/* * SPI bus driver for CSR SiRFprimaII * * Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company. * * Licensed under GPLv2 or later. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/clk.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/of.h> #include <linux/bitops.h> #include <linux/err.h> #include <linux/platform_device.h> #include <linux/of_gpio.h> #include <linux/spi/spi.h> #include <linux/spi/spi_bitbang.h> #include <linux/dmaengine.h> #include <linux/dma-direction.h> #include <linux/dma-mapping.h> #include <linux/sirfsoc_dma.h> #define DRIVER_NAME "sirfsoc_spi" #define SIRFSOC_SPI_CTRL 0x0000 #define SIRFSOC_SPI_CMD 0x0004 #define SIRFSOC_SPI_TX_RX_EN 0x0008 #define SIRFSOC_SPI_INT_EN 0x000C #define SIRFSOC_SPI_INT_STATUS 0x0010 #define SIRFSOC_SPI_TX_DMA_IO_CTRL 0x0100 #define SIRFSOC_SPI_TX_DMA_IO_LEN 0x0104 #define SIRFSOC_SPI_TXFIFO_CTRL 0x0108 #define SIRFSOC_SPI_TXFIFO_LEVEL_CHK 0x010C #define SIRFSOC_SPI_TXFIFO_OP 0x0110 #define SIRFSOC_SPI_TXFIFO_STATUS 0x0114 #define SIRFSOC_SPI_TXFIFO_DATA 0x0118 #define SIRFSOC_SPI_RX_DMA_IO_CTRL 0x0120 #define SIRFSOC_SPI_RX_DMA_IO_LEN 0x0124 #define SIRFSOC_SPI_RXFIFO_CTRL 0x0128 #define SIRFSOC_SPI_RXFIFO_LEVEL_CHK 0x012C #define SIRFSOC_SPI_RXFIFO_OP 0x0130 #define SIRFSOC_SPI_RXFIFO_STATUS 0x0134 #define SIRFSOC_SPI_RXFIFO_DATA 0x0138 #define SIRFSOC_SPI_DUMMY_DELAY_CTL 0x0144 /* SPI CTRL register defines */ #define SIRFSOC_SPI_SLV_MODE BIT(16) #define SIRFSOC_SPI_CMD_MODE BIT(17) #define SIRFSOC_SPI_CS_IO_OUT BIT(18) #define SIRFSOC_SPI_CS_IO_MODE BIT(19) #define SIRFSOC_SPI_CLK_IDLE_STAT BIT(20) #define SIRFSOC_SPI_CS_IDLE_STAT BIT(21) #define SIRFSOC_SPI_TRAN_MSB BIT(22) #define SIRFSOC_SPI_DRV_POS_EDGE BIT(23) #define SIRFSOC_SPI_CS_HOLD_TIME BIT(24) #define SIRFSOC_SPI_CLK_SAMPLE_MODE BIT(25) #define SIRFSOC_SPI_TRAN_DAT_FORMAT_8 (0 << 26) #define SIRFSOC_SPI_TRAN_DAT_FORMAT_12 (1 << 26) #define SIRFSOC_SPI_TRAN_DAT_FORMAT_16 (2 << 26) #define SIRFSOC_SPI_TRAN_DAT_FORMAT_32 (3 << 26) #define SIRFSOC_SPI_CMD_BYTE_NUM(x) ((x & 3) << 28) #define SIRFSOC_SPI_ENA_AUTO_CLR BIT(30) #define SIRFSOC_SPI_MUL_DAT_MODE BIT(31) /* Interrupt Enable */ #define SIRFSOC_SPI_RX_DONE_INT_EN BIT(0) #define SIRFSOC_SPI_TX_DONE_INT_EN BIT(1) #define SIRFSOC_SPI_RX_OFLOW_INT_EN BIT(2) #define SIRFSOC_SPI_TX_UFLOW_INT_EN BIT(3) #define SIRFSOC_SPI_RX_IO_DMA_INT_EN BIT(4) #define SIRFSOC_SPI_TX_IO_DMA_INT_EN BIT(5) #define SIRFSOC_SPI_RXFIFO_FULL_INT_EN BIT(6) #define SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN BIT(7) #define SIRFSOC_SPI_RXFIFO_THD_INT_EN BIT(8) #define SIRFSOC_SPI_TXFIFO_THD_INT_EN BIT(9) #define SIRFSOC_SPI_FRM_END_INT_EN BIT(10) #define SIRFSOC_SPI_INT_MASK_ALL 0x1FFF /* Interrupt status */ #define SIRFSOC_SPI_RX_DONE BIT(0) #define SIRFSOC_SPI_TX_DONE BIT(1) #define SIRFSOC_SPI_RX_OFLOW BIT(2) #define SIRFSOC_SPI_TX_UFLOW BIT(3) #define SIRFSOC_SPI_RX_FIFO_FULL BIT(6) #define SIRFSOC_SPI_TXFIFO_EMPTY BIT(7) #define SIRFSOC_SPI_RXFIFO_THD_REACH BIT(8) #define SIRFSOC_SPI_TXFIFO_THD_REACH BIT(9) #define