/* * linux/drivers/video/pxafb.c * * Copyright (C) 1999 Eric A. Thomas. * Copyright (C) 2004 Jean-Frederic Clere. * Copyright (C) 2004 Ian Campbell. * Copyright (C) 2004 Jeff Lackey. * Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas * which in turn is * Based on acornfb.c Copyright (C) Russell King. * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of this archive for * more details. * * Intel PXA250/210 LCD Controller Frame Buffer Driver * * Please direct your questions and comments on this driver to the following * email address: * * linux-arm-kernel@lists.arm.linux.org.uk * * Add support for overlay1 and overlay2 based on pxafb_overlay.c: * * Copyright (C) 2004, Intel Corporation * * 2003/08/27: <yu.tang@intel.com> * 2004/03/10: <stanley.cai@intel.com> * 2004/10/28: <yan.yin@intel.com> * * Copyright (C) 2006-2008 Marvell International Ltd. * All Rights Reserved */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/interrupt.h> #include <linux/slab.h> #include <linux/mm.h> #include <linux/fb.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/ioport.h> #include <linux/cpufreq.h> #include <linux/platform_device.h> #include <linux/dma-mapping.h> #include <linux/clk.h> #include <linux/err.h> #include <linux/completion.h> #include <linux/mutex.h> #include <linux/kthread.h> #include <linux/freezer.h> #include <linux/console.h> #include <mach/hardware.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/div64.h> #include <mach/bitfield.h> #include <linux/platform_data/video-pxafb.h> /* * Complain if VAR is out of range. */ #define DEBUG_VAR 1 #include "pxafb.h" /* Bits which should not be set in machine configuration structures */ #define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM | LCCR0_BM | LCCR0_QDM |\ LCCR0_DIS | LCCR0_EFM | LCCR0_IUM |\ LCCR0_SFM | LCCR0_LDM | LCCR0_ENB) #define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP | LCCR3_VSP |\ LCCR3_PCD | LCCR3_BPP(0xf)) static int pxafb_activate_var(struct fb_var_screeninfo *var, struct pxafb_info *); static void set_ctrlr_state(struct pxafb_info *fbi, u_int state); static void setup_base_frame(struct pxafb_info *fbi, struct fb_var_screeninfo *var, int branch); static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal, unsigned long offset, size_t size); static unsigned long video_mem_size = 0; static inline unsigned long lcd_readl(struct pxafb_info *fbi, unsigned int off) { return __raw_readl(fbi->mmio_base + off); } static inline void lcd_writel(struct pxafb_info *fbi, unsigned int off, unsigned long val) { __raw_writel(val, fbi->mmio_base + off); } static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state) { unsigned long flags; local_irq_save(flags); /* * We need to handle two requests being made at the same time. * There are two important cases: * 1. When we are changing VT (C_REENABLE) while unblanking * (C_ENABLE) We must perform the unblanking, which will * do our REENABLE for us. * 2. When we are blanking, but immediately unblank before * we have blanked. We do the "REENABLE" thing here as * well, just to be sure. */ if (fbi->task_state == C_ENABLE && state == C_REENABLE) state = (u_int) -1; if (fbi->task_state == C_DISABLE && state == C_ENABLE) state = C_REENABLE; if (state != (u_int)-1) { fbi->task_state = state; schedule_work(&fbi->task); } local_irq_restore(flags); } static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf) { chan &= 0xffff; chan >>= 16 - bf->length; return chan << bf->offset; } static int pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue, u_int trans, struct fb_info *info) { struct pxafb_info *fbi = (struct pxafb_info *)info; u_int val; if (regno >= fbi->palette_size) return 1; if (fbi->fb.var.grayscale) { fbi->palette_cpu[regno] = ((blue >> 8) & 0x00ff); return 0; } switch (fbi->lccr4 & LCCR4_PAL_FOR_MASK) { case LCCR4_PAL_FOR_0: val = ((red >> 0) & 0xf800); val |= ((green >> 5) & 0x07e0); val |= ((blue >> 11) & 0x001f); fbi->palette_cpu[regno] = val; break; case LCCR4_PAL_FOR_1: val = ((red << 8) & 0x00f80000); val |= ((green >> 0) & 0x0000fc00); val |= ((blue >> 8) & 0x000000f8); ((u32 *)(fbi->palette_cpu))[regno] = val; break; case LCCR4_PAL_FOR_2: val = ((red << 8) & 0x00fc0000); val |= ((green >> 0) & 0x0000fc00); val |= ((blue >> 8) & 0x000000fc); ((u32 *)(fbi->palette_cpu))[regno] = val; break; case LCCR4_PAL_FOR_3: val = ((red << 8) & 0x00ff0000); val |= ((green >> 0) & 0x0000ff00); val |= ((blue >> 8) & 0x000000ff); ((u32 *)(fbi->palette_cpu))[regno] = val; break; } return 0; } static int pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, u_int trans, struct fb_info *info) { struct pxafb_info *fbi = (struct pxafb_info *)info; unsigned int val; int ret = 1; /* * If inverse mode was selected, invert all the colours * rather than the register number. The register number * is what you poke into the framebuffer to produce the * colour you requested. */ if (fbi->cmap_inverse) { red = 0xffff - red; green = 0xffff - green; blue = 0xffff - blue; } /* * If greyscale is true, then we convert the RGB value * to greyscale no matter what visual we are using. */ if (fbi->fb.var.grayscale) red = green = blue = (19595 * red + 38470 * green + 7471 * blue) >> 16; switch (fbi->fb.fix.visual) { case FB_VISUAL_TRUECOLOR: /* * 16-bit True Colour. We encode the RGB value * according to the RGB bitfield information. */ if (regno < 16) { u32 *pal = fbi->fb.pseudo_palette; val = chan_to_field(red, &fbi->fb.var.red); val |= chan_to_field(green, &fbi->fb.var.green); val |= chan_to_field(blue, &fbi->fb.var.blue); pal[regno] = val; ret = 0; } break; case FB_VISUAL_STATIC_PSEUDOCOLOR: case FB_VISUAL_PSEUDOCOLOR: ret = pxafb_setpalettereg(regno, red, green, blue, trans, info); break; } return ret; } /* calculate pixel depth, transparency bit included, >=16bpp formats _only_ */ static inline int var_to_depth(struct fb_var_screeninfo *var) { return var->red.length + var->green.length + var->blue.length + var->transp.length; } /* calculate 4-bit BPP value for LCCR3 and OVLxC1 */ static int pxafb_var_to_bpp(struct fb_var_screeninfo *var) { int bpp = -EINVAL; switch (var->bits_per_pixel) { case 1: bpp = 0; break; case 2: bpp = 1; break; case 4: bpp = 2; break; case 8: bpp = 3; break; case 16: bpp = 4; break; case 24: switch (var_to_depth(var)) { case 18: bpp = 6; break; /* 18-bits/pixel packed */ case 19: bpp = 8; break; /* 19-bits/pixel packed */ case 24: bpp = 9; break; } break; case 32: switch (var_to_depth(var)) { case 18: bpp = 5; break; /* 18-bits/pixel unpacked */ case 19: bpp = 7; break; /* 19-bits/pixel unpacked */ case 25: bpp = 10; break; } break; } return bpp; } /* * pxafb_var_to_lccr3(): * Convert a bits per pixel value to the correct bit pattern for LCCR3 * * NOTE: for PXA27x with overlays support, the LCCR3_PDFOR_x bits have an * implication of the acutal use of transparency bit, which we handle it * here separatedly. See PXA27x Developer's Manual, Section <<7.4.6 Pixel * Formats>> for the valid combination of PDFOR, PAL_FOR for various BPP. * * Transparency for palette pixel formats is not supported at the moment. */ static uint32_t pxafb_var_to_lccr3(struct fb_var_screeninfo *var) { int bpp = pxafb_var_to_bpp(var); uint32_t lccr3; if (bpp < 0) return 0; lccr3 = LCCR3_BPP(bpp); switch (var_to_depth(var)) { case 16: lccr3 |= var->transp.length ? LCCR3_PDFOR_3 : 0; break; case 18: lccr3 |= LCCR3_PDFOR_3; break; case 24: lccr3 |= var->transp.length ? LCCR3_PDFOR_2 : LCCR3_PDFOR_3; break; case 19: case 25: lccr3 |= LCCR3_PDFOR_0; break; } return lccr3; } #define SET_PIXFMT(v, r, g, b, t) \ ({ \ (v)->transp.offset = (t) ? (r) + (g) + (b) : 0; \ (v)->transp.length = (t) ? (t) : 0; \ (v)->blue.length = (b); (v)->blue.offset = 0; \ (v)->green.length = (g); (v)->green.offset = (b); \ (v)->red.length = (r); (v)->red.offset = (b) + (g); \ }) /* set the RGBT bitfields of fb_var_screeninf according to * var->bits_per_pixel and given depth */ static void pxafb_set_pixfmt(struct fb_var_screeninfo *var, int depth) { if (depth == 0) depth = var->bits_per_pixel; if (var->bits_per_pixel < 16) { /* indexed pixel formats */ var->red.offset = 0; var->red.length = 8; var->green.offset = 0; var->green.length = 8; var->blue.offset = 0; var->blue.length = 8; var->transp.offset = 0; var->transp.length = 8; } switch (depth) { case 16: var->transp.length ? SET_PIXFMT(var, 5, 5, 5, 1) : /* RGBT555 */ SET_PIXFMT(var, 5, 6, 5, 0); break; /* RGB565 */ case 18: SET_PIXFMT(var, 6, 6, 6, 0); break; /* RGB666 */ case 19: SET_PIXFMT(var, 6, 6, 6, 1); break; /* RGBT666 */ case 24: var->transp.length ? SET_PIXFMT(var, 8, 8, 7, 1) : /* RGBT887 */ SET_PIXFMT(var, 8, 8, 8, 0); break; /* RGB888 */ case 25: SET_PIXFMT(var, 8, 8, 8, 1); break; /* RGBT888 */ } } #ifdef CONFIG_CPU_FREQ /* * pxafb_display_dma_period() * Calculate the minimum period (in picoseconds) between two DMA * requests for the LCD controller. If we hit this, it means we're * doing nothing but LCD DMA. */ static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var) { /* * Period = pixclock * bits_per_byte * bytes_per_transfer * / memory_bits_per_pixel; */ return var->pixclock * 8 * 16 / var->bits_per_pixel; } #endif /* * Select the smallest mode that allows the desired resolution to be * displayed. If desired parameters can be rounded up. */ static struct pxafb_mode_info *pxafb_getmode(struct pxafb_mach_info *mach, struct fb_var_screeninfo *var) { struct pxafb_mode_info *mode = NULL; struct pxafb_mode_info *modelist = mach->modes; unsigned int best_x = 0xffffffff, best_y = 0xffffffff; unsigned int i; for (i = 0; i < mach->num_modes; i++) { if (modelist[i].xres >= var->xres && modelist[i].yres >= var->yres && modelist[i].xres < best_x && modelist[i].yres < best_y && modelist[i].bpp >= var->bits_per_pixel) { best_x = modelist[i].xres; best_y = modelist[i].yres; mode = &modelist[i]; } } return mode; } static void pxafb_setmode(struct fb_var_screeninfo *var, struct pxafb_mode_info *mode) { var->xres = mode->xres; var->yres = mode->yres; var->bits_per_pixel = mode->bpp; var->pixclock = mode->pixclock; var->hsync_len = mode->hsync_len; var->left_margin = mode->left_margin; var->right_margin = mode->right_margin; var->vsync_len = mode->vsync_len; var->upper_margin = mode->upper_margin; var->lower_margin = mode->lower_margin; var->sync = mode->sync; var->grayscale = mode->cmap_greyscale; var->transp.length = mode->transparency; /* set the initial RGBA bitfields */ pxafb_set_pixfmt(var, mode->depth); } static int pxafb_adjust_timing(struct pxafb_info *fbi, struct fb_var_screeninfo *var) { int line_length; var->xres = max_t(int, var->xres, MIN_XRES); var->yres = max_t(int, var->yres, MIN_YRES); if (!