/* * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc. * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * File: main_usb.c * * Purpose: driver entry for initial, open, close, tx and rx. * * Author: Lyndon Chen * * Date: Dec 8, 2005 * * Functions: * * vt6656_probe - module initial (insmod) driver entry * device_remove1 - module remove entry * device_open - allocate dma/descripter resource & initial mac/bbp function * device_xmit - asynchronous data tx function * device_set_multi - set mac filter * device_ioctl - ioctl entry * device_close - shutdown mac/bbp & free dma/descriptor resource * device_alloc_frag_buf - rx fragement pre-allocated function * device_free_tx_bufs - free tx buffer function * device_dma0_tx_80211- tx 802.11 frame via dma0 * device_dma0_xmit- tx PS buffered frame via dma0 * device_init_registers- initial MAC & BBP & RF internal registers. * device_init_rings- initial tx/rx ring buffer * device_init_defrag_cb- initial & allocate de-fragement buffer. * device_tx_srv- tx interrupt service function * * Revision History: */ #undef __NO_VERSION__ #include <linux/file.h> #include "device.h" #include "card.h" #include "baseband.h" #include "mac.h" #include "tether.h" #include "wmgr.h" #include "wctl.h" #include "power.h" #include "wcmd.h" #include "iocmd.h" #include "tcrc.h" #include "rxtx.h" #include "bssdb.h" #include "hostap.h" #include "wpactl.h" #include "iwctl.h" #include "dpc.h" #include "datarate.h" #include "rf.h" #include "firmware.h" #include "control.h" #include "channel.h" #include "int.h" #include "iowpa.h" /* static int msglevel = MSG_LEVEL_DEBUG; */ static int msglevel =MSG_LEVEL_INFO; /* * define module options */ /* version information */ #define DRIVER_AUTHOR \ "VIA Networking Technologies, Inc., <lyndonchen@vntek.com.tw>" MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION(DEVICE_FULL_DRV_NAM); #define DEVICE_PARAM(N,D) \ static int N[MAX_UINTS]=OPTION_DEFAULT;\ module_param_array(N, int, NULL, 0);\ MODULE_PARM_DESC(N, D); #define RX_DESC_DEF0 64 DEVICE_PARAM(RxDescriptors0,"Number of receive usb desc buffer"); #define TX_DESC_DEF0 64 DEVICE_PARAM(TxDescriptors0,"Number of transmit usb desc buffer"); #define CHANNEL_DEF 6 DEVICE_PARAM(Channel, "Channel number"); /* PreambleType[] is the preamble length used for transmit. 0: indicate allows long preamble type 1: indicate allows short preamble type */ #define PREAMBLE_TYPE_DEF 1 DEVICE_PARAM(PreambleType, "Preamble Type"); #define RTS_THRESH_DEF 2347 DEVICE_PARAM(RTSThreshold, "RTS threshold"); #define FRAG_THRESH_DEF 2346 DEVICE_PARAM(FragThreshold, "Fragmentation threshold"); #define DATA_RATE_DEF 13 /* datarate[] index 0: indicate 1 Mbps 0x02 1: indicate 2 Mbps 0x04 2: indicate 5.5 Mbps 0x0B 3: indicate 11 Mbps 0x16 4: indicate 6 Mbps 0x0c 5: indicate 9 Mbps 0x12 6: indicate 12 Mbps 0x18 7: indicate 18 Mbps 0x24 8: indicate 24 Mbps 0x30 9: indicate 36 Mbps 0x48 10: indicate 48 Mbps 0x60 11: indicate 54 Mbps 0x6c 12: indicate 72 Mbps 0x90 13: indicate auto rate */ DEVICE_PARAM(ConnectionRate, "Connection data rate"); #define OP_MODE_DEF 0 DEVICE_PARAM(OPMode, "Infrastruct, adhoc, AP mode "); /* OpMode[] is used for transmit. 0: indicate infrastruct mode used 1: indicate adhoc mode used 2: indicate AP mode used */ /* PSMode[] 0: indicate disable power saving mode 1: indicate enable power saving mode */ #define PS_MODE_DEF 0 DEVICE_PARAM(PSMode, "Power saving mode"); #define SHORT_RETRY_DEF 8 DEVICE_PARAM(ShortRetryLimit, "Short frame retry limits"); #define LONG_RETRY_DEF 4 DEVICE_PARAM(LongRetryLimit, "long frame retry limits"); /* BasebandType[] baseband type selected 0: indicate 802.11a type 1: indicate 802.11b type 2: indicate 802.11g type */ #define BBP_TYPE_DEF 2 DEVICE_PARAM(BasebandType, "baseband type"); /* 80211hEnable[] 0: indicate disable 802.11h 1: indicate enable 802.11h */ #define X80211h_MODE_DEF 0 DEVICE_PARAM(b80211hEnable, "802.11h mode"); /* * Static vars definitions */ static struct usb_device_id vt6656_table[] = { {USB_DEVICE(VNT_USB_VENDOR_ID, VNT_USB_PRODUCT_ID)}, {} }; /* frequency list (map channels to frequencies) */ /* static const long frequency_list[] = { 2412, 2417, 2422, 2427, 2432, 2437, 2442, 2447, 2452, 2457, 2462, 2467, 2472, 2484, 4915, 4920, 4925, 4935, 4940, 4945, 4960, 4980, 5035, 5040, 5045, 5055, 5060, 5080, 5170, 5180, 5190, 5200, 5210, 5220, 5230, 5240, 5260, 5280, 5300, 5320, 5500, 5520, 5540, 5560, 5580, 5600, 5620, 5640, 5660, 5680, 5700, 5745, 5765, 5785, 5805, 5825 }; static const struct iw_handler_def iwctl_handler_def; */ static int vt6656_probe(struct usb_interface *intf, const struct usb_device_id *id); static void vt6656_disconnect(struct usb_interface *intf); #ifdef CONFIG_PM /* Minimal