SIRFSOC_SPI_FRM_END BIT(10) /* TX RX enable */ #define SIRFSOC_SPI_RX_EN BIT(0) #define SIRFSOC_SPI_TX_EN BIT(1) #define SIRFSOC_SPI_CMD_TX_EN BIT(2) #define SIRFSOC_SPI_IO_MODE_SEL BIT(0) #define SIRFSOC_SPI_RX_DMA_FLUSH BIT(2) /* FIFO OPs */ #define SIRFSOC_SPI_FIFO_RESET BIT(0) #define SIRFSOC_SPI_FIFO_START BIT(1) /* FIFO CTRL */ #define SIRFSOC_SPI_FIFO_WIDTH_BYTE (0 << 0) #define SIRFSOC_SPI_FIFO_WIDTH_WORD (1 << 0) #define SIRFSOC_SPI_FIFO_WIDTH_DWORD (2 << 0) /* FIFO Status */ #define SIRFSOC_SPI_FIFO_LEVEL_MASK 0xFF #define SIRFSOC_SPI_FIFO_FULL BIT(8) #define SIRFSOC_SPI_FIFO_EMPTY BIT(9) /* 256 bytes rx/tx FIFO */ #define SIRFSOC_SPI_FIFO_SIZE 256 #define SIRFSOC_SPI_DAT_FRM_LEN_MAX (64 * 1024) #define SIRFSOC_SPI_FIFO_SC(x) ((x) & 0x3F) #define SIRFSOC_SPI_FIFO_LC(x) (((x) & 0x3F) << 10) #define SIRFSOC_SPI_FIFO_HC(x) (((x) & 0x3F) << 20) #define SIRFSOC_SPI_FIFO_THD(x) (((x) & 0xFF) << 2) /* * only if the rx/tx buffer and transfer size are 4-bytes aligned, we use dma * due to the limitation of dma controller */ #define ALIGNED(x) (!((u32)x & 0x3)) #define IS_DMA_VALID(x) (x && ALIGNED(x->tx_buf) && ALIGNED(x->rx_buf) && \ ALIGNED(x->len) && (x->len < 2 * PAGE_SIZE)) struct sirfsoc_spi { struct spi_bitbang bitbang; struct completion rx_done; struct completion tx_done; void __iomem *base; u32 ctrl_freq; /* SPI controller clock speed */ struct clk *clk; /* rx & tx bufs from the spi_transfer */ const void *tx; void *rx; /* place received word into rx buffer */ void (*rx_word) (struct sirfsoc_spi *); /* get word from tx buffer for sending */ void (*tx_word) (struct sirfsoc_spi *); /* number of words left to be tranmitted/received */ unsigned int left_tx_word; unsigned int left_rx_word; /* rx & tx DMA channels */ struct dma_chan *rx_chan; struct dma_chan *tx_chan; dma_addr_t src_start; dma_addr_t dst_start; void *dummypage; int word_width; /* in bytes */ int chipselect[0]; }; static void spi_sirfsoc_rx_word_u8(struct sirfsoc_spi *sspi) { u32 data; u8 *rx = sspi->rx; data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA); if (rx) { *rx++ = (u8) data; sspi->rx = rx; } sspi->left_rx_word--; } static void spi_sirfsoc_tx_word_u8(struct sirfsoc_spi *sspi) { u32 data = 0; const u8 *tx = sspi->tx; if (tx) { data = *tx++; sspi->tx = tx; } writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA); sspi->left_tx_word--; } static void spi_sirfsoc_rx_word_u16(struct sirfsoc_spi *sspi) { u32 data; u16 *rx = sspi->rx; data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA); if (rx) { *rx++ = (u16) data; sspi->rx = rx; } sspi->left_rx_word--; } static void spi_sirfsoc_tx_word_u16(struct sirfsoc_spi *sspi) { u32 data = 0; const u16 *tx = sspi->tx; if (tx) { data = *tx++; sspi->tx = tx; } writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA); sspi->left_tx_word--; } static void spi_sirfsoc_rx_word_u32(struct sirfsoc_spi *sspi) { u32 data; u32 *rx = sspi->rx; data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA); if (rx) { *rx++ = (u32) data; sspi->rx = rx; } sspi->left_rx_word--; } static