/* * PXA2xx SPI DMA engine support. * * Copyright (C) 2013, Intel Corporation * Author: Mika Westerberg <mika.westerberg@linux.intel.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/init.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/pxa2xx_ssp.h> #include <linux/scatterlist.h> #include <linux/sizes.h> #include <linux/spi/spi.h> #include <linux/spi/pxa2xx_spi.h> #include "spi-pxa2xx.h" static int pxa2xx_spi_map_dma_buffer(struct driver_data *drv_data, enum dma_data_direction dir) { int i, nents, len = drv_data->len; struct scatterlist *sg; struct device *dmadev; struct sg_table *sgt; void *buf, *pbuf; /* * Some DMA controllers have problems transferring buffers that are * not multiple of 4 bytes. So we truncate the transfer so that it * is suitable for such controllers, and handle the trailing bytes * manually after the DMA completes. * * REVISIT: It would be better if this information could be * retrieved directly from the DMA device in a similar way than * ->copy_align etc. is done. */ len = ALIGN(drv_data->len, 4); if (dir == DMA_TO_DEVICE) { dmadev = drv_data->tx_chan->device->dev; sgt = &drv_data->tx_sgt; buf = drv_data->tx; drv_data->tx_map_len = len; } else { dmadev = drv_data->rx_chan->device->dev; sgt = &drv_data->rx_sgt; buf = drv_data->rx; drv_data->rx_map_len = len; } nents = DIV_ROUND_UP(len, SZ_2K); if (nents != sgt->nents) { int ret; sg_free_table(sgt); ret = sg_alloc_table(sgt, nents, GFP_ATOMIC); if (ret) return ret; } pbuf = buf; for_each_sg(sgt->sgl, sg, sgt->nents, i) { size_t bytes = min_t(size_t, len, SZ_2K); if (buf) sg_set_buf(sg, pbuf, bytes); else sg_set_buf(sg, drv_data->dummy, bytes); pbuf += bytes; len -= bytes; } nents = dma_map_sg(dmadev, sgt->sgl, sgt->nents, dir); if (!nents) return -ENOMEM; return nents; } static void pxa2xx_spi_unmap_dma_buffer(struct driver_data *drv_data, enum dma_data_direction dir) { struct device *dmadev; struct sg_table *sgt; if (dir == DMA_TO_DEVICE) { dmadev = drv_data->tx_chan->device->dev; sgt = &drv_data->tx_sgt; } else { dmadev = drv_data->rx_chan->device->dev; sgt = &drv_data->rx_sgt; } dma_unmap_sg(dmadev, sgt->sgl, sgt->nents, dir); } static void pxa2xx_spi_unmap_dma_buffers(struct driver_data *drv_data) { if (!drv_data->dma_mapped) return; pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_FROM_DEVICE); pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE); drv_data->dma_mapped = 0; } static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data, bool error) { struct spi_message *msg = drv_data->cur_msg; /* * It is possible that one CPU is handling ROR interrupt and other * just gets DMA completion. Calling pump_transfers() twice for the * same transfer leads to problems thus we prevent concurrent calls * by using ->dma_running. */ if (atomic_dec_and_test(&drv_data->dma_running)) { void __iomem *reg = drv_data->ioaddr; /* * If the other CPU is still handling the ROR interrupt we * might not know about the error yet. So we re-check the * ROR bit here before we clear the status register. */ if (!error) { u32 status = read_SSSR(reg) & drv_data->mask_sr; error = status & SSSR_ROR; } /* Clear status & disable interrupts */ write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg); write_SSSR_CS(drv_data, drv_data->clear_sr); if (!pxa25x_ssp_comp(drv_data)) write_SSTO(0, reg); if (!error) { pxa2xx_spi_unmap_dma_buffers(drv_data); /* Handle the last bytes of unaligned transfer */ drv_data->tx += drv_data->tx_map_len; drv_data->write(drv_data); drv_data->rx += drv_data->rx_map_len; drv_data->read(drv_data); msg->actual_length += drv_data->len; msg->state = pxa2xx_spi_next_transfer(drv_data); } else { /* In case we got an error we disable the SSP now */ write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg); msg->state = ERROR_STATE; } tasklet_schedule(&drv_data->pump_transfers); } } static void pxa2xx_spi_dma_callback(void *data) { pxa2xx_spi_dma_transfer_complete(data, false); } static struct dma_async_tx_descriptor * pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data, enum dma_transfer_direction dir) { struct pxa2xx_spi_master *pdata = drv_data->master_info; struct chip_data *chip = drv_data->cur_chip; enum dma_slave_buswidth width; struct dma_slave_config cfg; struct dma_chan *chan; struct sg_table *sgt; int nents, ret; switch (drv_data->n_bytes) { case 1: width = DMA_SLAVE_BUSWIDTH_1_BYTE; break; case 2: width = DMA_SLAVE_BUSWIDTH_2_BYTES; break; default: width = DMA_SLAVE_BUSWIDTH_4_BYTES; break; } memset(&cfg, 0, sizeof(cfg)); cfg.direction = dir; if (dir == DMA_MEM_TO_DEV) { cfg.dst_addr = drv_data->ssdr_physical; cfg.dst_addr_width = width; cfg.dst_maxburst = chip->dma_burst_size; cfg.slave_id = pdata->tx_slave_id; sgt = &drv_data->tx_sgt; nents = drv_data->tx_nents; chan = drv_data->tx_chan; } else { cfg.src_addr = drv_data->ssdr_physical; cfg.src_addr_width = width; cfg.src_maxburst = chip->dma_burst_size; cfg.slave_id = pdata->rx_slave_id; sgt = &drv_data->rx_sgt; nents = drv_data->rx_nents; chan = drv_data->rx_chan; } ret = dmaengine_slave_config(chan, &cfg); if (ret) { dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n"); return NULL; } return dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); } static bool pxa2xx_spi_dma_filter(struct dma_chan *chan, void *param) { const struct pxa2xx_spi_master *pdata = param; return chan->chan_id == pdata->tx_chan_id || chan->chan_id == pdata->rx_chan_id; } bool pxa2xx_spi_dma_is_possible(size_t len) { return len <= MAX_DMA_LEN; } int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data) { const struct chip_data *chip = drv_data->cur_chip; int ret; if (!chip->enable_dma) return 0; /* Don't bother with DMA if we can't do even a single burst */ if (drv_data->len < chip->dma_burst_size) return 0; ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_TO_DEVICE); if (ret <= 0) { dev_warn(&drv_data->pdev->dev, "failed to DMA map TX\n"); return 0; } drv_data->tx_nents = ret; ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_FROM_DEVICE); if (ret <= 0) { pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE); dev_warn(&drv_data->pdev->dev, "failed to DMA map RX\n"); return 0; } drv_data->rx_nents = ret; return 1; } irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data) { u32 status; status = read_SSSR(drv_data->ioaddr) & drv_data->mask_sr; if (status & SSSR_ROR) { dev_err(&drv_data->pdev->dev, "FIFO overrun\n"); dmaengine_terminate_all(drv_data->rx_chan); dmaengine_terminate_all(drv_data->tx_chan); pxa2xx_spi_dma_transfer_complete(drv_data, true); return IRQ_HANDLED; } return IRQ_NONE; } int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst) { struct dma_async_tx_descriptor *tx_desc, *rx_desc; tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV); if (!tx_desc) { dev_err(&drv_data->pdev->dev, "failed to get DMA TX descriptor\n"); return -EBUSY; } rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM); if (!rx_desc) { dev_err(&drv_data->pdev->dev, "failed to get DMA RX descriptor\n"); return -EBUSY; } /* We are ready when RX completes */ rx_desc->callback = pxa2xx_spi_dma_callback; rx_desc->callback_param = drv_data; dmaengine_submit(rx_desc); dmaengine_submit(tx_desc); return 0; } void pxa2xx_spi_dma_start(struct driver_data *drv_data) { dma_async_issue_pending(drv_data->rx_chan); dma_async_issue_pending(drv_data->tx_chan); atomic_set(&drv_data->dma_running, 1); } int pxa2xx_spi_dma_setup(struct driver_data *drv_data) { struct pxa2xx_spi_master *pdata = drv_data->master_info; struct device *dev = &drv_data->pdev->dev; dma_cap_mask_t mask; dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); drv_data->dummy = devm_kzalloc(dev, SZ_2K, GFP_KERNEL); if (!drv_data->dummy) return -ENOMEM; drv_data->tx_chan = dma_request_slave_channel_compat(mask, pxa2xx_spi_dma_filter, pdata, dev, "tx"); if (!drv_data->tx_chan) return -ENODEV; drv_data->rx_chan = dma_request_slave_channel_compat(mask, pxa2xx_spi_dma_filter, pdata, dev, "rx"); if (!drv_data->rx_chan) { dma_release_channel(drv_data->tx_chan); drv_data->tx_chan = NULL; return -ENODEV; } return 0; } void pxa2xx_spi_dma_release(struct driver_data *drv_data) { if (drv_data->rx_chan) { dmaengine_terminate_all(drv_data->rx_chan); dma_release_channel(drv_data->rx_chan); sg_free_table(&drv_data->rx_sgt); drv_data->rx_chan = NULL; } if (drv_data->tx_chan) { dmaengine_terminate_all(drv_data->tx_chan); dma_release_channel(drv_data->tx_chan); sg_free_table(&drv_data->tx_sgt); drv_data->tx_chan = NULL; } } void pxa2xx_spi_dma_resume(struct driver_data *drv_data) { } int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip, struct spi_device *spi, u8 bits_per_word, u32 *burst_code, u32 *threshold) { struct pxa2xx_spi_chip *chip_info = spi->controller_data; /* * If the DMA burst size is given in chip_info we use that, * otherwise we use the default. Also we use the default FIFO * thresholds for now. */ *burst_code = chip_info ? chip_info->dma_burst_size : 16; *threshold = SSCR1_RxTresh(RX_THRESH_DFLT) | SSCR1_TxTresh(TX_THRESH_DFLT); return 0; }