107c #define DOCG4_MYSTERY_REG 0x1050 /* apparently used only to write oob bytes 6 and 7 */ #define DOCG4_OOB_6_7 0x1052 /* DOC_FLASHSEQUENCE register commands */ #define DOC_SEQ_RESET 0x00 #define DOCG4_SEQ_PAGE_READ 0x03 #define DOCG4_SEQ_FLUSH 0x29 #define DOCG4_SEQ_PAGEWRITE 0x16 #define DOCG4_SEQ_PAGEPROG 0x1e #define DOCG4_SEQ_BLOCKERASE 0x24 #define DOCG4_SEQ_SETMODE 0x45 /* DOC_FLASHCOMMAND register commands */ #define DOCG4_CMD_PAGE_READ 0x00 #define DOC_CMD_ERASECYCLE2 0xd0 #define DOCG4_CMD_FLUSH 0x70 #define DOCG4_CMD_READ2 0x30 #define DOC_CMD_PROG_BLOCK_ADDR 0x60 #define DOCG4_CMD_PAGEWRITE 0x80 #define DOC_CMD_PROG_CYCLE2 0x10 #define DOCG4_CMD_FAST_MODE 0xa3 /* functionality guessed */ #define DOC_CMD_RELIABLE_MODE 0x22 #define DOC_CMD_RESET 0xff /* DOC_POWERMODE register bits */ #define DOC_POWERDOWN_READY 0x80 /* DOC_FLASHCONTROL register bits */ #define DOC_CTRL_CE 0x10 #define DOC_CTRL_UNKNOWN 0x40 #define DOC_CTRL_FLASHREADY 0x01 /* DOC_ECCCONF0 register bits */ #define DOC_ECCCONF0_READ_MODE 0x8000 #define DOC_ECCCONF0_UNKNOWN 0x2000 #define DOC_ECCCONF0_ECC_ENABLE 0x1000 #define DOC_ECCCONF0_DATA_BYTES_MASK 0x07ff /* DOC_ECCCONF1 register bits */ #define DOC_ECCCONF1_BCH_SYNDROM_ERR 0x80 #define DOC_ECCCONF1_ECC_ENABLE 0x07 #define DOC_ECCCONF1_PAGE_IS_WRITTEN 0x20 /* DOC_ASICMODE register bits */ #define DOC_ASICMODE_RESET 0x00 #define DOC_ASICMODE_NORMAL 0x01 #define DOC_ASICMODE_POWERDOWN 0x02 #define DOC_ASICMODE_MDWREN 0x04 #define DOC_ASICMODE_BDETCT_RESET 0x08 #define DOC_ASICMODE_RSTIN_RESET 0x10 #define DOC_ASICMODE_RAM_WE 0x20 /* good status values read after read/write/erase operations */ #define DOCG4_PROGSTATUS_GOOD 0x51 #define DOCG4_PROGSTATUS_GOOD_2 0xe0 /* * On read operations (page and oob-only), the first byte read from I/O reg is a * status. On error, it reads 0x73; otherwise, it reads either 0x71 (first read * after reset only) or 0x51, so bit 1 is presumed to be an error indicator. */ #define DOCG4_READ_ERROR 0x02 /* bit 1 indicates read error */ /* anatomy of the device */ #define DOCG4_CHIP_SIZE 0x8000000 #define DOCG4_PAGE_SIZE 0x200 #define DOCG4_PAGES_PER_BLOCK 0x200 #define DOCG4_BLOCK_SIZE (DOCG4_PAGES_PER_BLOCK * DOCG4_PAGE_SIZE) #define DOCG4_NUMBLOCKS (DOCG4_CHIP_SIZE / DOCG4_BLOCK_SIZE) #define DOCG4_OOB_SIZE 0x10 #define DOCG4_CHIP_SHIFT 27 /* log_2(DOCG4_CHIP_SIZE) */ #define DOCG4_PAGE_SHIFT 9 /* log_2(DOCG4_PAGE_SIZE) */ #define DOCG4_ERASE_SHIFT 18 /* log_2(DOCG4_BLOCK_SIZE) */ /* all but the last byte is included in ecc calculation */ #define DOCG4_BCH_SIZE (DOCG4_PAGE_SIZE + DOCG4_OOB_SIZE - 1) #define DOCG4_USERDATA_LEN 520 /* 512 byte page plus 8 oob avail to user */ /* expected values from the ID registers */ #define DOCG4_IDREG1_VALUE 0x0400 #define DOCG4_IDREG2_VALUE 0xfbff /* primitive polynomial used to build the Galois field used by hw ecc gen */ #define DOCG4_PRIMITIVE_POLY 0x4443 #define DOCG4_M 14 /* Galois field is of order 2^14 */ #define DOCG4_T 4 /* BCH alg corrects up to 4 bit errors */ #define DOCG4_FACTORY_BBT_PAGE 16 /* page where read-only factory bbt lives */ #define DOCG4_REDUNDANT_BBT_PAGE 24 /* page where redundant factory bbt lives */ /* * Bytes 0, 1 are used as badblock marker. * Bytes 2 - 6 are available to the user. * Byte 7 is hamming ecc for first 7 oob bytes only. * Bytes 8 - 14 are hw-generated ecc covering entire page + oob bytes 0 - 14. * Byte 15 (the last) is used by the driver as a "page written" flag. */ static struct nand_ecclayout docg4_oobinfo = { .eccbytes = 9, .eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15}, .oobavail = 5, .oobfree = { {.offset = 2, .length = 5} } }; /* * The device has a nop register which M-Sys claims is for the purpose of * inserting precise delays. But beware; at least some operations fail if the * nop writes are replaced with a generic delay! */ static inline void write_nop(void __iomem *docptr) { writew(0, docptr + DOC_NOP); } static void docg4_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { int i; struct nand_chip *nand = mtd->priv; uint16_t *p = (uint16_t *) buf; len >>= 1; for (i = 0; i < len; i++) p[i] = readw(nand->IO_ADDR_R); } static void docg4_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) { int i; struct nand_chip *nand = mtd->priv; uint16_t *p = (uint16_t *) buf; len >>= 1; for (i = 0; i < len; i++) writew(p[i], nand->IO_ADDR_W); } static int poll_status(struct docg4_priv *doc) { /* * Busy-wait for the FLASHREADY bit to be set in the FLASHCONTROL * register. Operations known to take a long time (e.g., block erase) * should sleep for a while before calling this. */ uint16_t flash_status; unsigned long timeo; void __iomem *docptr = doc->virtadr; dev_dbg(doc->dev, "%s...