void spi_sirfsoc_tx_word_u32(struct sirfsoc_spi *sspi) { u32 data = 0; const u32 *tx = sspi->tx; if (tx) { data = *tx++; sspi->tx = tx; } writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA); sspi->left_tx_word--; } static irqreturn_t spi_sirfsoc_irq(int irq, void *dev_id) { struct sirfsoc_spi *sspi = dev_id; u32 spi_stat = readl(sspi->base + SIRFSOC_SPI_INT_STATUS); writel(spi_stat, sspi->base + SIRFSOC_SPI_INT_STATUS); /* Error Conditions */ if (spi_stat & SIRFSOC_SPI_RX_OFLOW || spi_stat & SIRFSOC_SPI_TX_UFLOW) { complete(&sspi->rx_done); writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN); } if (spi_stat & (SIRFSOC_SPI_FRM_END | SIRFSOC_SPI_RXFIFO_THD_REACH)) while (!((readl(sspi->base + SIRFSOC_SPI_RXFIFO_STATUS) & SIRFSOC_SPI_FIFO_EMPTY)) && sspi->left_rx_word) sspi->rx_word(sspi); if (spi_stat & (SIRFSOC_SPI_FIFO_EMPTY | SIRFSOC_SPI_TXFIFO_THD_REACH)) while (!((readl(sspi->base + SIRFSOC_SPI_TXFIFO_STATUS) & SIRFSOC_SPI_FIFO_FULL)) && sspi->left_tx_word) sspi->tx_word(sspi); /* Received all words */ if ((sspi->left_rx_word == 0) && (sspi->left_tx_word == 0)) { complete(&sspi->rx_done); writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN); } return IRQ_HANDLED; } static void spi_sirfsoc_dma_fini_callback(void *data) { struct completion *dma_complete = data; complete(dma_complete); } static int spi_sirfsoc_transfer(struct spi_device *spi, struct spi_transfer *t) { struct sirfsoc_spi *sspi; int timeout = t->len * 10; sspi = spi_master_get_devdata(spi->master); sspi->tx = t->tx_buf ? t->tx_buf : sspi->dummypage; sspi->rx = t->rx_buf ? t->rx_buf : sspi->dummypage; sspi->left_tx_word = sspi->left_rx_word = t->len / sspi->word_width; reinit_completion(&sspi->rx_done); reinit_completion(&sspi->tx_done); writel(SIRFSOC_SPI_INT_MASK_ALL, sspi->base + SIRFSOC_SPI_INT_STATUS); if (sspi->left_tx_word == 1) { writel(readl(sspi->base + SIRFSOC_SPI_CTRL) | SIRFSOC_SPI_ENA_AUTO_CLR, sspi->base + SIRFSOC_SPI_CTRL); writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN); writel(0, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN); } else if ((sspi->left_tx_word > 1) && (sspi->left_tx_word < SIRFSOC_SPI_DAT_FRM_LEN_MAX)) { writel(readl(sspi->base + SIRFSOC_SPI_CTRL) | SIRFSOC_SPI_MUL_DAT_MODE | SIRFSOC_SPI_ENA_AUTO_CLR, sspi->base + SIRFSOC_SPI_CTRL); writel(sspi->left_tx_word - 1, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN); writel(sspi->left_tx_word - 1, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN); } else { writel(readl(sspi->base + SIRFSOC_SPI_CTRL), sspi->base + SIRFSOC_SPI_CTRL); writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN); writel(0, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN); } writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP); writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP); writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP); writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP); if (IS_DMA_VALID(t)) { struct dma_async_tx_descriptor *rx_desc, *tx_desc; sspi->dst_start = dma_map_single(&spi->dev, sspi->rx, t->len, DMA_FROM_DEVICE); rx_desc = dmaengine_prep_slave_single(sspi->rx_chan, sspi->dst_start, t->len, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); rx_desc->callback = spi_sirfsoc_dma_fini_callback; rx_desc->callback_param = &sspi->rx_done; sspi->src_start = dma_map_single(&spi->dev, (void *)sspi->tx, t->len, DMA_TO_DEVICE); tx_desc = dmaengine_prep_slave_single(sspi->tx_chan, sspi->src_start, t->len, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); tx_desc->callback = spi_sirfsoc_dma_fini_callback; tx_desc->callback_param = &sspi->tx_done; dmaengine_submit(tx_desc); dmaengine_submit(rx_desc); dma_async_issue_pending(sspi->tx_chan); dma_async_issue_pending(sspi->rx_chan); } else { /* Send the first word to trigger the whole tx/rx process */ sspi->tx_word(sspi); writel(SIRFSOC_SPI_RX_OFLOW_INT_EN | SIRFSOC_SPI_TX_UFLOW_INT_EN | SIRFSOC_SPI_RXFIFO_THD_INT_EN | SIRFSOC_SPI_TXFIFO_THD_INT_EN | SIRFSOC_SPI_FRM_END_INT_EN | SIRFSOC_SPI_RXFIFO_FULL_INT_EN | SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN, sspi->base + SIRFSOC_SPI_INT_EN); } writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN, sspi->base + SIRFSOC_SPI_TX_RX_EN); if (!IS_DMA_VALID(t)) { /* for PIO */ if (wait_for_completion_timeout(&sspi->rx_done, timeout) == 0) dev_err(&spi->dev, "transfer timeout\n"); } else if (wait_for_completion_timeout(&sspi->rx_done, timeout) == 0) { dev_err(&spi->dev, "transfer timeout\n"); dmaengine_terminate_all(sspi->rx_chan); } else sspi->left_rx_word = 0; /* * we only wait tx-done event if transferring by DMA. for PIO, * we get rx data by writing tx data, so if rx is done, tx has * done earlier */ if (IS_DMA_VALID(t)) { if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) { dev_err(&spi->dev, "transfer timeout\n"); dmaengine_terminate_all(sspi->tx_chan); } } if (IS_DMA_VALID(t)) { dma_unmap_single(&spi->dev, sspi->src_start, t->len, DMA_TO_DEVICE); dma_unmap_single(&spi->dev, sspi->dst_start, t->len, DMA_FROM_DEVICE); } /* TX, RX FIFO stop */ writel(0, sspi->base + SIRFSOC_SPI_RXFIFO_OP); writel(0, sspi->base + SIRFSOC_SPI_TXFIFO_OP); writel(0, sspi->base + SIRFSOC_SPI_TX_RX_EN); writel(0, sspi->base + SIRFSOC_SPI_INT_EN); return t->len - sspi->left_rx_word * sspi->word_width; } static void spi_sirfsoc_chipselect(struct spi_device *spi, int value) { struct sirfsoc_spi *sspi = spi_master_get_devdata(spi->master); if (sspi->chipselect[spi->chip_select] == 0) { u32 regval = readl(sspi->base + SIRFSOC_SPI_CTRL); switch (value) { case BITBANG_CS_ACTIVE: if (spi->mode & SPI_CS_HIGH) regval |= SIRFSOC_SPI_CS_IO_OUT; else regval &= ~SIRFSOC_SPI_CS_IO_OUT; break; case BITBANG_CS_INACTIVE: if (spi->mode & SPI_CS_HIGH) regval &= ~SIRFSOC_SPI_CS_IO_OUT; else regval |= SIRFSOC_SPI_CS_IO_OUT; break; } writel(regval, sspi->base + SIRFSOC_SPI_CTRL); } else { int gpio = sspi->chipselect[spi->chip_select]; gpio_direction_output(gpio, spi->mode & SPI_CS_HIGH ? 