support for suspend and resume */ static int vt6656_suspend(struct usb_interface *intf, pm_message_t message); static int vt6656_resume(struct usb_interface *intf); #endif /* CONFIG_PM */ static struct net_device_stats *device_get_stats(struct net_device *dev); static int device_open(struct net_device *dev); static int device_xmit(struct sk_buff *skb, struct net_device *dev); static void device_set_multi(struct net_device *dev); static int device_close(struct net_device *dev); static int device_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); static int device_init_registers(struct vnt_private *pDevice); static bool device_init_defrag_cb(struct vnt_private *pDevice); static void device_init_diversity_timer(struct vnt_private *pDevice); static int device_dma0_tx_80211(struct sk_buff *skb, struct net_device *dev); static int ethtool_ioctl(struct net_device *dev, struct ifreq *); static void device_free_tx_bufs(struct vnt_private *pDevice); static void device_free_rx_bufs(struct vnt_private *pDevice); static void device_free_int_bufs(struct vnt_private *pDevice); static void device_free_frag_bufs(struct vnt_private *pDevice); static bool device_alloc_bufs(struct vnt_private *pDevice); static int Read_config_file(struct vnt_private *pDevice); static unsigned char *Config_FileOperation(struct vnt_private *pDevice); static int Config_FileGetParameter(unsigned char *string, unsigned char *dest, unsigned char *source); static void usb_device_reset(struct vnt_private *pDevice); static void device_set_options(struct vnt_private *pDevice) { u8 abyBroadcastAddr[ETH_ALEN] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; u8 abySNAP_RFC1042[ETH_ALEN] = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0x00}; u8 abySNAP_Bridgetunnel[ETH_ALEN] = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0xF8}; memcpy(pDevice->abyBroadcastAddr, abyBroadcastAddr, ETH_ALEN); memcpy(pDevice->abySNAP_RFC1042, abySNAP_RFC1042, ETH_ALEN); memcpy(pDevice->abySNAP_Bridgetunnel, abySNAP_Bridgetunnel, ETH_ALEN); pDevice->cbTD = TX_DESC_DEF0; pDevice->cbRD = RX_DESC_DEF0; pDevice->uChannel = CHANNEL_DEF; pDevice->wRTSThreshold = RTS_THRESH_DEF; pDevice->wFragmentationThreshold = FRAG_THRESH_DEF; pDevice->byShortRetryLimit = SHORT_RETRY_DEF; pDevice->byLongRetryLimit = LONG_RETRY_DEF; pDevice->wMaxTransmitMSDULifetime = DEFAULT_MSDU_LIFETIME; pDevice->byShortPreamble = PREAMBLE_TYPE_DEF; pDevice->ePSMode = PS_MODE_DEF; pDevice->b11hEnable = X80211h_MODE_DEF; pDevice->eOPMode = OP_MODE_DEF; pDevice->uConnectionRate = DATA_RATE_DEF; if (pDevice->uConnectionRate < RATE_AUTO) pDevice->bFixRate = true; pDevice->byBBType = BBP_TYPE_DEF; pDevice->byPacketType = pDevice->byBBType; pDevice->byAutoFBCtrl = AUTO_FB_0; pDevice->bUpdateBBVGA = true; pDevice->byFOETuning = 0; pDevice->byAutoPwrTunning = 0; pDevice->byPreambleType = 0; pDevice->bExistSWNetAddr = false; /* pDevice->bDiversityRegCtlON = true; */ pDevice->bDiversityRegCtlON = false; } static void device_init_diversity_timer(struct vnt_private *pDevice) { init_timer(&pDevice->TimerSQ3Tmax1); pDevice->TimerSQ3Tmax1.data = (unsigned long)pDevice; pDevice->TimerSQ3Tmax1.function = (TimerFunction)TimerSQ3CallBack; pDevice->TimerSQ3Tmax1.expires = RUN_AT(HZ); init_timer(&pDevice->TimerSQ3Tmax2); pDevice->TimerSQ3Tmax2.data = (unsigned long)pDevice; pDevice->TimerSQ3Tmax2.function = (TimerFunction)TimerSQ3CallBack; pDevice->TimerSQ3Tmax2.expires = RUN_AT(HZ); init_timer(&pDevice->TimerSQ3Tmax3); pDevice->TimerSQ3Tmax3.data = (unsigned long)pDevice; pDevice->TimerSQ3Tmax3.function = (TimerFunction)TimerSQ3Tmax3CallBack; pDevice->TimerSQ3Tmax3.expires = RUN_AT(HZ); return; } /* * initialization of MAC & BBP registers */ static int device_init_registers(struct vnt_private *pDevice) { struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; struct vnt_cmd_card_init *init_cmd = &pDevice->init_command; struct vnt_rsp_card_init *init_rsp = &pDevice->init_response; u8 abyBroadcastAddr[ETH_ALEN] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; u8 abySNAP_RFC1042[ETH_ALEN] = {0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00}; u8 abySNAP_Bridgetunnel[ETH_ALEN] = {0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8}; u8 byAntenna; int ii; int ntStatus = STATUS_SUCCESS; u8 byTmp; u8 byCalibTXIQ = 0, byCalibTXDC = 0, byCalibRXIQ = 0; DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "---->INIbInitAdapter. [%d][%d]\n", DEVICE_INIT_COLD, pDevice->byPacketType); spin_lock_irq(&pDevice->lock); memcpy(pDevice->abyBroadcastAddr, abyBroadcastAddr, ETH_ALEN); memcpy(pDevice->abySNAP_RFC1042, abySNAP_RFC1042, ETH_ALEN); memcpy(pDevice->abySNAP_Bridgetunnel, abySNAP_Bridgetunnel, ETH_ALEN); if (!FIRMWAREbCheckVersion(pDevice)) { if (FIRMWAREbDownload(pDevice) == true) { if (FIRMWAREbBrach2Sram(pDevice) == false) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " FIRMWAREbBrach2Sram fail\n"); spin_unlock_irq(&pDevice->lock); return false; } } else { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " FIRMWAREbDownload fail\n"); spin_unlock_irq(&pDevice->lock); return false; } } if (!BBbVT3184Init(pDevice)) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO" BBbVT3184Init fail\n"); spin_unlock_irq(&pDevice->lock); return false; } init_cmd->init_class = DEVICE_INIT_COLD; init_cmd->exist_sw_net_addr = (u8) pDevice->bExistSWNetAddr; for (ii = 0; ii < 6; ii++) init_cmd->sw_net_addr[ii] = pDevice->abyCurrentNetAddr[ii]; init_cmd->short_retry_limit = pDevice->byShortRetryLimit; init_cmd->long_retry_limit = pDevice->byLongRetryLimit; /* issue card_init command to device */ ntStatus = CONTROLnsRequestOut(pDevice, MESSAGE_TYPE_CARDINIT, 0, 0, sizeof(struct vnt_cmd_card_init), (u8 *)init_cmd); if (ntStatus != STATUS_SUCCESS) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO" Issue Card init fail\n"); spin_unlock_irq(&pDevice->lock); return false; } ntStatus = CONTROLnsRequestIn(pDevice, MESSAGE_TYPE_INIT_RSP, 0, 0, sizeof(struct vnt_rsp_card_init), (u8 *)init_rsp); if (ntStatus != STATUS_SUCCESS) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Cardinit request in status fail!\n"); spin_unlock_irq(&pDevice->lock); return false; } /* local ID for AES functions */ ntStatus = CONTROLnsRequestIn(pDevice, MESSAGE_TYPE_READ, MAC_REG_LOCALID, MESSAGE_REQUEST_MACREG, 1, &pDevice->byLocalID); if (ntStatus != STATUS_SUCCESS) { spin_unlock_irq(&pDevice->lock); return false; } /* do MACbSoftwareReset in MACvInitialize */ /* force CCK */ pDevice->bCCK = true; pDevice->bProtectMode = false; /* only used in 11g type, sync with ERP IE */ pDevice->bNonERPPresent = false; pDevice->bBarkerPreambleMd = false; if (pDevice->bFixRate) { pDevice->wCurrentRate = (u16)pDevice->uConnectionRate; } else { if (pDevice->byBBType == BB_TYPE_11B) pDevice->wCurrentRate = RATE_11M; else pDevice->wCurrentRate = RATE_54M; } CHvInitChannelTable(pDevice); pDevice->byTopOFDMBasicRate = RATE_24M; pDevice->byTopCCKBasicRate = RATE_1M; pDevice->byRevId = 0; /* target to IF pin while programming to RF chip */ pDevice->byCurPwr = 0xFF; pDevice->byCCKPwr = pDevice->abyEEPROM[EEP_OFS_PWR_CCK]; pDevice->byOFDMPwrG = pDevice->abyEEPROM[EEP_OFS_PWR_OFDMG]; /* load power table */ for (ii = 0; ii < 14; ii++) { pDevice->abyCCKPwrTbl[ii] = pDevice->abyEEPROM[ii + EEP_OFS_CCK_PWR_TBL]; if (pDevice->abyCCKPwrTbl[ii] == 0) pDevice->abyCCKPwrTbl[ii] = pDevice->byCCKPwr; pDevice->abyOFDMPwrTbl[ii] = pDevice->abyEEPROM[ii + EEP_OFS_OFDM_PWR_TBL]; if (pDevice->abyOFDMPwrTbl[ii] == 0) pDevice->abyOFDMPwrTbl[ii] = pDevice->byOFDMPwrG; } /* * original zonetype is USA, but custom zonetype is Europe, * then need to recover 12, 13, 14 channels with 11 channel */ if (((pDevice->abyEEPROM[EEP_OFS_ZONETYPE] == ZoneType_Japan) || (pDevice->abyEEPROM[EEP_OFS_ZONETYPE] == ZoneType_Europe)) && (pDevice->byOriginalZonetype == ZoneType_USA)) { for (ii = 11; ii < 14; ii++) { pDevice->abyCCKPwrTbl[ii] = pDevice->abyCCKPwrTbl[10]; pDevice->abyOFDMPwrTbl[ii] = pDevice->abyOFDMPwrTbl[10]; } } pDevice->byOFDMPwrA = 0x34; /* same as RFbMA2829SelectChannel */ /* load OFDM A power table */ for (ii = 0; ii < CB_MAX_CHANNEL_5G; ii++) { pDevice->abyOFDMAPwrTbl[ii] = pDevice->abyEEPROM[ii + EEP_OFS_OFDMA_PWR_TBL]; if (pDevice->abyOFDMAPwrTbl[ii] == 0) pDevice->abyOFDMAPwrTbl[ii] = pDevice->byOFDMPwrA; } byAntenna = pDevice->abyEEPROM[EEP_OFS_ANTENNA]; if (byAntenna & EEP_ANTINV) pDevice->bTxRxAntInv = true; else pDevice->bTxRxAntInv = false; byAntenna &= (EEP_ANTENNA_AUX | EEP_ANTENNA_MAIN); if (byAntenna == 0) /* if not set default is both */ byAntenna = (EEP_ANTENNA_AUX | EEP_ANTENNA_MAIN); if (byAntenna == (EEP_ANTENNA_AUX | EEP_ANTENNA_MAIN)) { pDevice->byAntennaCount = 2; pDevice->byTxAntennaMode = ANT_B; pDevice->dwTxAntennaSel = 1; pDevice->dwRxAntennaSel = 1; if (pDevice->bTxRxAntInv == true) pDevice->byRxAntennaMode = ANT_A; else pDevice->byRxAntennaMode = ANT_B; if (pDevice->bDiversityRegCtlON) pDevice->bDiversityEnable = true; else pDevice->bDiversityEnable = false; } else { pDevice->bDiversityEnable = false; pDevice->byAntennaCount = 1; pDevice->dwTxAntennaSel = 0; pDevice->dwRxAntennaSel = 0; if (byAntenna & EEP_ANTENNA_AUX) { pDevice->byTxAntennaMode = ANT_A; if (pDevice->bTxRxAntInv == true) pDevice->byRxAntennaMode = ANT_B; else pDevice->byRxAntennaMode = ANT_A; } else { pDevice->byTxAntennaMode = ANT_B; if (pDevice->bTxRxAntInv == true) pDevice->byRxAntennaMode = ANT_A; else pDevice->byRxAntennaMode = ANT_B; } } pDevice->ulDiversityNValue = 100 * 255; pDevice->ulDiversityMValue = 100 * 16; pDevice->byTMax = 1; pDevice->byTMax2 = 4; pDevice->ulSQ3TH = 0; pDevice->byTMax3 = 64; /* get Auto Fall Back type */ pDevice->byAutoFBCtrl = AUTO_FB_0; /* set SCAN Time */ pDevice->uScanTime = WLAN_SCAN_MINITIME; /* default Auto Mode */ /* pDevice->NetworkType = Ndis802_11Automode; */ pDevice->eConfigPHYMode = PHY_TYPE_AUTO; pDevice->byBBType = BB_TYPE_11G; /* initialize BBP registers */ pDevice->ulTxPower = 25; /* get channel range */ pDevice->byMinChannel = 1; pDevice->byMaxChannel = CB_MAX_CHANNEL; /* get RFType */ pDevice->byRFType = init_rsp->rf_type; if ((pDevice->byRFType & RF_EMU) != 0) { /* force change RevID for VT3253 emu */ pDevice->byRevId = 0x80; } /* load vt3266 calibration parameters in EEPROM */ if (pDevice->byRFType == RF_VT3226D0) { if ((pDevice->abyEEPROM[EEP_OFS_MAJOR_VER] == 0x1) && (pDevice->abyEEPROM[EEP_OFS_MINOR_VER] >= 0x4)) { byCalibTXIQ = pDevice->abyEEPROM[EEP_OFS_CALIB_TX_IQ]; byCalibTXDC = pDevice->abyEEPROM[EEP_OFS_CALIB_TX_DC]; byCalibRXIQ = pDevice->abyEEPROM[EEP_OFS_CALIB_RX_IQ]; if (byCalibTXIQ || byCalibTXDC || byCalibRXIQ) { /* CR255, enable TX/RX IQ and DC compensation mode */ ControlvWriteByte(pDevice, MESSAGE_REQUEST_BBREG, 0xff, 0x03); /* CR251, TX I/Q Imbalance Calibration */ ControlvWriteByte(pDevice, MESSAGE_REQUEST_BBREG, 0xfb, byCalibTXIQ); /* CR252, TX DC-Offset Calibration */ ControlvWriteByte(pDevice, MESSAGE_REQUEST_BBREG, 0xfC, byCalibTXDC); /* CR253, RX I/Q Imbalance Calibration */ ControlvWriteByte(pDevice, MESSAGE_REQUEST_BBREG, 0xfd, byCalibRXIQ); } else { /* CR255, turn off BB Calibration compensation */ ControlvWriteByte(pDevice, MESSAGE_REQUEST_BBREG, 0xff, 0x0); } } } pMgmt->eScanType = WMAC_SCAN_PASSIVE; pMgmt->uCurrChannel = pDevice->uChannel; pMgmt->uIBSSChannel = pDevice->uChannel; CARDbSetMediaChannel(pDevice, pMgmt->uCurrChannel); /* get permanent network address */ memcpy(pDevice->abyPermanentNetAddr, init_rsp->net_addr, 6); memcpy(pDevice->abyCurrentNetAddr, pDevice->abyPermanentNetAddr, ETH_ALEN); /* if exist SW network address, use it */ DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Network address = %pM\n", pDevice->abyCurrentNetAddr); /* * set BB and packet type at the same time * set Short Slot Time, xIFS, and RSPINF */ if (pDevice->byBBType == BB_TYPE_11A) { CARDbAddBasicRate(pDevice, RATE_6M); pDevice->bShortSlotTime = true; } else { CARDbAddBasicRate(pDevice, RATE_1M); pDevice->bShortSlotTime = false; } BBvSetShortSlotTime(pDevice); CARDvSetBSSMode(pDevice); if (pDevice->bUpdateBBVGA) { pDevice->byBBVGACurrent = pDevice->abyBBVGA[0]; pDevice->byBBVGANew = pDevice->byBBVGACurrent; BBvSetVGAGainOffset(pDevice, pDevice->abyBBVGA[0]); } pDevice->byRadioCtl = pDevice->abyEEPROM[EEP_OFS_RADIOCTL]; pDevice->bHWRadioOff = false; if ((pDevice->byRadioCtl & EEP_RADIOCTL_ENABLE) != 0) { ntStatus = CONTROLnsRequestIn(pDevice, MESSAGE_TYPE_READ, MAC_REG_GPIOCTL1, MESSAGE_REQUEST_MACREG, 1, &byTmp); if (ntStatus != STATUS_SUCCESS) { spin_unlock_irq(&pDevice->lock); return false; } if ((byTmp & GPIO3_DATA) == 0) { pDevice->bHWRadioOff = true; MACvRegBitsOn(pDevice, MAC_REG_GPIOCTL1, GPIO3_INTMD); } else { MACvRegBitsOff(pDevice, MAC_REG_GPIOCTL1, GPIO3_INTMD); pDevice->bHWRadioOff = false; } } ControlvMaskByte(pDevice, MESSAGE_REQUEST_MACREG, MAC_REG_PAPEDELAY, LEDSTS_TMLEN, 0x38); ControlvMaskByte(pDevice, MESSAGE_REQUEST_MACREG, MAC_REG_PAPEDELAY, LEDSTS_STS, LEDSTS_SLOW); MACvRegBitsOn(pDevice, MAC_REG_GPIOCTL0, 0x01); if ((pDevice->bHWRadioOff == true) || (pDevice->bRadioControlOff == true)) { CARDbRadioPowerOff(pDevice); } else { CARDbRadioPowerOn(pDevice); } spin_unlock_irq(&pDevice->lock); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"<----INIbInitAdapter Exit\n"); return true; } #ifdef CONFIG_PM /* Minimal support for suspend and resume */ static int vt6656_suspend(struct usb_interface *intf, pm_message_t message) { struct vnt_private *device = usb_get_intfdata(intf); if (!device || !device->dev) return -ENODEV; if (device->flags & DEVICE_FLAGS_OPENED) device_close(device->dev); return 0; } static int vt6656_resume(struct usb_interface *intf) { struct vnt_private *device = usb_get_intfdata(intf); if (!device || !device->dev) return -ENODEV; if (!(device->flags & DEVICE_FLAGS_OPENED)) device_open(device->dev); return 0; } #endif /* CONFIG_PM */ static const struct net_device_ops device_netdev_ops = { .ndo_open = device_open, .ndo_stop = device_close, .ndo_do_ioctl = device_ioctl, .ndo_get_stats = device_get_stats, .ndo_start_xmit = device_xmit, .ndo_set_rx_mode = device_set_multi, }; static int vt6656_probe(struct usb_interface *intf, const struct usb_device_id *id) { u8 fake_mac[ETH_ALEN] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x01}; struct usb_device *udev = interface_to_usbdev(intf); int rc = 0; struct net_device *netdev = NULL; struct vnt_private *pDevice; printk(KERN_NOTICE "%s Ver. %s\n", DEVICE_FULL_DRV_NAM, DEVICE_VERSION); printk(KERN_NOTICE "Copyright (c) 2004 VIA Networking Technologies, Inc.