\n", __func__); /* hardware quirk requires reading twice initially */ flash_status = readw(docptr + DOC_FLASHCONTROL); timeo = jiffies + msecs_to_jiffies(200); /* generous timeout */ do { cpu_relax(); flash_status = readb(docptr + DOC_FLASHCONTROL); } while (!(flash_status & DOC_CTRL_FLASHREADY) && time_before(jiffies, timeo)); if (unlikely(!(flash_status & DOC_CTRL_FLASHREADY))) { dev_err(doc->dev, "%s: timed out!\n", __func__); return NAND_STATUS_FAIL; } return 0; } static int docg4_wait(struct mtd_info *mtd, struct nand_chip *nand) { struct docg4_priv *doc = nand->priv; int status = NAND_STATUS_WP; /* inverse logic?? */ dev_dbg(doc->dev, "%s...\n", __func__); /* report any previously unreported error */ if (doc->status) { status |= doc->status; doc->status = 0; return status; } status |= poll_status(doc); return status; } static void docg4_select_chip(struct mtd_info *mtd, int chip) { /* * Select among multiple cascaded chips ("floors"). Multiple floors are * not yet supported, so the only valid non-negative value is 0. */ struct nand_chip *nand = mtd->priv; struct docg4_priv *doc = nand->priv; void __iomem *docptr = doc->virtadr; dev_dbg(doc->dev, "%s: chip %d\n", __func__, chip); if (chip < 0) return; /* deselected */ if (chip > 0) dev_warn(doc->dev, "multiple floors currently unsupported\n"); writew(0, docptr + DOC_DEVICESELECT); } static void reset(struct mtd_info *mtd) { /* full device reset */ struct nand_chip *nand = mtd->priv; struct docg4_priv *doc = nand->priv; void __iomem *docptr = doc->virtadr; writew(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN, docptr + DOC_ASICMODE); writew(~(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN), docptr + DOC_ASICMODECONFIRM); write_nop(docptr); writew(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN, docptr + DOC_ASICMODE); writew(~(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN), docptr + DOC_ASICMODECONFIRM); writew(DOC_ECCCONF1_ECC_ENABLE, docptr + DOC_ECCCONF1); poll_status(doc); } static void read_hw_ecc(void __iomem *docptr, uint8_t *ecc_buf) { /* read the 7 hw-generated ecc bytes */ int i; for (i = 0; i < 7; i++) { /* hw quirk; read twice */ ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i)); ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i)); } } static int correct_data(struct mtd_info *mtd, uint8_t *buf, int page) { /* * Called after a page read when hardware reports bitflips. * Up to four bitflips can be corrected. */ struct nand_chip *nand = mtd->priv; struct docg4_priv *doc = nand->priv; void __iomem *docptr = doc->virtadr; int i, numerrs, errpos[4]; const uint8_t blank_read_hwecc[8] = { 0xcf, 0x72, 0xfc, 0x1b, 0xa9, 0xc7, 0xb9, 0 }; read_hw_ecc(docptr, doc->ecc_buf); /* read 7 hw-generated ecc bytes */ /* check if read error is due to a blank page */ if (!memcmp(doc->ecc_buf, blank_read_hwecc, 7)) return 0; /* yes */ /* skip additional check of "written flag" if ignore_badblocks */ if (ignore_badblocks == false) { /* * If the hw ecc bytes are not those of a blank page, there's * still a chance that the page is blank, but was read with * errors. Check the "written flag" in last oob byte, which * is set to zero when a page is written. If more than half * the bits are set, assume a blank page. Unfortunately, the * bit flips(s) are not reported in stats. */ if (nand->oob_poi[15]) { int bit, numsetbits = 0; unsigned long written_flag = nand->oob_poi[15]; for_each_set_bit(bit, &written_flag, 8) numsetbits++; if (numsetbits > 4) { /* assume blank */ dev_warn(doc->dev, "error(s) in blank page " "at offset %08x\n", page * DOCG4_PAGE_SIZE); return 0; } } } /* * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch * algorithm is used to decode this. However the hw operates on page * data in a bit order that is the reverse of that of the bch alg, * requiring that the bits be reversed on the result. Thanks to Ivan * Djelic for his analysis! */ for (i = 0; i < 