(fbi->lccr0 & LCCR0_LCDT)) { clamp_val(var->hsync_len, 1, 64); clamp_val(var->vsync_len, 1, 64); clamp_val(var->left_margin, 1, 255); clamp_val(var->right_margin, 1, 255); clamp_val(var->upper_margin, 1, 255); clamp_val(var->lower_margin, 1, 255); } /* make sure each line is aligned on word boundary */ line_length = var->xres * var->bits_per_pixel / 8; line_length = ALIGN(line_length, 4); var->xres = line_length * 8 / var->bits_per_pixel; /* we don't support xpan, force xres_virtual to be equal to xres */ var->xres_virtual = var->xres; if (var->accel_flags & FB_ACCELF_TEXT) var->yres_virtual = fbi->fb.fix.smem_len / line_length; else var->yres_virtual = max(var->yres_virtual, var->yres); /* check for limits */ if (var->xres > MAX_XRES || var->yres > MAX_YRES) return -EINVAL; if (var->yres > var->yres_virtual) return -EINVAL; return 0; } /* * pxafb_check_var(): * Get the video params out of 'var'. If a value doesn't fit, round it up, * if it's too big, return -EINVAL. * * Round up in the following order: bits_per_pixel, xres, * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale, * bitfields, horizontal timing, vertical timing. */ static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) { struct pxafb_info *fbi = (struct pxafb_info *)info; struct pxafb_mach_info *inf = dev_get_platdata(fbi->dev); int err; if (inf->fixed_modes) { struct pxafb_mode_info *mode; mode = pxafb_getmode(inf, var); if (!mode) return -EINVAL; pxafb_setmode(var, mode); } /* do a test conversion to BPP fields to check the color formats */ err = pxafb_var_to_bpp(var); if (err < 0) return err; pxafb_set_pixfmt(var, var_to_depth(var)); err = pxafb_adjust_timing(fbi, var); if (err) return err; #ifdef CONFIG_CPU_FREQ pr_debug("pxafb: dma period = %d ps\n", pxafb_display_dma_period(var)); #endif return 0; } /* * pxafb_set_par(): * Set the user defined part of the display for the specified console */ static int pxafb_set_par(struct fb_info *info) { struct pxafb_info *fbi = (struct pxafb_info *)info; struct fb_var_screeninfo *var = &info->var; if (var->bits_per_pixel >= 16) fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR; else if (!fbi->cmap_static) fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR; else { /* * Some people have weird ideas about wanting static * pseudocolor maps. I suspect their user space * applications are broken. */ fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR; } fbi->fb.fix.line_length = var->xres_virtual * var->bits_per_pixel / 8; if (var->bits_per_pixel >= 16) fbi->palette_size = 0; else fbi->palette_size = var->bits_per_pixel == 1 ? 4 : 1 << var->bits_per_pixel; fbi->palette_cpu = (u16 *)&fbi->dma_buff->palette[0]; if (fbi->fb.var.bits_per_pixel >= 16) fb_dealloc_cmap(&fbi->fb.cmap); else fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0); pxafb_activate_var(var, fbi); return 0; } static int pxafb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info) { struct pxafb_info *fbi = (struct pxafb_info *)info; struct fb_var_screeninfo newvar; int dma = DMA_MAX + DMA_BASE; if (fbi->state != C_ENABLE) return 0; /* Only take .xoffset, .yoffset and .vmode & FB_VMODE_YWRAP from what * was passed in and copy the rest from the old screeninfo. */ memcpy(&newvar, &fbi->fb.var, sizeof(newvar)); newvar.xoffset = var->xoffset; newvar.yoffset = var->yoffset; newvar.vmode &= ~FB_VMODE_YWRAP; newvar.vmode |= var->vmode & FB_VMODE_YWRAP; setup_base_frame(fbi, &newvar, 1); if (fbi->lccr0 & LCCR0_SDS) lcd_writel(fbi, FBR1, fbi->fdadr[dma + 1] | 0x1); lcd_writel(fbi, FBR0, fbi->fdadr[dma] | 0x1); return 0; } /* * pxafb_blank(): * Blank the display by setting all palette values to zero. Note, the * 16 bpp mode does not really use the palette, so this will not * blank the display in all modes. */ static int pxafb_blank(int blank, struct fb_info *info) { struct