/* ** DINO manager ** ** (c) Copyright 1999 Red Hat Software ** (c) Copyright 1999 SuSE GmbH ** (c) Copyright 1999,2000 Hewlett-Packard Company ** (c) Copyright 2000 Grant Grundler ** (c) Copyright 2006 Helge Deller ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This module provides access to Dino PCI bus (config/IOport spaces) ** and helps manage Dino IRQ lines. ** ** Dino interrupt handling is a bit complicated. ** Dino always writes to the broadcast EIR via irr0 for now. ** (BIG WARNING: using broadcast EIR is a really bad thing for SMP!) ** Only one processor interrupt is used for the 11 IRQ line ** inputs to dino. ** ** The different between Built-in Dino and Card-Mode ** dino is in chip initialization and pci device initialization. ** ** Linux drivers can only use Card-Mode Dino if pci devices I/O port ** BARs are configured and used by the driver. Programming MMIO address ** requires substantial knowledge of available Host I/O address ranges ** is currently not supported. Port/Config accessor functions are the ** same. "BIOS" differences are handled within the existing routines. */ /* Changes : ** 2001-06-14 : Clement Moyroud (moyroudc@esiee.fr) ** - added support for the integrated RS232. */ /* ** TODO: create a virtual address for each Dino HPA. ** GSC code might be able to do this since IODC data tells us ** how many pages are used. PCI subsystem could (must?) do this ** for PCI drivers devices which implement/use MMIO registers. */ #include <linux/delay.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/pci.h> #include <linux/init.h> #include <linux/ioport.h> #include <linux/slab.h> #include <linux/interrupt.h> /* for struct irqaction */ #include <linux/spinlock.h> /* for spinlock_t and prototypes */ #include <asm/pdc.h> #include <asm/page.h> #include <asm/io.h> #include <asm/hardware.h> #include "gsc.h" #undef DINO_DEBUG #ifdef DINO_DEBUG #define DBG(x...) printk(x) #else #define DBG(x...) #endif /* ** Config accessor functions only pass in the 8-bit bus number ** and not the 8-bit "PCI Segment" number. Each Dino will be ** assigned a PCI bus number based on "when" it's discovered. ** ** The "secondary" bus number is set to this before calling ** pci_scan_bus(). If any PPB's are present, the scan will ** discover them and update the "secondary" and "subordinate" ** fields in Dino's pci_bus structure. ** ** Changes in the configuration *will* result in a different ** bus number for each dino. */ #define is_card_dino(id) ((id)->hw_type == HPHW_A_DMA) #define is_cujo(id) ((id)->hversion == 0x682) #define DINO_IAR0 0x004 #define DINO_IODC_ADDR 0x008 #define DINO_IODC_DATA_0 0x008 #define DINO_IODC_DATA_1 0x008 #define DINO_IRR0 0x00C #define DINO_IAR1 0x010 #define DINO_IRR1 0x014 #define DINO_IMR 0x018 #define DINO_IPR 0x01C #define DINO_TOC_ADDR 0x020 #define DINO_ICR 0x024 #define DINO_ILR 0x028 #define DINO_IO_COMMAND 0x030 #define DINO_IO_STATUS 0x034 #define DINO_IO_CONTROL 0x038 #define DINO_IO_GSC_ERR_RESP 0x040 #define DINO_IO_ERR_INFO 0x044 #define DINO_IO_PCI_ERR_RESP 0x048 #define DINO_IO_FBB_EN 0x05c #define DINO_IO_ADDR_EN 0x060 #define DINO_PCI_ADDR 0x064 #define DINO_CONFIG_DATA 0x068 #define DINO_IO_DATA 0x06c #define DINO_MEM_DATA 0x070 /* Dino 3.x only */ #define DINO_GSC2X_CONFIG 0x7b4 #define DINO_GMASK 0x800 #define DINO_PAMR 0x804 #define DINO_PAPR 0x808 #define DINO_DAMODE 0x80c #define DINO_PCICMD 0x810 #define DINO_PCISTS 0x814 #define DINO_MLTIM 0x81c #define DINO_BRDG_FEAT 0x820 #define DINO_PCIROR 0x824 #define DINO_PCIWOR 0x828 #define DINO_TLTIM 0x830 #define DINO_IRQS 11 /* bits 0-10 are architected */ #define DINO_IRR_MASK 0x5ff /* only 10 bits are