7; i++) doc->ecc_buf[i] = bitrev8(doc->ecc_buf[i]); numerrs = decode_bch(doc->bch, NULL, DOCG4_USERDATA_LEN, NULL, doc->ecc_buf, NULL, errpos); if (numerrs == -EBADMSG) { dev_warn(doc->dev, "uncorrectable errors at offset %08x\n", page * DOCG4_PAGE_SIZE); return -EBADMSG; } BUG_ON(numerrs < 0); /* -EINVAL, or anything other than -EBADMSG */ /* undo last step in BCH alg (modulo mirroring not needed) */ for (i = 0; i < numerrs; i++) errpos[i] = (errpos[i] & ~7)|(7-(errpos[i] & 7)); /* fix the errors */ for (i = 0; i < numerrs; i++) { /* ignore if error within oob ecc bytes */ if (errpos[i] > DOCG4_USERDATA_LEN * 8) continue; /* if error within oob area preceeding ecc bytes... */ if (errpos[i] > DOCG4_PAGE_SIZE * 8) change_bit(errpos[i] - DOCG4_PAGE_SIZE * 8, (unsigned long *)nand->oob_poi); else /* error in page data */ change_bit(errpos[i], (unsigned long *)buf); } dev_notice(doc->dev, "%d error(s) corrected at offset %08x\n", numerrs, page * DOCG4_PAGE_SIZE); return numerrs; } static uint8_t docg4_read_byte(struct mtd_info *mtd) { struct nand_chip *nand = mtd->priv; struct docg4_priv *doc = nand->priv; dev_dbg(doc->dev, "%s\n", __func__); if (doc->last_command.command == NAND_CMD_STATUS) { int status; /* * Previous nand command was status request, so nand * infrastructure code expects to read the status here. If an * error occurred in a previous operation, report it. */ doc->last_command.command = 0; if (doc->status) { status = doc->status; doc->status = 0; } /* why is NAND_STATUS_WP inverse logic?? */ else status = NAND_STATUS_WP | NAND_STATUS_READY; return status; } dev_warn(doc->dev, "unexpected call to read_byte()\n"); return 0; } static void write_addr(struct docg4_priv *doc, uint32_t docg4_addr) { /* write the four address bytes packed in docg4_addr to the device */ void __iomem *docptr = doc->virtadr; writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); docg4_addr >>= 8; writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); docg4_addr >>= 8; writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); docg4_addr >>= 8; writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); } static int read_progstatus(struct docg4_priv *doc) { /* * This apparently checks the status of programming. Done after an * erasure, and after page data is written. On error, the status is * saved, to be later retrieved by the nand infrastructure code. */ void __iomem *docptr = doc->virtadr; /* status is read from the I/O reg */ uint16_t status1 = readw(docptr + DOC_IOSPACE_DATA); uint16_t status2 = readw(docptr + DOC_IOSPACE_DATA); uint16_t status3 = readw(docptr + DOCG4_MYSTERY_REG); dev_dbg(doc->dev, "docg4: %s: %02x %02x %02x\n", __func__, status1, status2, status3); if (status1 != DOCG4_PROGSTATUS_GOOD || status2 != DOCG4_PROGSTATUS_GOOD_2 || status3 != DOCG4_PROGSTATUS_GOOD_2) { doc->status = NAND_STATUS_FAIL; dev_warn(doc->dev, "read_progstatus failed: " "%02x, %02x, %02x\n", status1, status2, status3); return -EIO; } return 0; } static int pageprog(struct mtd_info *mtd) { /* * Final step in writing a page. Writes the contents of its * internal buffer out to the flash array, or some such. */ struct nand_chip *nand = mtd->priv; struct docg4_priv *doc = nand->priv; void __iomem *docptr = doc->virtadr; int retval = 0; dev_dbg(doc->dev, "docg4: %s\n", __func__); writew(DOCG4_SEQ_PAGEPROG, docptr + DOC_FLASHSEQUENCE); writew(DOC_CMD_PROG_CYCLE2, docptr + DOC_FLASHCOMMAND); write_nop(docptr); write_nop(docptr); /* Just busy-wait; usleep_range() slows things down noticeably. */ poll_status(doc); writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE); writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND); writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0); write_nop(docptr); write_nop(docptr); write_nop(docptr); write_nop(docptr); write_nop(docptr); retval = read_progstatus(doc); writew(0, docptr + DOC_DATAEND); write_nop(docptr); poll_status(doc); write_nop(docptr); return retval; } static void sequence_reset(struct mtd_info *mtd) { /* common starting sequence for all operations */ struct nand_chip *nand = mtd->priv; struct docg4_priv *doc = nand->priv; void __iomem *docptr = doc->virtadr; writew(DOC_CTRL_UNKNOWN | DOC_CTRL_CE, docptr + DOC_FLASHCONTROL); writew(DOC_SEQ_RESET, docptr + DOC_FLASHSEQUENCE); writew(DOC_CMD_RESET, docptr + DOC_FLASHCOMMAND); write_nop(docptr); write_nop(docptr); poll_status(doc); write_nop(docptr); } static void read_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr) { /* first step in reading a page */ struct nand_chip *nand = mtd->priv; struct docg4_priv *doc = nand->priv; void __iomem *docptr = doc->virtadr; dev_dbg(doc->dev, "docg4: %s: g4 page %08x\n", __func__, docg4_addr); sequence_reset(mtd); writew(DOCG4_SEQ_PAGE_READ, docptr + DOC_FLASHSEQUENCE); writew(DOCG4_CMD_PAGE_READ, docptr + DOC_FLASHCOMMAND); write_nop(docptr); write_addr(doc, docg4_addr); write_nop(docptr); writew(DOCG4_CMD_READ2, docptr + DOC_FLASHCOMMAND); write_nop(docptr); write_nop(docptr); poll_status(doc); } static void write_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr) { /* first step in writing a page */ struct nand_chip *nand = mtd->priv; struct docg4_priv *doc = nand->priv; void __iomem *docptr = doc->virtadr; dev_dbg(doc->dev, "docg4: %s: g4 addr: %x\n", __func__, docg4_addr); sequence_reset(mtd); if (unlikely(reliable_mode)) { writew(DOCG4_SEQ_SETMODE, docptr + DOC_FLASHSEQUENCE); writew(DOCG4_CMD_FAST_MODE, docptr + DOC_FLASHCOMMAND); writew(DOC_CMD_RELIABLE_MODE, docptr + DOC_FLASHCOMMAND); write_nop(docptr); } writew(DOCG4_SEQ_PAGEWRITE, docptr + DOC_FLASHSEQUENCE); writew(DOCG4_CMD_PAGEWRITE, docptr + DOC_FLASHCOMMAND); write_nop(docptr); write_addr(doc, docg4_addr); write_nop(docptr); write_nop(docptr); poll_status(doc); } static uint32_t mtd_to_docg4_address(int page, int column) { /* * Convert mtd address to format used by the device, 32 bit packed. * * Some notes on G4 addressing... The M-Sys documentation on this device * claims that pages are 2K in length, and indeed, the format of the * address used by the device reflects that. But within each page are * four 512 byte "sub-pages", each with its own oob data that is * read/written immediately after the 512 bytes of page data. This oob * data contains the ecc bytes for the preceeding 512 bytes. * * Rather than tell the mtd nand infrastructure that page size is 2k, * with four sub-pages each, we engage in a little subterfuge and tell * the infrastructure code that pages are 512 bytes in size. This is * done because during the course of reverse-engineering the device, I * never observed an instance where an entire 2K "page" was read or * written as a unit. Each "sub-page" is always addressed individually, * its data read/written, and ecc handled before the next "sub-page" is * addressed. * * This requires us to convert addresses passed by the mtd nand * infrastructure code to those used by the device. * * The address that is written to the device consists of four bytes: the * first two are the 2k page number, and the second is the index into * the page. The index is in terms of 16-bit half-words and includes * the preceeding oob data, so e.g., the index into the second * "sub-page" is 0x108, and the full device address of the start of mtd * page 0x201 is 0x00800108. */ int g4_page = page / 4; /* device's 2K page */ int g4_index = (page % 4) * 0x108 + column/2; /* offset into page */ return (g4_page << 16) | g4_index; /* pack */ } static void docg4_command(struct mtd_info *mtd, unsigned command, int column, int page_addr) { /* handle standard nand commands */ struct nand_chip *nand = mtd->priv; struct docg4_priv *doc = nand->priv; uint32_t g4_addr = mtd_to_docg4_address(page_addr, column); dev_dbg(doc->dev, "%s %x, page_addr=%x, column=%x\n", __func__, command, page_addr, column); /* * Save the command and its arguments. This enables emulation of * standard flash devices, and also some optimizations. */ doc->last_command.command = command; doc->last_command.column = column; doc->last_command.page = page_addr; switch (command) { case NAND_CMD_RESET: reset(mtd); break; case NAND_CMD_READ0: read_page_prologue(mtd, g4_addr); break; case NAND_CMD_STATUS: /* next call to read_byte() will expect a status */ break; case NAND_CMD_SEQIN: if (unlikely(reliable_mode)) { uint16_t g4_page = g4_addr >> 16; /* writes to odd-numbered 2k pages are invalid */ if (g4_page & 0x01) dev_warn(doc->dev, "invalid reliable mode address\n"); } write_page_prologue(mtd, g4_addr); /* hack for deferred write of oob bytes */ if (doc->oob_page == page_addr) memcpy(nand->oob_poi, doc->oob_buf, 16); break; case NAND_CMD_PAGEPROG: pageprog(mtd); break; /* we don't expect these, based on review of nand_base.c */ case NAND_CMD_READOOB: case NAND_CMD_READID: case NAND_CMD_ERASE1: case NAND_CMD_ERASE2: dev_warn(doc->dev, "docg4_command: " "unexpected nand command 0x%x\n", command); break; } } static int read_page(struct mtd_info *mtd, struct nand_chip *nand, uint8_t *buf, int page, bool use_ecc) { struct docg4_priv *doc = nand->priv; void __iomem *docptr = doc->virtadr; uint16_t status, edc_err, *buf16; int bits_corrected = 0; dev_dbg(doc->dev, "%s: page %08x\n", __func__, page); writew(DOC_ECCCONF0_READ_MODE | DOC_ECCCONF0_ECC_ENABLE | DOC_ECCCONF0_UNKNOWN | DOCG4_BCH_SIZE, docptr + DOC_ECCCONF0); write_nop(docptr); write_nop(docptr); write_nop(docptr); write_nop(docptr); write_nop(docptr); /* the 1st byte from the I/O reg is a status; the rest is page data */ status = readw(docptr + DOC_IOSPACE_DATA); if (status & DOCG4_READ_ERROR) { dev_err(doc->dev, "docg4_read_page: bad status: 0x%02x\n", status); writew(0, docptr + DOC_DATAEND); return -EIO; } dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status); docg4_read_buf(mtd, buf, DOCG4_PAGE_SIZE); /* read the page data */ /* this device always reads oob after page data */ /* first 14 oob bytes read from I/O reg */ docg4_read_buf(mtd, nand->oob_poi, 14); /* last 2 read from another reg */ buf16 = (uint16_t *)(nand->oob_poi + 14); *buf16 = readw(docptr + DOCG4_MYSTERY_REG); write_nop(docptr); if (likely(use_ecc == true)) { /* read the register that tells us if bitflip(s) detected */ edc_err = readw(docptr + DOC_ECCCONF1); edc_err = readw(docptr + DOC_ECCCONF1); dev_dbg(doc->dev, "%s: edc_err = 0x%02x\n", __func__, edc_err); /* If bitflips are reported, attempt to correct with ecc */ if (edc_err & DOC_ECCCONF1_BCH_SYNDROM_ERR) { bits_corrected = correct_data(mtd, buf, page); if (bits_corrected == -EBADMSG) mtd->ecc_stats.failed++; else mtd->ecc_stats.corrected += bits_corrected; } } writew(0, docptr + DOC_DATAEND); if (bits_corrected == -EBADMSG) /* uncorrectable errors */ return 0; return bits_corrected; } static int docg4_read_page_raw(struct mtd_info *mtd, struct nand_chip *nand, uint8_t *buf, int oob_required, int page) { return read_page(mtd, nand, buf, page, false); } static int docg4_read_page(struct mtd_info *mtd, struct nand_chip *nand, uint8_t *buf, int oob_required, int page) { return read_page(mtd, nand, buf, page, true); } static int docg4_read_oob(struct mtd_info *mtd, struct nand_chip *nand, int page) { struct docg4_priv *doc = nand->priv; void __iomem *docptr = doc->virtadr; uint16_t status; dev_dbg(doc->dev, "%s: page %x\n", __func__, page); docg4_command(mtd, NAND_CMD_READ0, nand->ecc.size, page); writew(DOC_ECCCONF0_READ_MODE | DOCG4_OOB_SIZE, docptr + DOC_ECCCONF0); write_nop(docptr); write_nop(docptr); write_nop(docptr); write_nop(docptr); write_nop(docptr); /* the 1st byte from the I/O reg is a status; the rest is oob data */ status = readw(docptr + DOC_IOSPACE_DATA); if (status & DOCG4_READ_ERROR) { dev_warn(doc->dev, "docg4_read_oob failed: status = 0x%02x\n", status); return -EIO; } dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status); docg4_read_buf(mtd, nand->oob_poi, 16); write_nop(docptr); write_nop(docptr); write_nop(docptr); writew(0, docptr + DOC_DATAEND); write_nop(docptr); return 0; } static void docg4_erase_block(struct mtd_info *mtd, int page) { struct nand_chip *nand = mtd->priv; struct docg4_priv *doc = nand->priv; void __iomem *docptr = doc->virtadr; uint16_t g4_page; dev_dbg(doc->dev, "%s: page %04x\n", __func__, page); sequence_reset(mtd); writew(DOCG4_SEQ_BLOCKERASE, docptr + DOC_FLASHSEQUENCE); writew(DOC_CMD_PROG_BLOCK_ADDR, docptr + DOC_FLASHCOMMAND); write_nop(docptr); /* only 2 bytes of address are written to specify erase block */ g4_page = (uint16_t)(page / 4); /* to g4's 2k page addressing */ writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS); g4_page >>= 8; writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS); write_nop(docptr); /* start the erasure */ writew(DOC_CMD_ERASECYCLE2, docptr + DOC_FLASHCOMMAND); write_nop(docptr); write_nop(docptr); usleep_range(500, 1000); /* erasure is long; take a snooze */ poll_status(doc); writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE); writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND); writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0); write_nop(docptr); write_nop(docptr); write_nop(docptr); write_nop(docptr); write_nop(docptr); read_progstatus(doc); writew(0, docptr + DOC_DATAEND); write_nop(docptr); poll_status(doc); write_nop(docptr); } static int write_page(struct mtd_info *mtd, struct nand_chip *nand, const uint8_t *buf, bool use_ecc) { struct docg4_priv *doc = nand->priv; void __iomem *docptr = doc->virtadr; uint8_t ecc_buf[8]; dev_dbg(doc->dev, "%s...