pxafb_info *fbi = (struct pxafb_info *)info; int i; switch (blank) { case FB_BLANK_POWERDOWN: case FB_BLANK_VSYNC_SUSPEND: case FB_BLANK_HSYNC_SUSPEND: case FB_BLANK_NORMAL: if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR || fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR) for (i = 0; i < fbi->palette_size; i++) pxafb_setpalettereg(i, 0, 0, 0, 0, info); pxafb_schedule_work(fbi, C_DISABLE); /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */ break; case FB_BLANK_UNBLANK: /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */ if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR || fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR) fb_set_cmap(&fbi->fb.cmap, info); pxafb_schedule_work(fbi, C_ENABLE); } return 0; } static struct fb_ops pxafb_ops = { .owner = THIS_MODULE, .fb_check_var = pxafb_check_var, .fb_set_par = pxafb_set_par, .fb_pan_display = pxafb_pan_display, .fb_setcolreg = pxafb_setcolreg, .fb_fillrect = cfb_fillrect, .fb_copyarea = cfb_copyarea, .fb_imageblit = cfb_imageblit, .fb_blank = pxafb_blank, }; #ifdef CONFIG_FB_PXA_OVERLAY static void overlay1fb_setup(struct pxafb_layer *ofb) { int size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual; unsigned long start = ofb->video_mem_phys; setup_frame_dma(ofb->fbi, DMA_OV1, PAL_NONE, start, size); } /* Depending on the enable status of overlay1/2, the DMA should be * updated from FDADRx (when disabled) or FBRx (when enabled). */ static void overlay1fb_enable(struct pxafb_layer *ofb) { int enabled = lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN; uint32_t fdadr1 = ofb->fbi->fdadr[DMA_OV1] | (enabled ? 0x1 : 0); lcd_writel(ofb->fbi, enabled ? FBR1 : FDADR1, fdadr1); lcd_writel(ofb->fbi, OVL1C2, ofb->control[1]); lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] | OVLxC1_OEN); } static void overlay1fb_disable(struct pxafb_layer *ofb) { uint32_t lccr5; if (!(lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN)) return; lccr5 = lcd_readl(ofb->fbi, LCCR5); lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] & ~OVLxC1_OEN); lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(1)); lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(1)); lcd_writel(ofb->fbi, FBR1, ofb->fbi->fdadr[DMA_OV1] | 0x3); if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0) pr_warning("%s: timeout disabling overlay1\n", __func__); lcd_writel(ofb->fbi, LCCR5, lccr5); } static void overlay2fb_setup(struct pxafb_layer *ofb) { int size, div = 1, pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd); unsigned long start[3] = { ofb->video_mem_phys, 0, 0 }; if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED) { size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual; setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size); } else { size = ofb->fb.var.xres_virtual * ofb->fb.var.yres_virtual; switch (pfor) { case OVERLAY_FORMAT_YUV444_PLANAR: div = 1; break; case OVERLAY_FORMAT_YUV422_PLANAR: div = 2; break; case OVERLAY_FORMAT_YUV420_PLANAR: div = 4; break; } start[1] = start[0] + size; start[2] = start[1] + size / div; setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size); setup_frame_dma(ofb->fbi, DMA_OV2_Cb, -1, start[1], size / div); setup_frame_dma(ofb->fbi, DMA_OV2_Cr, -1, start[2], size / div); } } static void overlay2fb_enable(struct pxafb_layer *ofb) { int pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd); int enabled = lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN; uint32_t fdadr2 = ofb->fbi->fdadr[DMA_OV2_Y] | (enabled ? 0x1 : 0); uint32_t fdadr3 = ofb->fbi->fdadr[DMA_OV2_Cb] | (enabled ? 