implemented */ #define DINO_LOCAL_IRQS (DINO_IRQS+1) #define DINO_MASK_IRQ(x) (1<<(x)) #define PCIINTA 0x001 #define PCIINTB 0x002 #define PCIINTC 0x004 #define PCIINTD 0x008 #define PCIINTE 0x010 #define PCIINTF 0x020 #define GSCEXTINT 0x040 /* #define xxx 0x080 - bit 7 is "default" */ /* #define xxx 0x100 - bit 8 not used */ /* #define xxx 0x200 - bit 9 not used */ #define RS232INT 0x400 struct dino_device { struct pci_hba_data hba; /* 'C' inheritance - must be first */ spinlock_t dinosaur_pen; unsigned long txn_addr; /* EIR addr to generate interrupt */ u32 txn_data; /* EIR data assign to each dino */ u32 imr; /* IRQ's which are enabled */ int global_irq[DINO_LOCAL_IRQS]; /* map IMR bit to global irq */ #ifdef DINO_DEBUG unsigned int dino_irr0; /* save most recent IRQ line stat */ #endif }; /* Looks nice and keeps the compiler happy */ #define DINO_DEV(d) ((struct dino_device *) d) /* * Dino Configuration Space Accessor Functions */ #define DINO_CFG_TOK(bus,dfn,pos) ((u32) ((bus)<<16 | (dfn)<<8 | (pos))) /* * keep the current highest bus count to assist in allocating busses. This * tries to keep a global bus count total so that when we discover an * entirely new bus, it can be given a unique bus number. */ static int dino_current_bus = 0; static int dino_cfg_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { struct dino_device *d = DINO_DEV(parisc_walk_tree(bus->bridge)); u32 local_bus = (bus->parent == NULL) ? 0 : bus->busn_res.start; u32 v = DINO_CFG_TOK(local_bus, devfn, where & ~3); void __iomem *base_addr = d->hba.base_addr; unsigned long flags; DBG("%s: %p, %d, %d, %d\n", __func__, base_addr, devfn, where, size); spin_lock_irqsave(&d->dinosaur_pen, flags); /* tell HW which CFG address */ __raw_writel(v, base_addr + DINO_PCI_ADDR); /* generate cfg read cycle */ if (size == 1) { *val = readb(base_addr + DINO_CONFIG_DATA + (where & 3)); } else if (size == 2) { *val = readw(base_addr + DINO_CONFIG_DATA + (where & 2)); } else if (size == 4) { *val = readl(base_addr + DINO_CONFIG_DATA); } spin_unlock_irqrestore(&d->dinosaur_pen, flags); return 0; } /* * Dino address stepping "feature": * When address stepping, Dino attempts to drive the bus one cycle too soon * even though the type of cycle (config vs. MMIO) might be different. * The read of Ven/Prod ID is harmless and avoids Dino's address stepping. */ static int dino_cfg_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { struct dino_device *d = DINO_DEV(parisc_walk_tree(bus->bridge)); u32 local_bus = (bus->parent == NULL) ? 0 : bus->busn_res.start; u32 v = DINO_CFG_TOK(local_bus, devfn, where & ~3); void __iomem *base_addr = d->hba.base_addr; unsigned long flags; DBG("%s: %p, %d, %d, %d\n", __func__, base_addr, devfn, where, size); spin_lock_irqsave(&d->dinosaur_pen, flags); /* avoid address stepping feature */ __raw_writel(v & 0xffffff00, base_addr + DINO_PCI_ADDR); __raw_readl(base_addr + DINO_CONFIG_DATA); /* tell HW which CFG address */ __raw_writel(v, base_addr + DINO_PCI_ADDR); /* generate cfg read cycle */ if (size == 1) { writeb(val, base_addr + DINO_CONFIG_DATA + (where & 3)); } else if (size == 2) { writew(val, base_addr + DINO_CONFIG_DATA + (where & 2)); } else if (size == 4) { writel(val, base_addr + DINO_CONFIG_DATA); } spin_unlock_irqrestore(&d->dinosaur_pen, flags); return 0; } static struct pci_ops dino_cfg_ops = { .read = dino_cfg_read, .write = dino_cfg_write, }; /* * Dino "I/O Port" Space Accessor Functions * * Many PCI devices don't require use of I/O port space (eg Tulip, * NCR720) since they export the same registers to both MMIO and * I/O port space. Performance is going to stink if drivers use * I/O port instead of MMIO. */ #define DINO_PORT_IN(type, size, mask) \ static u##size dino_in##size (struct pci_hba_data *d, u16 addr) \ { \ u##size v; \ unsigned long flags; \ spin_lock_irqsave(&(DINO_DEV(d)->dinosaur_pen), flags); \ /* tell HW which IO Port address */ \ __raw_writel((u32) addr, d->base_addr + DINO_PCI_ADDR); \ /* generate I/O PORT read cycle */ \ v = read##type(d->base_addr+DINO_IO_DATA+(addr&mask)); \ spin_unlock_irqrestore(&(DINO_DEV(d)->dinosaur_pen), flags); \ return v; \ } DINO_PORT_IN(b, 8, 3) DINO_PORT_IN(w, 16, 2) DINO_PORT_IN(l, 32, 0) #define DINO_PORT_OUT(type, size, mask) \ static void dino_out##size (struct pci_hba_data *d, u16 addr, u##size val) \ { \ unsigned long flags; \ spin_lock_irqsave(&(DINO_DEV(d)->dinosaur_pen), flags); \ /* tell HW which IO port address */ \ __raw_writel((u32) addr, d->base_addr + DINO_PCI_ADDR); \ /* generate cfg write cycle */ \ write##type(val, d->base_addr+DINO_IO_DATA+(addr&mask)); \ spin_unlock_irqrestore(&(DINO_DEV(d)->dinosaur_pen), flags); \ } DINO_PORT_OUT(b, 8, 3) DINO_PORT_OUT(w, 16, 2) DINO_PORT_OUT(l, 32, 0) static struct pci_port_ops dino_port_ops = { .inb = dino_in8, .inw = dino_in16, .inl = dino_in32, .outb = dino_out8, .outw = dino_out16, .outl = dino_out32 }; static void dino_mask_irq(struct irq_data *d) { struct dino_device *dino_dev = irq_data_get_irq_chip_data(d); int local_irq = gsc_find_local_irq(d->irq, dino_dev->global_irq, DINO_LOCAL_IRQS); DBG(KERN_WARNING "%s(0x%p, %d)\n", __func__, dino_dev, d->irq); /* Clear the matching bit in the IMR register */ dino_dev->imr &= ~(DINO_MASK_IRQ(local_irq)); __raw_writel(dino_dev->imr, dino_dev->hba.base_addr+DINO_IMR); } static void dino_unmask_irq(struct irq_data *d) { struct dino_device *dino_dev = irq_data_get_irq_chip_data(d); int local_irq = gsc_find_local_irq(d->irq, dino_dev->global_irq, DINO_LOCAL_IRQS); u32 tmp; DBG(KERN_WARNING "%s(0x%p, %d)\n", __func__, dino_dev, d->irq); /* ** clear pending IRQ bits ** ** This does NOT change ILR state! ** See comment below for ILR usage. */ __raw_readl(dino_dev->hba.base_addr+DINO_IPR); /* set the matching bit in the IMR register */ dino_dev->imr |= DINO_MASK_IRQ(local_irq); /* used in dino_isr() */ __raw_writel( dino_dev->imr, dino_dev->hba.base_addr+DINO_IMR); /* Emulate "Level Triggered" Interrupt ** Basically, a driver is blowing it if the IRQ line is asserted ** while the IRQ is disabled. But tulip.c seems to do that.... ** Give 'em a kluge award and a nice round of applause! ** ** The gsc_write will generate an interrupt which invokes dino_isr(). ** dino_isr() will read IPR and find nothing. But then catch this ** when it also checks ILR. */ tmp = __raw_readl(dino_dev->hba.base_addr+DINO_ILR); if (tmp & DINO_MASK_IRQ(local_irq)) { DBG(KERN_WARNING "%s(): IRQ asserted! (ILR 0x%x)\n", __func__, tmp); gsc_writel(dino_dev->txn_data, dino_dev->txn_addr); } } static struct irq_chip dino_interrupt_type = { .name = "GSC-PCI", .irq_unmask = dino_unmask_irq, .irq_mask = dino_mask_irq, }; /* * Handle a Processor interrupt generated by Dino. * * ilr_loop counter is a kluge to prevent a "stuck" IRQ line from * wedging the CPU. Could be removed or made optional at some point. */ static irqreturn_t dino_isr(int irq, void *intr_dev) { struct dino_device *dino_dev = intr_dev; u32 mask; int ilr_loop = 100; /* read and acknowledge pending interrupts */ #ifdef DINO_DEBUG dino_dev->dino_irr0 = #endif mask = __raw_readl(dino_dev->hba.base_addr+DINO_IRR0) & DINO_IRR_MASK; if (mask == 0) return IRQ_NONE; ilr_again: do { int local_irq = __ffs(mask); int irq = dino_dev->global_irq[local_irq]; DBG(KERN_DEBUG "%s(%d, %p) mask 0x%x\n", __func__, irq, intr_dev, mask); generic_handle_irq(irq); mask &= ~(1 << local_irq); } while (mask); /* Support for level triggered IRQ lines. ** ** Dropping this support would make this routine *much* faster. ** But since PCI requires level triggered IRQ line to share lines... ** device drivers may assume lines are level triggered (and not ** edge triggered like EISA/ISA can be). */ mask = __raw_readl(dino_dev->hba.base_addr+DINO_ILR) & dino_dev->imr; if (mask) { if (--ilr_loop > 0) goto ilr_again; printk(KERN_ERR "Dino 0x%p: stuck interrupt %d\n", dino_dev->hba.base_addr, mask); return IRQ_NONE; } return IRQ_HANDLED; } static void dino_assign_irq(struct dino_device *dino, int local_irq, int *irqp) { int irq = gsc_assign_irq(&dino_interrupt_type, dino); if (irq == NO_IRQ) return; *irqp = irq; dino->global_irq[local_irq] = irq; } static void dino_choose_irq(struct parisc_device *dev, void *ctrl) { int irq; struct dino_device *dino = ctrl; switch (dev->id.sversion) { case 0x00084: irq = 8; break; /* PS/2 */ case 0x0008c: irq = 10; break; /* RS232 */ case 0x00096: irq = 8; break; /* PS/2 */ default: return; /* Unknown */ } dino_assign_irq(dino, irq, &dev->irq); } /* * Cirrus 6832 Cardbus reports wrong irq on RDI Tadpole PARISC Laptop (deller@gmx.de) * (the irqs are off-by-one, not sure yet if this is a cirrus, dino-hardware or dino-driver problem...) */ static void quirk_cirrus_cardbus(struct pci_dev *dev) { u8 new_irq = dev->irq - 1; printk(KERN_INFO "PCI: Cirrus Cardbus IRQ fixup for %s, from %d to %d\n", pci_name(dev), dev->irq, new_irq); dev->irq = new_irq; } DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_CIRRUS, PCI_DEVICE_ID_CIRRUS_6832, quirk_cirrus_cardbus ); static void __init dino_bios_init(void) { DBG("dino_bios_init\n"); } /* * dino_card_setup - Set up the memory space for a Dino in card mode. * @bus: the bus under this dino * * Claim an 8MB chunk of unused IO space and call the generic PCI routines * to set up the addresses of the devices on this bus. */ #define _8MB 0x00800000UL static void __init dino_card_setup(struct pci_bus *bus, void __iomem *base_addr) { int i; struct dino_device *dino_dev = DINO_DEV(parisc_walk_tree(bus->bridge)); struct resource *res; char name[128]; int size; res = &dino_dev->hba.lmmio_space; res->flags = IORESOURCE_MEM; size = scnprintf(name, sizeof(name), "Dino LMMIO (%s)", dev_name(bus->bridge)); res->name = kmalloc(size+1, GFP_KERNEL); if(res->name) strcpy((char *)res->name, name); else res->name = dino_dev->hba.lmmio_space.name; if (ccio_allocate_resource(dino_dev->hba.dev, res, _8MB, F_EXTEND(0xf0000000UL) | _8MB, F_EXTEND(0xffffffffUL) &~ _8MB, _8MB) < 0) { struct pci_dev *dev, *tmp; printk(KERN_ERR "Dino: cannot attach bus %s\n", dev_name(bus->bridge)); /* kill the bus, we can't do anything with it */ list_for_each_entry_safe(dev, tmp, &bus->devices, bus_list) { list_del(&dev->bus_list); } return; } bus->resource[1] = res; bus->resource[0] = &(dino_dev->hba.io_space); /* Now tell dino what range it has */ for (i = 1; i < 31; i++) { if (res->start == F_EXTEND(0xf0000000UL | (i * _8MB))) break; } DBG("DINO GSC WRITE i=%d, start=%lx, dino addr = %p\n", i, res->start, base_addr + DINO_IO_ADDR_EN); __raw_writel(1 << i, base_addr + DINO_IO_ADDR_EN); } static void __init dino_card_fixup(struct pci_dev *dev) { u32 irq_pin; /* ** REVISIT: card-mode PCI-PCI expansion chassis do exist. ** Not sure they were ever productized. ** Die here since we'll die later in dino_inb() anyway. */ if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { panic("Card-Mode Dino: PCI-PCI Bridge not supported\n"); } /* ** Set Latency Timer to 0xff (not a shared bus) ** Set CACHELINE_SIZE. */ dino_cfg_write(dev->bus, dev->devfn, PCI_CACHE_LINE_SIZE, 