\n", __func__); writew(DOC_ECCCONF0_ECC_ENABLE | DOC_ECCCONF0_UNKNOWN | DOCG4_BCH_SIZE, docptr + DOC_ECCCONF0); write_nop(docptr); /* write the page data */ docg4_write_buf16(mtd, buf, DOCG4_PAGE_SIZE); /* oob bytes 0 through 5 are written to I/O reg */ docg4_write_buf16(mtd, nand->oob_poi, 6); /* oob byte 6 written to a separate reg */ writew(nand->oob_poi[6], docptr + DOCG4_OOB_6_7); write_nop(docptr); write_nop(docptr); /* write hw-generated ecc bytes to oob */ if (likely(use_ecc == true)) { /* oob byte 7 is hamming code */ uint8_t hamming = readb(docptr + DOC_HAMMINGPARITY); hamming = readb(docptr + DOC_HAMMINGPARITY); /* 2nd read */ writew(hamming, docptr + DOCG4_OOB_6_7); write_nop(docptr); /* read the 7 bch bytes from ecc regs */ read_hw_ecc(docptr, ecc_buf); ecc_buf[7] = 0; /* clear the "page written" flag */ } /* write user-supplied bytes to oob */ else { writew(nand->oob_poi[7], docptr + DOCG4_OOB_6_7); write_nop(docptr); memcpy(ecc_buf, &nand->oob_poi[8], 8); } docg4_write_buf16(mtd, ecc_buf, 8); write_nop(docptr); write_nop(docptr); writew(0, docptr + DOC_DATAEND); write_nop(docptr); return 0; } static int docg4_write_page_raw(struct mtd_info *mtd, struct nand_chip *nand, const uint8_t *buf, int oob_required) { return write_page(mtd, nand, buf, false); } static int docg4_write_page(struct mtd_info *mtd, struct nand_chip *nand, const uint8_t *buf, int oob_required) { return write_page(mtd, nand, buf, true); } static int docg4_write_oob(struct mtd_info *mtd, struct nand_chip *nand, int page) { /* * Writing oob-only is not really supported, because MLC nand must write * oob bytes at the same time as page data. Nonetheless, we save the * oob buffer contents here, and then write it along with the page data * if the same page is subsequently written. This allows user space * utilities that write the oob data prior to the page data to work * (e.g., nandwrite). The disdvantage is that, if the intention was to * write oob only, the operation is quietly ignored. Also, oob can get * corrupted if two concurrent processes are running nandwrite. */ /* note that bytes 7..14 are hw generated hamming/ecc and overwritten */ struct docg4_priv *doc = nand->priv; doc->oob_page = page; memcpy(doc->oob_buf, nand->oob_poi, 16); return 0; } static int __init read_factory_bbt(struct mtd_info *mtd) { /* * The device contains a read-only factory bad block table. Read it and * update the memory-based bbt accordingly. */ struct nand_chip *nand = mtd->priv; struct docg4_priv *doc = nand->priv; uint32_t g4_addr = mtd_to_docg4_address(DOCG4_FACTORY_BBT_PAGE, 0); uint8_t *buf; int i, block; __u32 eccfailed_stats = mtd->ecc_stats.failed; buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL); if (buf == NULL) return -ENOMEM; read_page_prologue(mtd, g4_addr); docg4_read_page(mtd, nand, buf, 0, DOCG4_FACTORY_BBT_PAGE); /* * If no memory-based bbt was created, exit. This will happen if module * parameter ignore_badblocks is set. Then why even call this function? * For an unknown reason, block erase always fails if it's the first * operation after device power-up. The above read ensures it never is. * Ugly, I know. */ if (nand->bbt == NULL) /* no memory-based bbt */ goto exit; if (mtd->ecc_stats.failed > eccfailed_stats) { /* * Whoops, an ecc failure ocurred reading the factory bbt. * It is stored redundantly, so we get another chance. */ eccfailed_stats = mtd->ecc_stats.failed; docg4_read_page(mtd, nand, buf, 0, DOCG4_REDUNDANT_BBT_PAGE); if (mtd->ecc_stats.failed > eccfailed_stats) { dev_warn(doc->dev, "The factory bbt could not be read!