\n"); udev = usb_get_dev(udev); netdev = alloc_etherdev(sizeof(struct vnt_private)); if (!netdev) { printk(KERN_ERR DEVICE_NAME ": allocate net device failed\n"); rc = -ENOMEM; goto err_nomem; } pDevice = netdev_priv(netdev); memset(pDevice, 0, sizeof(struct vnt_private)); pDevice->dev = netdev; pDevice->usb = udev; device_set_options(pDevice); spin_lock_init(&pDevice->lock); INIT_DELAYED_WORK(&pDevice->run_command_work, vRunCommand); INIT_DELAYED_WORK(&pDevice->second_callback_work, BSSvSecondCallBack); INIT_WORK(&pDevice->read_work_item, RXvWorkItem); INIT_WORK(&pDevice->rx_mng_work_item, RXvMngWorkItem); pDevice->pControlURB = usb_alloc_urb(0, GFP_ATOMIC); if (!pDevice->pControlURB) { DBG_PRT(MSG_LEVEL_ERR, KERN_ERR"Failed to alloc control urb\n"); goto err_netdev; } pDevice->tx_80211 = device_dma0_tx_80211; pDevice->vnt_mgmt.pAdapter = (void *) pDevice; netdev->netdev_ops = &device_netdev_ops; netdev->wireless_handlers = (struct iw_handler_def *) &iwctl_handler_def; usb_set_intfdata(intf, pDevice); SET_NETDEV_DEV(netdev, &intf->dev); memcpy(pDevice->dev->dev_addr, fake_mac, ETH_ALEN); usb_device_reset(pDevice); rc = register_netdev(netdev); if (rc) { printk(KERN_ERR DEVICE_NAME " Failed to register netdev\n"); goto err_netdev; } return 0; err_netdev: free_netdev(netdev); err_nomem: usb_put_dev(udev); return rc; } static void device_free_tx_bufs(struct vnt_private *pDevice) { struct vnt_usb_send_context *pTxContext; int ii; for (ii = 0; ii < pDevice->cbTD; ii++) { pTxContext = pDevice->apTD[ii]; /* deallocate URBs */ if (pTxContext->pUrb) { usb_kill_urb(pTxContext->pUrb); usb_free_urb(pTxContext->pUrb); } kfree(pTxContext); } return; } static void device_free_rx_bufs(struct vnt_private *pDevice) { struct vnt_rcb *pRCB; int ii; for (ii = 0; ii < pDevice->cbRD; ii++) { pRCB = pDevice->apRCB[ii]; /* deallocate URBs */ if (pRCB->pUrb) { usb_kill_urb(pRCB->pUrb); usb_free_urb(pRCB->pUrb); } /* deallocate skb */ if (pRCB->skb) dev_kfree_skb(pRCB->skb); } kfree(pDevice->pRCBMem); return; } static void usb_device_reset(struct vnt_private *pDevice) { int status; status = usb_reset_device(pDevice->usb); if (status) printk("usb_device_reset fail status=%d\n",status); return ; } static void device_free_int_bufs(struct vnt_private *pDevice) { kfree(pDevice->intBuf.pDataBuf); return; } static bool device_alloc_bufs(struct vnt_private *pDevice) { struct vnt_usb_send_context *pTxContext; struct vnt_rcb *pRCB; int ii; for (ii = 0; ii < pDevice->cbTD; ii++) { pTxContext = kmalloc(sizeof(struct vnt_usb_send_context), GFP_KERNEL); if (pTxContext == NULL) { DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s : allocate tx usb context failed\n", pDevice->dev->name); goto free_tx; } pDevice->apTD[ii] = pTxContext; pTxContext->pDevice = (void *) pDevice; /* allocate URBs */ pTxContext->pUrb = usb_alloc_urb(0, GFP_ATOMIC); if (pTxContext->pUrb == NULL) { DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "alloc tx urb failed\n"); goto free_tx; } pTxContext->bBoolInUse = false; } /* allocate RCB mem */ pDevice->pRCBMem = kzalloc((sizeof(struct vnt_rcb) * pDevice->cbRD), GFP_KERNEL); if (pDevice->pRCBMem == NULL) { DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s : alloc rx usb context failed\n", pDevice->dev->name); goto free_tx; } pDevice->FirstRecvFreeList = NULL; pDevice->LastRecvFreeList = NULL; pDevice->FirstRecvMngList = NULL; pDevice->LastRecvMngList = NULL; pDevice->NumRecvFreeList = 0; pRCB = (struct vnt_rcb *)pDevice->pRCBMem; for (ii = 0; ii < pDevice->cbRD; ii++) { pDevice->apRCB[ii] = pRCB; pRCB->pDevice = (void *) pDevice; /* allocate URBs */ pRCB->pUrb = usb_alloc_urb(0, GFP_ATOMIC); if (pRCB->pUrb == NULL) { DBG_PRT(MSG_LEVEL_ERR,KERN_ERR" Failed to alloc rx urb\n"); goto free_rx_tx; } pRCB->skb = dev_alloc_skb((int)pDevice->rx_buf_sz); if (pRCB->skb == NULL) { DBG_PRT(MSG_LEVEL_ERR,KERN_ERR" Failed to alloc rx skb\n"); goto free_rx_tx; } pRCB->skb->dev = pDevice->dev; pRCB->bBoolInUse = false; EnqueueRCB(pDevice->FirstRecvFreeList, pDevice->LastRecvFreeList, pRCB); pDevice->NumRecvFreeList++; pRCB++; } pDevice->pInterruptURB = usb_alloc_urb(0, GFP_ATOMIC); if (pDevice->pInterruptURB == NULL) { DBG_PRT(MSG_LEVEL_ERR,KERN_ERR"Failed to alloc int urb\n"); goto free_rx_tx; } pDevice->intBuf.pDataBuf = kmalloc(MAX_INTERRUPT_SIZE, GFP_KERNEL); if (pDevice->intBuf.pDataBuf == NULL) { DBG_PRT(MSG_LEVEL_ERR,KERN_ERR"Failed to alloc int buf\n"); usb_free_urb(pDevice->pInterruptURB); goto free_rx_tx; } return true; free_rx_tx: device_free_rx_bufs(pDevice); free_tx: device_free_tx_bufs(pDevice); return false; } static bool device_init_defrag_cb(struct vnt_private *pDevice) { int i; PSDeFragControlBlock pDeF; /* Init the fragment ctl entries */ for (i = 0; i < CB_MAX_RX_FRAG; i++) { pDeF = &(pDevice->sRxDFCB[i]); if (!device_alloc_frag_buf(pDevice, pDeF)) { DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc frag bufs\n", pDevice->dev->name); goto free_frag; } } pDevice->cbDFCB = CB_MAX_RX_FRAG; pDevice->cbFreeDFCB = pDevice->cbDFCB; return true; free_frag: device_free_frag_bufs(pDevice); return false; } static void device_free_frag_bufs(struct vnt_private *pDevice) { PSDeFragControlBlock pDeF; int i; for (i = 0; i < CB_MAX_RX_FRAG; i++) { pDeF = &(pDevice->sRxDFCB[i]); if (pDeF->skb) dev_kfree_skb(pDeF->skb); } } int device_alloc_frag_buf(struct vnt_private *pDevice, PSDeFragControlBlock pDeF) { pDeF->skb = dev_alloc_skb((int)pDevice->rx_buf_sz); if (pDeF->skb == NULL) return false; pDeF->skb->dev = pDevice->dev; return true; } static int device_open(struct net_device *dev) { struct vnt_private *pDevice = netdev_priv(dev); pDevice->fWPA_Authened = false; DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " device_open...\n"); pDevice->rx_buf_sz = MAX_TOTAL_SIZE_WITH_ALL_HEADERS; if (device_alloc_bufs(pDevice) == false) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " device_alloc_bufs fail... \n"); return -ENOMEM; } if (device_init_defrag_cb(pDevice)== false) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " Initial defragment cb fail \n"); goto free_rx_tx; } MP_CLEAR_FLAG(pDevice, fMP_DISCONNECTED); MP_CLEAR_FLAG(pDevice, fMP_CONTROL_READS); MP_CLEAR_FLAG(pDevice, fMP_CONTROL_WRITES); MP_SET_FLAG(pDevice, fMP_POST_READS); MP_SET_FLAG(pDevice, fMP_POST_WRITES); /* read config file */ Read_config_file(pDevice); if (device_init_registers(pDevice) == false) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " init register fail\n"); goto free_all; } device_set_multi(pDevice->dev); /* init for key management */ KeyvInitTable(pDevice,&pDevice->sKey); memcpy(pDevice->vnt_mgmt.abyMACAddr, pDevice->abyCurrentNetAddr, ETH_ALEN); memcpy(pDevice->dev->dev_addr, pDevice->abyCurrentNetAddr, ETH_ALEN); pDevice->bStopTx0Pkt = false; pDevice->bStopDataPkt = false; pDevice->bRoaming = false; pDevice->bIsRoaming = false; pDevice->bEnableRoaming = false; if (pDevice->bDiversityRegCtlON) { device_init_diversity_timer(pDevice); } vMgrObjectInit(pDevice); tasklet_init(&pDevice->EventWorkItem, (void *)INTvWorkItem, (unsigned long)pDevice); schedule_delayed_work(&pDevice->second_callback_work, HZ); pDevice->int_interval = 100; /* max 100 microframes */ pDevice->eEncryptionStatus = Ndis802_11EncryptionDisabled; pDevice->bIsRxWorkItemQueued = true; pDevice->fKillEventPollingThread = false; pDevice->bEventAvailable = false; pDevice->bWPADEVUp = false; pDevice->bwextstep0 = false; pDevice->bwextstep1 = false; pDevice->bwextstep2 = false; pDevice->bwextstep3 = false; pDevice->bWPASuppWextEnabled = false; pDevice->byReAssocCount = 0; schedule_work(&pDevice->read_work_item); INTvWorkItem(pDevice); /* if WEP key already set by iwconfig but device not yet open */ if ((pDevice->bEncryptionEnable == true) && (pDevice->bTransmitKey == true)) { spin_lock_irq(&pDevice->lock); KeybSetDefaultKey( pDevice, &(pDevice->sKey), pDevice->byKeyIndex | (1 << 31), pDevice->uKeyLength, NULL, pDevice->abyKey, KEY_CTL_WEP ); spin_unlock_irq(&pDevice->lock); pDevice->eEncryptionStatus = Ndis802_11Encryption1Enabled; } if (pDevice->vnt_mgmt.eConfigMode == WMAC_CONFIG_AP) bScheduleCommand((void *) pDevice, WLAN_CMD_RUN_AP, NULL); else bScheduleCommand((void *) pDevice, WLAN_CMD_BSSID_SCAN, NULL); netif_stop_queue(pDevice->dev); pDevice->flags |= DEVICE_FLAGS_OPENED; DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "device_open success..\n"); return 0; free_all: device_free_frag_bufs(pDevice); free_rx_tx: device_free_rx_bufs(pDevice); device_free_tx_bufs(pDevice); device_free_int_bufs(pDevice); usb_kill_urb(pDevice->pInterruptURB); usb_free_urb(pDevice->pInterruptURB); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "device_open fail.. \n"); return -ENOMEM; } static int device_close(struct net_device *dev) { struct vnt_private *pDevice = netdev_priv(dev); struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; int uu; DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "device_close1\n"); if (pDevice == NULL) return -ENODEV; if (pDevice->bLinkPass) { bScheduleCommand((void *) pDevice, WLAN_CMD_DISASSOCIATE, NULL); mdelay(30); } memset(pMgmt->abyDesireSSID, 0, WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN + 1); pMgmt->bShareKeyAlgorithm = false; pDevice->bEncryptionEnable = false; pDevice->eEncryptionStatus = Ndis802_11EncryptionDisabled; spin_lock_irq(&pDevice->lock); for (uu = 0; uu < MAX_KEY_TABLE; uu++) MACvDisableKeyEntry(pDevice,uu); spin_unlock_irq(&pDevice->lock); if ((pDevice->flags & DEVICE_FLAGS_UNPLUG) == false) { MACbShutdown(pDevice); } netif_stop_queue(pDevice->dev); MP_SET_FLAG(pDevice, fMP_DISCONNECTED); MP_CLEAR_FLAG(pDevice, fMP_POST_WRITES); MP_CLEAR_FLAG(pDevice, fMP_POST_READS); pDevice->fKillEventPollingThread = true; cancel_delayed_work_sync(&pDevice->run_command_work); cancel_delayed_work_sync(&pDevice->second_callback_work); if (pDevice->bDiversityRegCtlON) { del_timer(&pDevice->TimerSQ3Tmax1); del_timer(&pDevice->TimerSQ3Tmax2); del_timer(&pDevice->TimerSQ3Tmax3); } cancel_work_sync(&pDevice->rx_mng_work_item); cancel_work_sync(&pDevice->read_work_item); tasklet_kill(&pDevice->EventWorkItem); pDevice->bRoaming = false; pDevice->bIsRoaming = false; pDevice->bEnableRoaming = false; pDevice->bCmdRunning = false; pDevice->bLinkPass = false; memset(pMgmt->abyCurrBSSID, 0, 6); pMgmt->eCurrState = WMAC_STATE_IDLE; pDevice->flags &= ~DEVICE_FLAGS_OPENED; device_free_tx_bufs(pDevice); device_free_rx_bufs(pDevice); device_free_int_bufs(pDevice); device_free_frag_bufs(pDevice); usb_kill_urb(pDevice->pInterruptURB); usb_free_urb(pDevice->pInterruptURB); BSSvClearNodeDBTable(pDevice, 0); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "device_close2 \n"); return 0; } static void vt6656_disconnect(struct usb_interface *intf) { struct vnt_private *device = usb_get_intfdata(intf); if (!device) return; usb_set_intfdata(intf, NULL); usb_put_dev(interface_to_usbdev(intf)); device->flags |= DEVICE_FLAGS_UNPLUG; if (device->dev) { unregister_netdev(device->dev); usb_kill_urb(device->pControlURB); usb_free_urb(device->pControlURB); free_netdev(device->dev); } } static int device_dma0_tx_80211(struct sk_buff *skb, struct net_device *dev) { struct vnt_private *pDevice = netdev_priv(dev); spin_lock_irq(&pDevice->lock); if (unlikely(pDevice->bStopTx0Pkt)) dev_kfree_skb_irq(skb); else vDMA0_tx_80211(pDevice, skb); spin_unlock_irq(&pDevice->lock); return NETDEV_TX_OK; } static int device_xmit(struct sk_buff *skb, struct net_device *dev) { struct vnt_private *pDevice = netdev_priv(dev); struct net_device_stats *stats = &pDevice->stats; spin_lock_irq(&pDevice->lock); netif_stop_queue(dev); if (!pDevice->bLinkPass) { dev_kfree_skb_irq(skb); goto out; } if (pDevice->bStopDataPkt) { dev_kfree_skb_irq(skb); stats->tx_dropped++; goto out; } if (nsDMA_tx_packet(pDevice, TYPE_AC0DMA, skb)) { if (netif_queue_stopped(dev)) netif_wake_queue(dev); } out: spin_unlock_irq(&pDevice->lock); return NETDEV_TX_OK; } /* find out the start position of str2 from str1 */ static unsigned char *kstrstr(const unsigned char *str1, const unsigned char *str2) { int str1_len = strlen(str1); int str2_len = strlen(str2); while (str1_len >= str2_len) { str1_len--; if(memcmp(str1,str2,str2_len)==0) return (unsigned char *) str1; str1++; } return NULL; } static int Config_FileGetParameter(unsigned char *string, unsigned char *dest, unsigned char *source) { unsigned char buf1[100]; unsigned char buf2[100]; unsigned char *start_p = NULL, *end_p = NULL, *tmp_p = NULL; int ii; memset(buf1,0,100); strcat(buf1, string); strcat(buf1, "="); source+=strlen(buf1); /* find target string start point */ start_p = kstrstr(source,buf1); if (start_p == NULL) return false; /* check if current config line is marked by "#" */ for (ii = 1; ; ii++) { if (memcmp(start_p - ii, "\n", 1) == 0) break; if (memcmp(start_p - ii, "#", 1) == 0) return false; } /* find target string end point */ end_p = kstrstr(start_p,"\n"); if (end_p == NULL) { /* can't find "\n", but don't care */ end_p = start_p + strlen(start_p); /* no include "\n" */ } memset(buf2,0,100); memcpy(buf2, start_p, end_p-start_p); /* get the target line */ buf2[end_p-start_p]='\0'; /* find value */ start_p = kstrstr(buf2,"="); if (start_p == NULL) return false; memset(buf1,0,100); strcpy(buf1,start_p+1); /* except space */ tmp_p = buf1; while(*tmp_p != 0x00) { if(*tmp_p==' ') tmp_p++; else break; } memcpy(dest,tmp_p,strlen(tmp_p)); return true; } /* if read fails, return NULL, or return data pointer */ static unsigned char *Config_FileOperation(struct vnt_private *pDevice) { unsigned char *buffer = kmalloc(1024, GFP_KERNEL); struct file *file; if (!buffer) { printk("allocate mem for file fail?\n"); return NULL; } file = filp_open(CONFIG_PATH, O_RDONLY, 0); if (IS_ERR(file)) { kfree(buffer); printk("Config_FileOperation file Not exist\n"); return NULL; } if (kernel_read(file, 0, buffer, 1024) < 0) { printk("read file error?