2, 0xff00 | L1_CACHE_BYTES/4); /* ** Program INT_LINE for card-mode devices. ** The cards are hardwired according to this algorithm. ** And it doesn't matter if PPB's are present or not since ** the IRQ lines bypass the PPB. ** ** "-1" converts INTA-D (1-4) to PCIINTA-D (0-3) range. ** The additional "-1" adjusts for skewing the IRQ<->slot. */ dino_cfg_read(dev->bus, dev->devfn, PCI_INTERRUPT_PIN, 1, &irq_pin); dev->irq = pci_swizzle_interrupt_pin(dev, irq_pin) - 1; /* Shouldn't really need to do this but it's in case someone tries ** to bypass PCI services and look at the card themselves. */ dino_cfg_write(dev->bus, dev->devfn, PCI_INTERRUPT_LINE, 1, dev->irq); } /* The alignment contraints for PCI bridges under dino */ #define DINO_BRIDGE_ALIGN 0x100000 static void __init dino_fixup_bus(struct pci_bus *bus) { struct pci_dev *dev; struct dino_device *dino_dev = DINO_DEV(parisc_walk_tree(bus->bridge)); DBG(KERN_WARNING "%s(0x%p) bus %d platform_data 0x%p\n", __func__, bus, bus->busn_res.start, bus->bridge->platform_data); /* Firmware doesn't set up card-mode dino, so we have to */ if (is_card_dino(&dino_dev->hba.dev->id)) { dino_card_setup(bus, dino_dev->hba.base_addr); } else if (bus->parent) { int i; pci_read_bridge_bases(bus); for(i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { if((bus->self->resource[i].flags & (IORESOURCE_IO | IORESOURCE_MEM)) == 0) continue; if(bus->self->resource[i].flags & IORESOURCE_MEM) { /* There's a quirk to alignment of * bridge memory resources: the start * is the alignment and start-end is * the size. However, firmware will * have assigned start and end, so we * need to take this into account */ bus->self->resource[i].end = bus->self->resource[i].end - bus->self->resource[i].start + DINO_BRIDGE_ALIGN; bus->self->resource[i].start = DINO_BRIDGE_ALIGN; } DBG("DEBUG %s assigning %d [%pR]\n", dev_name(&bus->self->dev), i, &bus->self->resource[i]); WARN_ON(pci_assign_resource(bus->self, i)); DBG("DEBUG %s after assign %d [%pR]\n", dev_name(&bus->self->dev), i, &bus->self->resource[i]); } } list_for_each_entry(dev, &bus->devices, bus_list) { if (is_card_dino(&dino_dev->hba.dev->id)) dino_card_fixup(dev); /* ** P2PB's only have 2 BARs, no IRQs. ** I'd like to just ignore them for now. */ if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) continue; /* null out the ROM resource if there is one (we don't * care about an expansion rom on parisc, since it * usually contains (x86) bios code) */ dev->resource[PCI_ROM_RESOURCE].flags = 0; if(dev->irq == 255) { #define DINO_FIX_UNASSIGNED_INTERRUPTS #ifdef DINO_FIX_UNASSIGNED_INTERRUPTS /* This code tries to assign an unassigned * interrupt. Leave it disabled unless you * *really* know what you're doing since the * pin<->interrupt line mapping varies by bus * and machine */ u32 irq_pin; dino_cfg_read(dev->bus, dev->devfn, PCI_INTERRUPT_PIN, 1, &irq_pin); irq_pin = pci_swizzle_interrupt_pin(dev, irq_pin) - 1; printk(KERN_WARNING "Device %s has undefined IRQ, " "setting to %d\n", pci_name(dev), irq_pin); dino_cfg_write(dev->bus, dev->devfn, PCI_INTERRUPT_LINE, 1, irq_pin); dino_assign_irq(dino_dev, irq_pin, &dev->irq); #else dev->irq = 65535; printk(KERN_WARNING "Device %s has unassigned IRQ\n", pci_name(dev)); #endif } else { /* Adjust INT_LINE for that busses region */ dino_assign_irq(dino_dev, dev->irq, &dev->irq); } } } static struct pci_bios_ops dino_bios_ops = { .init = dino_bios_init, .fixup_bus = dino_fixup_bus }; /* * Initialise a DINO controller chip */ static void __init dino_card_init(struct dino_device *dino_dev) { u32 brdg_feat = 0x00784e05; unsigned long status; status = __raw_readl(dino_dev->hba.base_addr+DINO_IO_STATUS); if (status & 0x0000ff80) { __raw_writel(0x00000005, dino_dev->hba.base_addr+DINO_IO_COMMAND); udelay(1); } __raw_writel(0x00000000, dino_dev->hba.base_addr+DINO_GMASK); __raw_writel(0x00000001, dino_dev->hba.base_addr+DINO_IO_FBB_EN); __raw_writel(0x00000000, dino_dev->hba.base_addr+DINO_ICR); #if 1 /* REVISIT - should be a runtime check (eg if (CPU_IS_PCX_L) ...) */ /* ** PCX-L processors don't support XQL like Dino wants it. ** PCX-L2 ignore XQL signal and it doesn't matter. */ brdg_feat &= ~0x4; /* UXQL */ #endif __raw_writel( brdg_feat, dino_dev->hba.base_addr+DINO_BRDG_FEAT); /* ** Don't enable address decoding until we know which I/O range ** currently is available from the host. Only affects MMIO ** and not I/O port space. */ __raw_writel(0x00000000, dino_dev->hba.base_addr+DINO_IO_ADDR_EN); __raw_writel(0x00000000, dino_dev->hba.base_addr+DINO_DAMODE); __raw_writel(0x00222222, dino_dev->hba.base_addr+DINO_PCIROR); __raw_writel(0x00222222, dino_dev->hba.base_addr+DINO_PCIWOR); __raw_writel(0x00000040, dino_dev->hba.base_addr+DINO_MLTIM); __raw_writel(0x00000080, dino_dev->hba.base_addr+DINO_IO_CONTROL); __raw_writel(0x0000008c, dino_dev->hba.base_addr+DINO_TLTIM); /* Disable PAMR before writing PAPR */ __raw_writel(0x0000007e, dino_dev->hba.base_addr+DINO_PAMR); __raw_writel(0x0000007f, dino_dev->hba.base_addr+DINO_PAPR); __raw_writel(0x00000000, dino_dev->hba.base_addr+DINO_PAMR); /* ** Dino ERS encourages enabling FBB (0x6f). ** We can't until we know *all* devices below us can support it. ** (Something in device configuration header tells us). */ __raw_writel(0x0000004f, dino_dev->hba.base_addr+DINO_PCICMD); /* Somewhere, the PCI spec says give devices 1 second ** to recover from the #RESET being de-asserted. ** Experience shows most devices only need 10ms. ** This short-cut speeds up booting significantly. */ mdelay(pci_post_reset_delay); } static int __init dino_bridge_init(struct dino_device *dino_dev, const char *name) { unsigned long io_addr; int result, i, count=0; struct resource *res, *prevres = NULL; /* * Decoding IO_ADDR_EN only works for Built-in Dino * since PDC has already initialized this. */ io_addr = __raw_readl(dino_dev->hba.base_addr + DINO_IO_ADDR_EN); if (io_addr == 0) { printk(KERN_WARNING "%s: No PCI devices enabled.\n", name); return -ENODEV; } res = &dino_dev->hba.lmmio_space; for (i = 0; i < 32; i++) { unsigned long start, end; if((io_addr & (1 << i)) == 0) continue; start = F_EXTEND(0xf0000000UL) | (i << 23); end = start + 8 * 1024 * 1024 - 1; DBG("DINO RANGE %d is at 0x%lx-0x%lx\n", count, start, end); if(prevres && prevres->end + 1 == start) { prevres->end = end; } else { if(count >= DINO_MAX_LMMIO_RESOURCES) { printk(KERN_ERR "%s is out of resource windows for range %d (0x%lx-0x%lx)\n", name, count, start, end); break; } prevres = res; res->start = start; res->end = end; res->flags = IORESOURCE_MEM; res->name = kmalloc(64, GFP_KERNEL); if(res->name) snprintf((char *)res->name, 64, "%s LMMIO %d", name, count); res++; count++; } } res = &dino_dev->hba.lmmio_space; for(i = 0; i < DINO_MAX_LMMIO_RESOURCES; i++) { if(res[i].flags == 0) break; result = ccio_request_resource(dino_dev->hba.dev, &res[i]); if (result < 0) { printk(KERN_ERR "%s: failed to claim PCI Bus address " "space %d (%pR)!