\n"); goto exit; } } /* * Parse factory bbt and update memory-based bbt. Factory bbt format is * simple: one bit per block, block numbers increase left to right (msb * to lsb). Bit clear means bad block. */ for (i = block = 0; block < DOCG4_NUMBLOCKS; block += 8, i++) { int bitnum; unsigned long bits = ~buf[i]; for_each_set_bit(bitnum, &bits, 8) { int badblock = block + 7 - bitnum; nand->bbt[badblock / 4] |= 0x03 << ((badblock % 4) * 2); mtd->ecc_stats.badblocks++; dev_notice(doc->dev, "factory-marked bad block: %d\n", badblock); } } exit: kfree(buf); return 0; } static int docg4_block_markbad(struct mtd_info *mtd, loff_t ofs) { /* * Mark a block as bad. Bad blocks are marked in the oob area of the * first page of the block. The default scan_bbt() in the nand * infrastructure code works fine for building the memory-based bbt * during initialization, as does the nand infrastructure function that * checks if a block is bad by reading the bbt. This function replaces * the nand default because writes to oob-only are not supported. */ int ret, i; uint8_t *buf; struct nand_chip *nand = mtd->priv; struct docg4_priv *doc = nand->priv; struct nand_bbt_descr *bbtd = nand->badblock_pattern; int page = (int)(ofs >> nand->page_shift); uint32_t g4_addr = mtd_to_docg4_address(page, 0); dev_dbg(doc->dev, "%s: %08llx\n", __func__, ofs); if (unlikely(ofs & (DOCG4_BLOCK_SIZE - 1))) dev_warn(doc->dev, "%s: ofs %llx not start of block!\n", __func__, ofs); /* allocate blank buffer for page data */ buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL); if (buf == NULL) return -ENOMEM; /* write bit-wise negation of pattern to oob buffer */ memset(nand->oob_poi, 0xff, mtd->oobsize); for (i = 0; i < bbtd->len; i++) nand->oob_poi[bbtd->offs + i] = ~bbtd->pattern[i]; /* write first page of block */ write_page_prologue(mtd, g4_addr); docg4_write_page(mtd, nand, buf, 1); ret = pageprog(mtd); kfree(buf); return ret; } static int docg4_block_neverbad(struct mtd_info *mtd, loff_t ofs, int getchip) { /* only called when module_param ignore_badblocks is set */ return 0; } static int docg4_suspend(struct platform_device *pdev, pm_message_t state) { /* * Put the device into "deep power-down" mode. Note that CE# must be * deasserted for this to take effect. The xscale, e.g., can be * configured to float this signal when the processor enters power-down, * and a suitable pull-up ensures its deassertion. */ int i; uint8_t pwr_down; struct docg4_priv *doc = platform_get_drvdata(pdev); void __iomem *docptr = doc->virtadr; dev_dbg(doc->dev, "%s...\n", __func__); /* poll the register that tells us we're ready to go to sleep */ for (i = 0; i < 10; i++) { pwr_down = readb(docptr + DOC_POWERMODE); if (pwr_down & DOC_POWERDOWN_READY) break; usleep_range(1000, 4000); } if (pwr_down & DOC_POWERDOWN_READY) { dev_err(doc->dev, "suspend failed; " "timeout polling DOC_POWERDOWN_READY\n"); return -EIO; } writew(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN, docptr + DOC_ASICMODE); writew(~(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN), docptr + DOC_ASICMODECONFIRM); write_nop(docptr); return 0; } static int docg4_resume(struct platform_device *pdev) { /* * Exit power-down. Twelve consecutive reads of the address below * accomplishes this, assuming CE# has been asserted. */ struct docg4_priv *doc = platform_get_drvdata(pdev); void __iomem *docptr = doc->virtadr; int i; dev_dbg(doc->dev, "%s...\n", __func__); for (i = 0; i < 12; i++) readb(docptr + 0x1fff); return 0; } static void __init init_mtd_structs(struct mtd_info *mtd) { /* initialize mtd and nand data structures */ /* * Note that some of the following initializations are not usually * required within a nand driver because they are performed by the nand * infrastructure code as part of nand_scan(). In this case they need * to be initialized here because we skip call to nand_scan_ident() (the * first half of nand_scan()). The call to nand_scan_ident() is skipped * because for this device the chip id is not read in the manner of a * standard nand device. Unfortunately, nand_scan_ident() does other * things as well, such as call nand_set_defaults(). */ struct nand_chip *nand = mtd->priv; struct docg4_priv *doc = nand->priv; mtd->size = DOCG4_CHIP_SIZE; mtd->name = "Msys_Diskonchip_G4"; mtd->writesize = DOCG4_PAGE_SIZE; mtd->erasesize = DOCG4_BLOCK_SIZE; mtd->oobsize = DOCG4_OOB_SIZE; nand->chipsize = DOCG4_CHIP_SIZE; nand->chip_shift = DOCG4_CHIP_SHIFT; nand->bbt_erase_shift = nand->phys_erase_shift = DOCG4_ERASE_SHIFT; nand->chip_delay = 20; nand->page_shift = DOCG4_PAGE_SHIFT; nand->pagemask = 0x3ffff; nand->badblockpos = NAND_LARGE_BADBLOCK_POS; nand->badblockbits = 8; nand->ecc.layout = &docg4_oobinfo; nand->ecc.mode = NAND_ECC_HW_SYNDROME; nand->ecc.size = DOCG4_PAGE_SIZE; nand->ecc.prepad = 8; nand->ecc.bytes = 8; nand->ecc.strength = DOCG4_T; nand->options = NAND_BUSWIDTH_16 | NAND_NO_SUBPAGE_WRITE; nand->IO_ADDR_R = nand->IO_ADDR_W = doc->virtadr + DOC_IOSPACE_DATA; nand->controller = &nand->hwcontrol; spin_lock_init(&nand->controller->lock); init_waitqueue_head(&nand->controller->wq); /* methods */ nand->cmdfunc = docg4_command; nand->waitfunc = docg4_wait; nand->select_chip = docg4_select_chip; nand->read_byte = docg4_read_byte; nand->block_markbad = docg4_block_markbad; nand->read_buf = docg4_read_buf; nand->write_buf = docg4_write_buf16; nand->erase_cmd = docg4_erase_block; nand->ecc.read_page = docg4_read_page; nand->ecc.write_page = docg4_write_page; nand->ecc.read_page_raw = docg4_read_page_raw; nand->ecc.write_page_raw = docg4_write_page_raw; nand->ecc.read_oob = docg4_read_oob; nand->ecc.write_oob = docg4_write_oob; /* * The way the nand infrastructure code is written, a memory-based bbt * is not created if NAND_SKIP_BBTSCAN is set. With no memory bbt, * nand->block_bad() is used. So when ignoring bad blocks, we skip the * scan and define a dummy block_bad() which always returns 0. */ if (ignore_badblocks) { nand->options |= NAND_SKIP_BBTSCAN; nand->block_bad = docg4_block_neverbad; } } static int __init read_id_reg(struct mtd_info *mtd) { struct nand_chip *nand = mtd->priv; struct docg4_priv *doc = nand->priv; void __iomem *docptr = doc->virtadr; uint16_t id1, id2; /* check for presence of g4 chip by reading id registers */ id1 = readw(docptr + DOC_CHIPID); id1 = readw(docptr + DOCG4_MYSTERY_REG); id2 = readw(docptr + DOC_CHIPID_INV); id2 = readw(docptr + DOCG4_MYSTERY_REG); if (id1 == DOCG4_IDREG1_VALUE && id2 == DOCG4_IDREG2_VALUE) { dev_info(doc->dev, "NAND device: 128MiB Diskonchip G4 detected\n"); return 0; } return -ENODEV; } static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL }; static int __init probe_docg4(struct platform_device *pdev) { struct mtd_info *mtd; struct nand_chip *nand; void __iomem *virtadr; struct docg4_priv *doc; int len, retval; struct resource *r; struct device *dev = &pdev->dev; r = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (r == NULL) { dev_err(dev, "no io memory resource defined!\n"); return -ENODEV; } virtadr = ioremap(r->start, resource_size(r)); if (!virtadr) { dev_err(dev, "Diskonchip ioremap failed: %pR\n", r); return -EIO; } len = sizeof(struct mtd_info) + sizeof(struct nand_chip) + sizeof(struct docg4_priv); mtd = kzalloc(len, GFP_KERNEL); if (mtd == NULL) { retval = -ENOMEM; goto fail; } nand = (struct nand_chip *) (mtd + 1); doc = (struct docg4_priv *) (nand + 1); mtd->priv = nand; nand->priv = doc; mtd->owner = THIS_MODULE; doc->virtadr = virtadr; doc->dev = dev; init_mtd_structs(mtd); /* initialize kernel bch algorithm */ doc->bch = init_bch(DOCG4_M, DOCG4_T, DOCG4_PRIMITIVE_POLY); if (doc->bch == NULL) { retval = -EINVAL; goto fail; } platform_set_drvdata(pdev, doc); reset(mtd); retval = read_id_reg(mtd); if (retval == -ENODEV) { dev_warn(dev, "No diskonchip G4 device found.\n"); goto fail; } retval = nand_scan_tail(mtd); if (retval) goto fail; retval = read_factory_bbt(mtd); if (retval) goto fail; retval = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0); if (retval) goto fail; doc->mtd = mtd; return 0; fail: iounmap(virtadr); if (mtd) { /* re-declarations avoid compiler warning */ struct nand_chip *nand = mtd->priv; struct docg4_priv *doc = nand->priv; nand_release(mtd); /* deletes partitions and mtd devices */ free_bch(doc->bch); kfree(mtd); } return retval; } static int __exit cleanup_docg4(struct platform_device *pdev) { struct docg4_priv *doc = platform_get_drvdata(pdev); nand_release(doc->mtd); free_bch(doc->bch); kfree(doc->mtd); iounmap(doc->virtadr); return 0; } static struct platform_driver docg4_driver = { .driver = { .name = "docg4", .owner = THIS_MODULE, }, .suspend = docg4_suspend, .resume = docg4_resume, .remove = __exit_p(cleanup_docg4), }; module_platform_driver_probe(docg4_driver, probe_docg4); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Mike Dunn"); MODULE_DESCRIPTION("M-Systems DiskOnChip G4 device driver");