0 : 1); } } static int spi_sirfsoc_setup_transfer(struct spi_device *spi, struct spi_transfer *t) { struct sirfsoc_spi *sspi; u8 bits_per_word = 0; int hz = 0; u32 regval; u32 txfifo_ctrl, rxfifo_ctrl; u32 fifo_size = SIRFSOC_SPI_FIFO_SIZE / 4; sspi = spi_master_get_devdata(spi->master); bits_per_word = (t) ? t->bits_per_word : spi->bits_per_word; hz = t && t->speed_hz ? t->speed_hz : spi->max_speed_hz; regval = (sspi->ctrl_freq / (2 * hz)) - 1; if (regval > 0xFFFF || regval < 0) { dev_err(&spi->dev, "Speed %d not supported\n", hz); return -EINVAL; } switch (bits_per_word) { case 8: regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_8; sspi->rx_word = spi_sirfsoc_rx_word_u8; sspi->tx_word = spi_sirfsoc_tx_word_u8; txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) | SIRFSOC_SPI_FIFO_WIDTH_BYTE; rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) | SIRFSOC_SPI_FIFO_WIDTH_BYTE; sspi->word_width = 1; break; case 12: case 16: regval |= (bits_per_word == 12) ? SIRFSOC_SPI_TRAN_DAT_FORMAT_12 : SIRFSOC_SPI_TRAN_DAT_FORMAT_16; sspi->rx_word = spi_sirfsoc_rx_word_u16; sspi->tx_word = spi_sirfsoc_tx_word_u16; txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) | SIRFSOC_SPI_FIFO_WIDTH_WORD; rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) | SIRFSOC_SPI_FIFO_WIDTH_WORD; sspi->word_width = 2; break; case 32: regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_32; sspi->rx_word = spi_sirfsoc_rx_word_u32; sspi->tx_word = spi_sirfsoc_tx_word_u32; txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) | SIRFSOC_SPI_FIFO_WIDTH_DWORD; rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) | SIRFSOC_SPI_FIFO_WIDTH_DWORD; sspi->word_width = 4; break; default: BUG(); } if (!(spi->mode & SPI_CS_HIGH)) regval |= SIRFSOC_SPI_CS_IDLE_STAT; if (!(spi->mode & SPI_LSB_FIRST)) regval |= SIRFSOC_SPI_TRAN_MSB; if (spi->mode & SPI_CPOL) regval |= SIRFSOC_SPI_CLK_IDLE_STAT; /* * Data should be driven at least 1/2 cycle before the fetch edge to make * sure that data gets stable at the fetch edge. */ if (((spi->mode & SPI_CPOL) && (spi->mode & SPI_CPHA)) || (!(spi->mode & SPI_CPOL) && !(spi->mode & SPI_CPHA))) regval &= ~SIRFSOC_SPI_DRV_POS_EDGE; else regval |= SIRFSOC_SPI_DRV_POS_EDGE; writel(SIRFSOC_SPI_FIFO_SC(fifo_size - 2) | SIRFSOC_SPI_FIFO_LC(fifo_size / 2) | SIRFSOC_SPI_FIFO_HC(2), sspi->base + SIRFSOC_SPI_TXFIFO_LEVEL_CHK); writel(SIRFSOC_SPI_FIFO_SC(2) | SIRFSOC_SPI_FIFO_LC(fifo_size / 2) | SIRFSOC_SPI_FIFO_HC(fifo_size - 2), sspi->base + SIRFSOC_SPI_RXFIFO_LEVEL_CHK); writel(txfifo_ctrl, sspi->base + SIRFSOC_SPI_TXFIFO_CTRL); writel(rxfifo_ctrl, sspi->base + SIRFSOC_SPI_RXFIFO_CTRL); writel(regval, sspi->base + SIRFSOC_SPI_CTRL); if (IS_DMA_VALID(t)) { /* Enable DMA mode for RX, TX */ writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_CTRL); writel(SIRFSOC_SPI_RX_DMA_FLUSH, sspi->base + SIRFSOC_SPI_RX_DMA_IO_CTRL); } else { /* Enable IO mode for RX, TX */ writel(SIRFSOC_SPI_IO_MODE_SEL, sspi->base + SIRFSOC_SPI_TX_DMA_IO_CTRL); writel(SIRFSOC_SPI_IO_MODE_SEL, sspi->base + SIRFSOC_SPI_RX_DMA_IO_CTRL); } return 0; } static int spi_sirfsoc_setup(struct spi_device *spi) { if (!spi->max_speed_hz) return -EINVAL; return spi_sirfsoc_setup_transfer(spi, NULL); } static int spi_sirfsoc_probe(struct platform_device *pdev) { struct sirfsoc_spi *sspi; struct spi_master *master; struct resource *mem_res; int num_cs, cs_gpio, irq; u32 rx_dma_ch, tx_dma_ch; dma_cap_mask_t dma_cap_mask; int i; int ret; ret = of_property_read_u32(pdev->dev.of_node, "sirf,spi-num-chipselects", &num_cs); if (ret < 0) { dev_err(&pdev->dev, "Unable to get chip select number\n"); goto err_cs; } ret = of_property_read_u32(pdev->dev.of_node, "sirf,spi-dma-rx-channel", &rx_dma_ch); if (ret < 0) { dev_err(&pdev->dev, "Unable to get rx dma channel\n"); goto err_cs; } ret = of_property_read_u32(pdev->dev.of_node, "sirf,spi-dma-tx-channel", &tx_dma_ch); if (ret < 0) { dev_err(&pdev->dev, "Unable to get tx dma channel\n"); goto err_cs; } master = spi_alloc_master(&pdev->dev, sizeof(*sspi) + sizeof(int) * num_cs); if (!master) { dev_err(&pdev->dev, "Unable to allocate SPI master\n"); return -ENOMEM; } platform_set_drvdata(pdev, master); sspi = spi_master_get_devdata(master); master->num_chipselect = num_cs; for (i = 0; i < master->num_chipselect; i++) { cs_gpio = of_get_named_gpio(pdev->dev.of_node, "cs-gpios", i); if (cs_gpio < 0) { dev_err(&pdev->dev, "can't get cs gpio from DT\n"); ret = -ENODEV; goto free_master; } sspi->chipselect[i] = cs_gpio; if (cs_gpio == 0) continue; /* use cs from spi controller */ ret = gpio_request(cs_gpio, DRIVER_NAME); if (ret) { while (i > 0) { i--; if (sspi->chipselect[i] > 0) gpio_free(sspi->chipselect[i]); } dev_err(&pdev->dev, "fail to request cs gpios\n"); goto free_master; } } mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); sspi->base = devm_ioremap_resource(&pdev->dev, mem_res); if (IS_ERR(sspi->base)) { ret = PTR_ERR(sspi->base); goto free_master; } irq = platform_get_irq(pdev, 0); if (irq < 0) { ret = -ENXIO; goto free_master; } ret = devm_request_irq(&pdev->dev, irq, spi_sirfsoc_irq, 0, DRIVER_NAME, sspi); if (ret) goto free_master; sspi->bitbang.master = master; sspi->bitbang.chipselect = spi_sirfsoc_chipselect; sspi->bitbang.setup_transfer = spi_sirfsoc_setup_transfer; sspi->bitbang.txrx_bufs = spi_sirfsoc_transfer; sspi->bitbang.master->setup = spi_sirfsoc_setup; master->bus_num = pdev->id; master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH; master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(12) | SPI_BPW_MASK(16) | SPI_BPW_MASK(32); sspi->bitbang.master->dev.of_node = pdev->dev.of_node; /* request DMA channels */ dma_cap_zero(dma_cap_mask); dma_cap_set(DMA_INTERLEAVE, dma_cap_mask); sspi->rx_chan = dma_request_channel(dma_cap_mask, (dma_filter_fn)sirfsoc_dma_filter_id, (void *)rx_dma_ch); if (!sspi->rx_chan) { dev_err(&pdev->dev, "can not allocate rx dma channel\n"); ret = -ENODEV; goto free_master; } sspi->tx_chan = dma_request_channel(dma_cap_mask, (dma_filter_fn)sirfsoc_dma_filter_id, (void *)tx_dma_ch); if (!sspi->tx_chan) { dev_err(&pdev->dev, "can not allocate tx dma channel\n"); ret = -ENODEV; goto free_rx_dma; } sspi->clk = clk_get(&pdev->dev, NULL); if (IS_ERR(sspi->clk)) { ret = PTR_ERR(sspi->clk); goto free_tx_dma; } clk_prepare_enable(sspi->clk); sspi->ctrl_freq = clk_get_rate(sspi->clk); init_completion(&sspi->rx_done); init_completion(&sspi->tx_done); writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP); writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP); writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP); writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP); /* We are not using dummy delay between command and data */ writel(0, sspi->base + SIRFSOC_SPI_DUMMY_DELAY_CTL); sspi->dummypage = kmalloc(2 * PAGE_SIZE, GFP_KERNEL); if (!sspi->dummypage) { ret = -ENOMEM; goto free_clk; } ret = spi_bitbang_start(&sspi->bitbang); if (ret) goto free_dummypage; dev_info(&pdev->dev, "registerred, bus number = %d\n", master->bus_num); return 0; free_dummypage: kfree(sspi->dummypage); free_clk: clk_disable_unprepare(sspi->clk); clk_put(sspi->clk); free_tx_dma: dma_release_channel(sspi->tx_chan); free_rx_dma: dma_release_channel(sspi->rx_chan); free_master: spi_master_put(master); err_cs: return ret; } static int spi_sirfsoc_remove(struct platform_device *pdev) { struct spi_master *master; struct sirfsoc_spi *sspi; int i; master = platform_get_drvdata(pdev); sspi = spi_master_get_devdata(master); spi_bitbang_stop(&sspi->bitbang); for (i = 0; i < master->num_chipselect; i++) { if (sspi->chipselect[i] > 0) gpio_free(sspi->chipselect[i]); } kfree(sspi->dummypage); clk_disable_unprepare(sspi->clk); clk_put(sspi->clk); dma_release_channel(sspi->rx_chan); dma_release_channel(sspi->tx_chan); spi_master_put(master); return 0; } #ifdef CONFIG_PM static int spi_sirfsoc_suspend(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct sirfsoc_spi *sspi = spi_master_get_devdata(master); clk_disable(sspi->clk); return 0; } static int spi_sirfsoc_resume(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct sirfsoc_spi *sspi = spi_master_get_devdata(master); clk_enable(sspi->clk); writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP); writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP); writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP); writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP); return 0; } static const struct dev_pm_ops spi_sirfsoc_pm_ops = { .suspend = spi_sirfsoc_suspend, .resume = spi_sirfsoc_resume, }; #endif static const struct of_device_id spi_sirfsoc_of_match[] = { { .compatible = "sirf,prima2-spi", }, { .compatible = "sirf,marco-spi", }, {} }; MODULE_DEVICE_TABLE(of, spi_sirfsoc_of_match); static struct platform_driver spi_sirfsoc_driver = { .driver = { .name = DRIVER_NAME, .owner = THIS_MODULE, #ifdef CONFIG_PM .pm = &spi_sirfsoc_pm_ops, #endif .of_match_table = spi_sirfsoc_of_match, }, .probe = spi_sirfsoc_probe, .remove = spi_sirfsoc_remove, }; module_platform_driver(spi_sirfsoc_driver); MODULE_DESCRIPTION("SiRF SoC SPI master driver"); MODULE_AUTHOR("Zhiwu Song <Zhiwu.Song@csr.com>, " "Barry Song <Baohua.Song@csr.com>"); MODULE_LICENSE("GPL v2");