\n", name, i, &res[i]); return result; } } return 0; } static int __init dino_common_init(struct parisc_device *dev, struct dino_device *dino_dev, const char *name) { int status; u32 eim; struct gsc_irq gsc_irq; struct resource *res; pcibios_register_hba(&dino_dev->hba); pci_bios = &dino_bios_ops; /* used by pci_scan_bus() */ pci_port = &dino_port_ops; /* ** Note: SMP systems can make use of IRR1/IAR1 registers ** But it won't buy much performance except in very ** specific applications/configurations. Note Dino ** still only has 11 IRQ input lines - just map some of them ** to a different processor. */ dev->irq = gsc_alloc_irq(&gsc_irq); dino_dev->txn_addr = gsc_irq.txn_addr; dino_dev->txn_data = gsc_irq.txn_data; eim = ((u32) gsc_irq.txn_addr) | gsc_irq.txn_data; /* ** Dino needs a PA "IRQ" to get a processor's attention. ** arch/parisc/kernel/irq.c returns an EIRR bit. */ if (dev->irq < 0) { printk(KERN_WARNING "%s: gsc_alloc_irq() failed\n", name); return 1; } status = request_irq(dev->irq, dino_isr, 0, name, dino_dev); if (status) { printk(KERN_WARNING "%s: request_irq() failed with %d\n", name, status); return 1; } /* Support the serial port which is sometimes attached on built-in * Dino / Cujo chips. */ gsc_fixup_irqs(dev, dino_dev, dino_choose_irq); /* ** This enables DINO to generate interrupts when it sees ** any of its inputs *change*. Just asserting an IRQ ** before it's enabled (ie unmasked) isn't good enough. */ __raw_writel(eim, dino_dev->hba.base_addr+DINO_IAR0); /* ** Some platforms don't clear Dino's IRR0 register at boot time. ** Reading will clear it now. */ __raw_readl(dino_dev->hba.base_addr+DINO_IRR0); /* allocate I/O Port resource region */ res = &dino_dev->hba.io_space; if (!is_cujo(&dev->id)) { res->name = "Dino I/O Port"; } else { res->name = "Cujo I/O Port"; } res->start = HBA_PORT_BASE(dino_dev->hba.hba_num); res->end = res->start + (HBA_PORT_SPACE_SIZE - 1); res->flags = IORESOURCE_IO; /* do not mark it busy ! */ if (request_resource(&ioport_resource, res) < 0) { printk(KERN_ERR "%s: request I/O Port region failed " "0x%lx/%lx (hpa 0x%p)\n", name, (unsigned long)res->start, (unsigned long)res->end, dino_dev->hba.base_addr); return 1; } return 0; } #define CUJO_RAVEN_ADDR F_EXTEND(0xf1000000UL) #define CUJO_FIREHAWK_ADDR F_EXTEND(0xf1604000UL) #define CUJO_RAVEN_BADPAGE 0x01003000UL #define CUJO_FIREHAWK_BADPAGE 0x01607000UL static const char *dino_vers[] = { "2.0", "2.1", "3.0", "3.1" }; static const char *cujo_vers[] = { "1.0", "2.0" }; void ccio_cujo20_fixup(struct parisc_device *dev, u32 iovp); /* ** Determine if dino should claim this chip (return 0) or not (return 1). ** If so, initialize the chip appropriately (card-mode vs bridge mode). ** Much of the initialization is common though. */ static int __init dino_probe(struct parisc_device *dev) { struct dino_device *dino_dev; // Dino specific control struct const char *version = "unknown"; char *name; int is_cujo = 0; LIST_HEAD(resources); struct pci_bus *bus; unsigned long hpa = dev->hpa.start; int max; name = "Dino"; if (is_card_dino(&dev->id)) { version = "3.x (card mode)"; } else { if (!is_cujo(&dev->id)) { if (dev->id.hversion_rev < 4) { version = dino_vers[dev->id.hversion_rev]; } } else { name = "Cujo"; is_cujo = 1; if (dev->id.hversion_rev < 2) { version = cujo_vers[dev->id.hversion_rev]; } } } printk("%s version %s found at 0x%lx\n", name, version, hpa); if (!request_mem_region(hpa, PAGE_SIZE, name)) { printk(KERN_ERR "DINO: Hey! Someone took my MMIO space (0x%ld)!\n", hpa); return 1; } /* Check for bugs */ if (is_cujo && dev->id.hversion_rev == 1) { #ifdef CONFIG_IOMMU_CCIO printk(KERN_WARNING "Enabling Cujo 2.0 bug workaround\n"); if (hpa == (unsigned long)CUJO_RAVEN_ADDR) { ccio_cujo20_fixup(dev, CUJO_RAVEN_BADPAGE); } else if (hpa == (unsigned long)CUJO_FIREHAWK_ADDR) { ccio_cujo20_fixup(dev, CUJO_FIREHAWK_BADPAGE); } else { printk("Don't recognise Cujo at address 0x%lx, not enabling workaround\n", hpa); } #endif } else if (!is_cujo && !is_card_dino(&dev->id) && dev->id.hversion_rev < 3) { printk(KERN_WARNING "The GSCtoPCI (Dino hrev %d) bus converter found may exhibit\n" "data corruption. See Service Note Numbers: A4190A-01, A4191A-01.