/* * Adaptec AAC series RAID controller driver * (c) Copyright 2001 Red Hat Inc. * * based on the old aacraid driver that is.. * Adaptec aacraid device driver for Linux. * * Copyright (c) 2000-2010 Adaptec, Inc. * 2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * * Module Name: * dpcsup.c * * Abstract: All DPC processing routines for the cyclone board occur here. * * */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/types.h> #include <linux/spinlock.h> #include <linux/slab.h> #include <linux/completion.h> #include <linux/blkdev.h> #include <linux/semaphore.h> #include "aacraid.h" /** * aac_response_normal - Handle command replies * @q: Queue to read from * * This DPC routine will be run when the adapter interrupts us to let us * know there is a response on our normal priority queue. We will pull off * all QE there are and wake up all the waiters before exiting. We will * take a spinlock out on the queue before operating on it. */ unsigned int aac_response_normal(struct aac_queue * q) { struct aac_dev * dev = q->dev; struct aac_entry *entry; struct hw_fib * hwfib; struct fib * fib; int consumed = 0; unsigned long flags, mflags; spin_lock_irqsave(q->lock, flags); /* * Keep pulling response QEs off the response queue and waking * up the waiters until there are no more QEs. We then return * back to the system. If no response was requesed we just * deallocate the Fib here and continue. */ while(aac_consumer_get(dev, q, &entry)) { int fast; u32 index = le32_to_cpu(entry->addr); fast = index & 0x01; fib = &dev->fibs[index >> 2]; hwfib = fib->hw_fib_va; aac_consumer_free(dev, q, HostNormRespQueue); /* * Remove this fib from the Outstanding I/O queue. * But only if it has not already been timed out. * * If the fib has been timed out already, then just * continue. The caller has already been notified that * the fib timed out. */ dev->queues->queue[AdapNormCmdQueue].numpending--; if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) { spin_unlock_irqrestore(q->lock, flags); aac_fib_complete(fib); aac_fib_free(fib); spin_lock_irqsave(q->lock, flags); continue; } spin_unlock_irqrestore(q->lock, flags); if (fast) { /* * Doctor the fib */ *(__le32 *)hwfib->data = cpu_to_le32(ST_OK); hwfib->header.XferState |= cpu_to_le32(AdapterProcessed); fib->flags |= FIB_CONTEXT_FLAG_FASTRESP; } FIB_COUNTER_INCREMENT(aac_config.FibRecved); if (hwfib->header.Command == cpu_to_le16(NuFileSystem)) { __le32 *pstatus = (__le32 *)hwfib->data; if (*pstatus & cpu_to_le32(0xffff0000)) *pstatus = cpu_to_le32(ST_OK); } if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async)) { if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected)) FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved); else FIB_COUNTER_INCREMENT(aac_config.AsyncRecved); /* * NOTE: we cannot touch the fib after this * call, because it may have been deallocated. */ fib->flags &= FIB_CONTEXT_FLAG_FASTRESP; fib->callback(fib->callback_data, fib); } else { unsigned long flagv; spin_lock_irqsave(&fib->event_lock, flagv); if (!fib->done) { fib->done = 1; up(&fib->event_wait); } spin_unlock_irqrestore(&fib->event_lock, flagv); spin_lock_irqsave(&dev->manage_lock, mflags); dev->management_fib_count--; spin_unlock_irqrestore(&dev->manage_lock, mflags); FIB_COUNTER_INCREMENT(aac_config.NormalRecved); if (fib->done == 2) { spin_lock_irqsave(&fib->event_lock, flagv); fib->done = 0; spin_unlock_irqrestore(&fib->event_lock, flagv); aac_fib_complete(fib); aac_fib_free(fib); } } consumed++; spin_lock_irqsave(q->lock, flags); } if (consumed > aac_config.peak_fibs) aac_config.peak_fibs = consumed; if (consumed == 0) aac_config.zero_fibs++; spin_unlock_irqrestore(q->lock, flags); return 0; } /** * aac_command_normal - handle commands * @q: queue to process * * This DPC routine will be queued when the adapter interrupts us to * let us know there is a command on our normal priority queue. We will * pull off all QE there are and wake up all the waiters before exiting. * We will take a spinlock out on the queue before operating on it. */ unsigned int aac_command_normal(struct aac_queue *q) { struct aac_dev * dev = q->dev; struct aac_entry *entry; unsigned long flags; spin_lock_irqsave(q->lock, flags); /* * Keep pulling response QEs off the response queue and waking * up the waiters until there are no more QEs. We then return * back to the system. */ while(aac_consumer_get(dev, q, &entry)) { struct fib fibctx; struct hw_fib * hw_fib; u32 index; struct fib *fib = &fibctx; index = le32_to_cpu(entry->addr) / sizeof(struct hw_fib); hw_fib = &dev->aif_base_va[index]; /* * Allocate a FIB at all costs. For non queued stuff * we can just use the stack so we are happy. We need * a fib object in order to manage the linked lists */ if (dev->aif_thread) if((fib = kmalloc(sizeof(struct fib), GFP_ATOMIC)) == NULL) fib = &fibctx; memset(fib, 0, sizeof(struct fib)); INIT_LIST_HEAD(&fib->fiblink); fib->type = FSAFS_NTC_FIB_CONTEXT; fib->size = sizeof(struct fib); fib->hw_fib_va = hw_fib; fib->data = hw_fib->data; fib->dev = dev; if (dev->aif_thread && fib != &fibctx) { list_add_tail(&fib->fiblink, &q->cmdq); aac_consumer_free(dev, q, HostNormCmdQueue); wake_up_interruptible(&q->cmdready); } else { aac_consumer_free(dev, q, HostNormCmdQueue); spin_unlock_irqrestore(q->lock, flags); /* * Set the status of this FIB */ *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); aac_fib_adapter_complete(fib, sizeof(u32)); spin_lock_irqsave(q->lock, flags); } } spin_unlock_irqrestore(q->lock, flags); return 0; } /* * * aac_aif_callback * @context: the context set in the fib - here it is scsi cmd * @fibptr: pointer to the fib * * Handles the AIFs - new method (SRC) * */ static void aac_aif_callback(void *context, struct fib * fibptr) { struct fib *fibctx; struct aac_dev *dev; struct aac_aifcmd *cmd; int status; fibctx = (struct fib *)context; BUG_ON(fibptr == NULL); dev = fibptr->dev; if (fibptr->hw_fib_va->header.XferState & cpu_to_le32(NoMoreAifDataAvailable)) { aac_fib_complete(fibptr); aac_fib_free(fibptr); return; } aac_intr_normal(dev, 0, 1, 0, fibptr->hw_fib_va); aac_fib_init(fibctx); cmd = (struct aac_aifcmd *) fib_data(fibctx); cmd->command = cpu_to_le32(AifReqEvent); status = aac_fib_send(AifRequest, fibctx, sizeof(struct hw_fib)-sizeof(struct aac_fibhdr), FsaNormal, 0, 1, (fib_callback)aac_aif_callback, fibctx); } /** * aac_intr_normal - Handle command replies * @dev: Device * @index: completion reference * * This DPC routine will be run when the adapter interrupts us to let us * know there is a response on our normal priority queue. We will pull off * all QE there are and wake up all the waiters before exiting. */ unsigned int aac_intr_normal(struct aac_dev *dev, u32 index, int isAif, int isFastResponse, struct hw_fib *aif_fib) { unsigned long mflags; dprintk((KERN_INFO "aac_intr_normal(%p,%x)\n", dev, index)); if (isAif == 1) { /* AIF - common */ struct hw_fib * hw_fib; struct fib * fib; struct aac_queue *q = &dev->queues->queue[HostNormCmdQueue]; unsigned long flags; /* * Allocate a FIB. For non queued stuff we can just use * the stack so we are happy. We need a fib object in order to * manage the linked lists. */ if ((!dev->aif_thread) || (!