\n"); kfree(buffer); buffer = NULL; } fput(file); return buffer; } /* return --->-1:fail; >=0:successful */ static int Read_config_file(struct vnt_private *pDevice) { int result = 0; unsigned char tmpbuffer[100]; unsigned char *buffer = NULL; /* init config setting */ pDevice->config_file.ZoneType = -1; pDevice->config_file.eAuthenMode = -1; pDevice->config_file.eEncryptionStatus = -1; buffer = Config_FileOperation(pDevice); if (buffer == NULL) { result =-1; return result; } /* get zonetype */ { memset(tmpbuffer,0,sizeof(tmpbuffer)); if(Config_FileGetParameter("ZONETYPE",tmpbuffer,buffer) ==true) { if(memcmp(tmpbuffer,"USA",3)==0) { pDevice->config_file.ZoneType=ZoneType_USA; } else if(memcmp(tmpbuffer,"JAPAN",5)==0) { pDevice->config_file.ZoneType=ZoneType_Japan; } else if(memcmp(tmpbuffer,"EUROPE",6)==0) { pDevice->config_file.ZoneType=ZoneType_Europe; } else { printk("Unknown Zonetype[%s]?\n",tmpbuffer); } } } /* get other parameter */ { memset(tmpbuffer,0,sizeof(tmpbuffer)); if(Config_FileGetParameter("AUTHENMODE",tmpbuffer,buffer)==true) { pDevice->config_file.eAuthenMode = (int) simple_strtol(tmpbuffer, NULL, 10); } memset(tmpbuffer,0,sizeof(tmpbuffer)); if(Config_FileGetParameter("ENCRYPTIONMODE",tmpbuffer,buffer)==true) { pDevice->config_file.eEncryptionStatus= (int) simple_strtol(tmpbuffer, NULL, 10); } } kfree(buffer); return result; } static void device_set_multi(struct net_device *dev) { struct vnt_private *pDevice = netdev_priv(dev); struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; struct netdev_hw_addr *ha; u32 mc_filter[2]; int ii; u8 pbyData[8] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; u8 byTmpMode = 0; int rc; spin_lock_irq(&pDevice->lock); rc = CONTROLnsRequestIn(pDevice, MESSAGE_TYPE_READ, MAC_REG_RCR, MESSAGE_REQUEST_MACREG, 1, &byTmpMode ); if (rc == 0) pDevice->byRxMode = byTmpMode; DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "pDevice->byRxMode in= %x\n", pDevice->byRxMode); if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */ DBG_PRT(MSG_LEVEL_ERR,KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name); /* unconditionally log net taps */ pDevice->byRxMode |= (RCR_MULTICAST|RCR_BROADCAST|RCR_UNICAST); } else if ((netdev_mc_count(dev) > pDevice->multicast_limit) || (dev->flags & IFF_ALLMULTI)) { CONTROLnsRequestOut(pDevice, MESSAGE_TYPE_WRITE, MAC_REG_MAR0, MESSAGE_REQUEST_MACREG, 8, pbyData ); pDevice->byRxMode |= (RCR_MULTICAST|RCR_BROADCAST); } else { memset(mc_filter, 0, sizeof(mc_filter)); netdev_for_each_mc_addr(ha, dev) { int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26; mc_filter[bit_nr >> 5] |= cpu_to_le32(1 << (bit_nr & 31)); } for (ii = 0; ii < 4; ii++) { MACvWriteMultiAddr(pDevice, ii, *((u8 *)&mc_filter[0] + ii)); MACvWriteMultiAddr(pDevice, ii+ 4, *((u8 *)&mc_filter[1] + ii)); } pDevice->byRxMode &= ~(RCR_UNICAST); pDevice->byRxMode |= (RCR_MULTICAST|RCR_BROADCAST); } if (pMgmt->eConfigMode == WMAC_CONFIG_AP) { /* * If AP mode, don't enable RCR_UNICAST since HW only compares * addr1 with local MAC */ pDevice->byRxMode |= (RCR_MULTICAST|RCR_BROADCAST); pDevice->byRxMode &= ~(RCR_UNICAST); } ControlvWriteByte(pDevice, MESSAGE_REQUEST_MACREG, MAC_REG_RCR, pDevice->byRxMode); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "pDevice->byRxMode out= %x\n", pDevice->byRxMode); spin_unlock_irq(&pDevice->lock); } static struct net_device_stats *device_get_stats(struct net_device *dev) { struct vnt_private *pDevice = netdev_priv(dev); return &pDevice->stats; } static int device_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct vnt_private *pDevice = netdev_priv(dev); struct iwreq *wrq = (struct iwreq *) rq; int rc = 0; switch (cmd) { case IOCTL_CMD_HOSTAPD: if (!(pDevice->flags & DEVICE_FLAGS_OPENED)) rc = -EFAULT; rc = vt6656_hostap_ioctl(pDevice, &wrq->u.data); break; case SIOCETHTOOL: return ethtool_ioctl(dev, rq); } return rc; } static int ethtool_ioctl(struct net_device *dev, struct ifreq *rq) { u32 ethcmd; if (copy_from_user(ðcmd, rq->ifr_data, sizeof(ethcmd))) return -EFAULT; switch (ethcmd) { case ETHTOOL_GDRVINFO: { struct ethtool_drvinfo info = {ETHTOOL_GDRVINFO}; strncpy(info.driver, DEVICE_NAME, sizeof(info.driver)-1); strncpy(info.version, DEVICE_VERSION, sizeof(info.version)-1); if (copy_to_user(rq->ifr_data, &info, sizeof(info))) return -EFAULT; return 0; } } return -EOPNOTSUPP; } MODULE_DEVICE_TABLE(usb, vt6656_table); static struct usb_driver vt6656_driver = { .name = DEVICE_NAME, .probe = vt6656_probe, .disconnect = vt6656_disconnect, .id_table = vt6656_table, #ifdef CONFIG_PM .suspend = vt6656_suspend, .resume = vt6656_resume, #endif /* CONFIG_PM */ }; module_usb_driver(vt6656_driver);