\n" "Systems shipped after Aug 20, 1997 will not exhibit this problem.\n" "Models affected: C180, C160, C160L, B160L, and B132L workstations.\n\n", dev->id.hversion_rev); /* REVISIT: why are C200/C240 listed in the README table but not ** "Models affected"? Could be an omission in the original literature. */ } dino_dev = kzalloc(sizeof(struct dino_device), GFP_KERNEL); if (!dino_dev) { printk("dino_init_chip - couldn't alloc dino_device\n"); return 1; } dino_dev->hba.dev = dev; dino_dev->hba.base_addr = ioremap_nocache(hpa, 4096); dino_dev->hba.lmmio_space_offset = 0; /* CPU addrs == bus addrs */ spin_lock_init(&dino_dev->dinosaur_pen); dino_dev->hba.iommu = ccio_get_iommu(dev); if (is_card_dino(&dev->id)) { dino_card_init(dino_dev); } else { dino_bridge_init(dino_dev, name); } if (dino_common_init(dev, dino_dev, name)) return 1; dev->dev.platform_data = dino_dev; pci_add_resource_offset(&resources, &dino_dev->hba.io_space, HBA_PORT_BASE(dino_dev->hba.hba_num)); if (dino_dev->hba.lmmio_space.flags) pci_add_resource_offset(&resources, &dino_dev->hba.lmmio_space, dino_dev->hba.lmmio_space_offset); if (dino_dev->hba.elmmio_space.flags) pci_add_resource_offset(&resources, &dino_dev->hba.elmmio_space, dino_dev->hba.lmmio_space_offset); if (dino_dev->hba.gmmio_space.flags) pci_add_resource(&resources, &dino_dev->hba.gmmio_space); dino_dev->hba.bus_num.start = dino_current_bus; dino_dev->hba.bus_num.end = 255; dino_dev->hba.bus_num.flags = IORESOURCE_BUS; pci_add_resource(&resources, &dino_dev->hba.bus_num); /* ** It's not used to avoid chicken/egg problems ** with configuration accessor functions. */ dino_dev->hba.hba_bus = bus = pci_create_root_bus(&dev->dev, dino_current_bus, &dino_cfg_ops, NULL, &resources); if (!bus) { printk(KERN_ERR "ERROR: failed to scan PCI bus on %s (duplicate bus number %d?)\n", dev_name(&dev->dev), dino_current_bus); pci_free_resource_list(&resources); /* increment the bus number in case of duplicates */ dino_current_bus++; return 0; } max = pci_scan_child_bus(bus); pci_bus_update_busn_res_end(bus, max); /* This code *depends* on scanning being single threaded * if it isn't, this global bus number count will fail */ dino_current_bus = max + 1; pci_bus_assign_resources(bus); pci_bus_add_devices(bus); return 0; } /* * Normally, we would just test sversion. But the Elroy PCI adapter has * the same sversion as Dino, so we have to check hversion as well. * Unfortunately, the J2240 PDC reports the wrong hversion for the first * Dino, so we have to test for Dino, Cujo and Dino-in-a-J2240. * For card-mode Dino, most machines report an sversion of 9D. But 715 * and 725 firmware misreport it as 0x08080 for no adequately explained * reason. */ static struct parisc_device_id dino_tbl[] = { { HPHW_A_DMA, HVERSION_REV_ANY_ID, 0x004, 0x0009D },/* Card-mode Dino */ { HPHW_A_DMA, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x08080 }, /* XXX */ { HPHW_BRIDGE, HVERSION_REV_ANY_ID, 0x680, 0xa }, /* Bridge-mode Dino */ { HPHW_BRIDGE, HVERSION_REV_ANY_ID, 0x682, 0xa }, /* Bridge-mode Cujo */ { HPHW_BRIDGE, HVERSION_REV_ANY_ID, 0x05d, 0xa }, /* Dino in a J2240 */ { 0, } }; static struct parisc_driver dino_driver = { .name = "dino", .id_table = dino_tbl, .probe = dino_probe, }; /* * One time initialization to let the world know Dino is here. * This is the only routine which is NOT static. * Must be called exactly once before pci_init(). */ int __init dino_init(void) { register_parisc_driver(&dino_driver); return 0; }