(fib = kzalloc(sizeof(struct fib),GFP_ATOMIC)))) return 1; if (!(hw_fib = kzalloc(sizeof(struct hw_fib),GFP_ATOMIC))) { kfree (fib); return 1; } if (aif_fib != NULL) { memcpy(hw_fib, aif_fib, sizeof(struct hw_fib)); } else { memcpy(hw_fib, (struct hw_fib *)(((uintptr_t)(dev->regs.sa)) + index), sizeof(struct hw_fib)); } INIT_LIST_HEAD(&fib->fiblink); fib->type = FSAFS_NTC_FIB_CONTEXT; fib->size = sizeof(struct fib); fib->hw_fib_va = hw_fib; fib->data = hw_fib->data; fib->dev = dev; spin_lock_irqsave(q->lock, flags); list_add_tail(&fib->fiblink, &q->cmdq); wake_up_interruptible(&q->cmdready); spin_unlock_irqrestore(q->lock, flags); return 1; } else if (isAif == 2) { /* AIF - new (SRC) */ struct fib *fibctx; struct aac_aifcmd *cmd; fibctx = aac_fib_alloc(dev); if (!fibctx) return 1; aac_fib_init(fibctx); cmd = (struct aac_aifcmd *) fib_data(fibctx); cmd->command = cpu_to_le32(AifReqEvent); return aac_fib_send(AifRequest, fibctx, sizeof(struct hw_fib)-sizeof(struct aac_fibhdr), FsaNormal, 0, 1, (fib_callback)aac_aif_callback, fibctx); } else { struct fib *fib = &dev->fibs[index]; struct hw_fib * hwfib = fib->hw_fib_va; /* * Remove this fib from the Outstanding I/O queue. * But only if it has not already been timed out. * * If the fib has been timed out already, then just * continue. The caller has already been notified that * the fib timed out. */ dev->queues->queue[AdapNormCmdQueue].numpending--; if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) { aac_fib_complete(fib); aac_fib_free(fib); return 0; } if (isFastResponse) { /* * Doctor the fib */ *(__le32 *)hwfib->data = cpu_to_le32(ST_OK); hwfib->header.XferState |= cpu_to_le32(AdapterProcessed); fib->flags |= FIB_CONTEXT_FLAG_FASTRESP; } FIB_COUNTER_INCREMENT(aac_config.FibRecved); if (hwfib->header.Command == cpu_to_le16(NuFileSystem)) { __le32 *pstatus = (__le32 *)hwfib->data; if (*pstatus & cpu_to_le32(0xffff0000)) *pstatus = cpu_to_le32(ST_OK); } if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async)) { if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected)) FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved); else FIB_COUNTER_INCREMENT(aac_config.AsyncRecved); /* * NOTE: we cannot touch the fib after this * call, because it may have been deallocated. */ fib->flags &= FIB_CONTEXT_FLAG_FASTRESP; fib->callback(fib->callback_data, fib); } else { unsigned long flagv; dprintk((KERN_INFO "event_wait up\n")); spin_lock_irqsave(&fib->event_lock, flagv); if (!fib->done) { fib->done = 1; up(&fib->event_wait); } spin_unlock_irqrestore(&fib->event_lock, flagv); spin_lock_irqsave(&dev->manage_lock, mflags); dev->management_fib_count--; spin_unlock_irqrestore(&dev->manage_lock, mflags); FIB_COUNTER_INCREMENT(aac_config.NormalRecved); if (fib->done == 2) { spin_lock_irqsave(&fib->event_lock, flagv); fib->done = 0; spin_unlock_irqrestore(&fib->event_lock, flagv); aac_fib_complete(fib); aac_fib_free(fib); } } return 0; } }