0x1 : 0); uint32_t fdadr4 = ofb->fbi->fdadr[DMA_OV2_Cr] | (enabled ? 0x1 : 0); if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED) lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2); else { lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2); lcd_writel(ofb->fbi, enabled ? FBR3 : FDADR3, fdadr3); lcd_writel(ofb->fbi, enabled ? FBR4 : FDADR4, fdadr4); } lcd_writel(ofb->fbi, OVL2C2, ofb->control[1]); lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] | OVLxC1_OEN); } static void overlay2fb_disable(struct pxafb_layer *ofb) { uint32_t lccr5; if (!(lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN)) return; lccr5 = lcd_readl(ofb->fbi, LCCR5); lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] & ~OVLxC1_OEN); lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(2)); lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(2)); lcd_writel(ofb->fbi, FBR2, ofb->fbi->fdadr[DMA_OV2_Y] | 0x3); lcd_writel(ofb->fbi, FBR3, ofb->fbi->fdadr[DMA_OV2_Cb] | 0x3); lcd_writel(ofb->fbi, FBR4, ofb->fbi->fdadr[DMA_OV2_Cr] | 0x3); if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0) pr_warning("%s: timeout disabling overlay2\n", __func__); } static struct pxafb_layer_ops ofb_ops[] = { [0] = { .enable = overlay1fb_enable, .disable = overlay1fb_disable, .setup = overlay1fb_setup, }, [1] = { .enable = overlay2fb_enable, .disable = overlay2fb_disable, .setup = overlay2fb_setup, }, }; static int overlayfb_open(struct fb_info *info, int user) { struct pxafb_layer *ofb = (struct pxafb_layer *)info; /* no support for framebuffer console on overlay */ if (user == 0) return -ENODEV; if (ofb->usage++ == 0) { /* unblank the base framebuffer */ console_lock(); fb_blank(&ofb->fbi->fb, FB_BLANK_UNBLANK); console_unlock(); } return 0; } static int overlayfb_release(struct fb_info *info, int user) { struct pxafb_layer *ofb = (struct pxafb_layer*) info; if (ofb->usage == 1) { ofb->ops->disable(ofb); ofb->fb.var.height = -1; ofb->fb.var.width = -1; ofb->fb.var.xres = ofb->fb.var.xres_virtual = 0; ofb->fb.var.yres = ofb->fb.var.yres_virtual = 0; ofb->usage--; } return 0; } static int overlayfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) { struct pxafb_layer *ofb = (struct pxafb_layer *)info; struct fb_var_screeninfo *base_var = &ofb->fbi->fb.var; int xpos, ypos, pfor, bpp; xpos = NONSTD_TO_XPOS(var->nonstd); ypos = NONSTD_TO_YPOS(var->nonstd); pfor = NONSTD_TO_PFOR(var->nonstd); bpp = pxafb_var_to_bpp(var); if (bpp < 0) return -EINVAL; /* no support for YUV format on overlay1 */ if (ofb->id == OVERLAY1 && pfor != 0) return -EINVAL; /* for YUV packed formats, bpp = 'minimum bpp of YUV components' */ switch (pfor) { case OVERLAY_FORMAT_RGB: bpp = pxafb_var_to_bpp(var); if (bpp < 0) return -EINVAL; pxafb_set_pixfmt(var, var_to_depth(var)); break; case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break; case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 8; break; case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 4; break; case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 2; break; default: return -EINVAL; } /* each line must start at a 32-bit word boundary */ if ((xpos * bpp) % 32) return -EINVAL; /* xres must align on 32-bit word boundary */ var->xres = roundup(var->xres * bpp, 32) / bpp; if ((xpos + var->xres > base_var->xres) || (ypos + var->yres > base_var->yres)) return -EINVAL; var->xres_virtual = var->xres; var->yres_virtual = max(var->yres, var->yres_virtual); return 0; } static int overlayfb_check_video_memory(struct pxafb_layer *ofb) { struct fb_var_screeninfo *var = &ofb->fb.var; int pfor = NONSTD_TO_PFOR(var->nonstd); int size, bpp = 0; switch (pfor) { case OVERLAY_FORMAT_RGB: bpp = var->bits_per_pixel; break; case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break; case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 24; break; case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 16; break; case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 12; break; } ofb->fb.fix.line_length = var->xres_virtual * bpp / 8; size = PAGE_ALIGN(ofb->fb.fix.line_length * var->yres_virtual); if (ofb->video_mem) { if (ofb->video_mem_size >= size) return 0; } return -EINVAL; } static int overlayfb_set_par(struct fb_info *info) { struct pxafb_layer *ofb = (struct pxafb_layer *)info; struct fb_var_screeninfo *var = &info->var; int xpos, ypos, pfor, bpp, ret; ret = overlayfb_check_video_memory(ofb); if (ret) return ret; bpp = pxafb_var_to_bpp(var); xpos = NONSTD_TO_XPOS(var->nonstd); ypos = NONSTD_TO_YPOS(var->nonstd); pfor = NONSTD_TO_PFOR(var->nonstd); ofb->control[0] = OVLxC1_PPL(var->xres) | OVLxC1_LPO(var->yres) | OVLxC1_BPP(bpp); ofb->control[1] = OVLxC2_XPOS(xpos) | OVLxC2_YPOS(ypos); if (ofb->id == OVERLAY2) ofb->control[1] |= OVL2C2_PFOR(pfor); ofb->ops->setup(ofb); ofb->ops->enable(ofb); return 0; } static struct fb_ops overlay_fb_ops = { .owner = THIS_MODULE, .fb_open = overlayfb_open, .fb_release = overlayfb_release, .fb_check_var = overlayfb_check_var, .fb_set_par = overlayfb_set_par, }; static void init_pxafb_overlay(struct pxafb_info *fbi, struct pxafb_layer *ofb, int id) { sprintf(ofb->fb.fix.id, "overlay%d", id + 1); ofb->fb.fix.type = FB_TYPE_PACKED_PIXELS; ofb->fb.fix.xpanstep = 0; ofb->fb.fix.ypanstep = 1; ofb->fb.var.activate = FB_ACTIVATE_NOW; ofb->fb.var.height = -1; ofb->fb.var.width = -1; ofb->fb.var.vmode = FB_VMODE_NONINTERLACED; ofb->fb.fbops = &overlay_fb_ops; ofb->fb.flags = FBINFO_FLAG_DEFAULT; ofb->fb.node = -1; ofb->fb.pseudo_palette = NULL; ofb->id = id; ofb->ops = &ofb_ops[id]; ofb->usage = 0; ofb->fbi = fbi; init_completion(&ofb->branch_done); } static inline int pxafb_overlay_supported(void) { if (cpu_is_pxa27x() || cpu_is_pxa3xx()) return 1; return 0; } static int pxafb_overlay_map_video_memory(struct pxafb_info *pxafb, struct pxafb_layer *ofb) { /* We assume that user will use at most video_mem_size for overlay fb, * anyway, it's useless to use 16bpp main plane and 24bpp overlay */ ofb->video_mem = alloc_pages_exact(PAGE_ALIGN(pxafb->video_mem_size), GFP_KERNEL | __GFP_ZERO); if (ofb->video_mem == NULL) return -ENOMEM; ofb->video_mem_phys = virt_to_phys(ofb->video_mem); ofb->video_mem_size = PAGE_ALIGN(pxafb->video_mem_size); mutex_lock(&ofb->fb.mm_lock); ofb->fb.fix.smem_start = ofb->video_mem_phys; ofb->fb.fix.smem_len = pxafb->video_mem_size; mutex_unlock(&ofb->fb.mm_lock); ofb->fb.screen_base = ofb->video_mem; return 0; } static void pxafb_overlay_init(struct pxafb_info *fbi) { int i, ret; if (!pxafb_overlay_supported()) return; for (i = 0; i < 2; i++) { struct pxafb_layer *ofb = &fbi->overlay[i]; init_pxafb_overlay(fbi, ofb, i); ret = register_framebuffer(&ofb->fb); if (ret) { dev_err(fbi->dev, "failed to register overlay %d\n", i); continue; } ret = pxafb_overlay_map_video_memory(fbi, ofb); if (ret) { dev_err(fbi->dev, "failed to map video memory for overlay %d\n", i); unregister_framebuffer(&ofb->fb); continue; } ofb->registered = 1; } /* mask all IU/BS/EOF/SOF interrupts */ lcd_writel(fbi, LCCR5, ~0); pr_info("PXA Overlay driver loaded successfully!\n"); } static void pxafb_overlay_exit(struct pxafb_info *fbi) { int i; if (!pxafb_overlay_supported()) return; for (i = 0; i < 2; i++) { struct pxafb_layer *ofb = &fbi->overlay[i]; if (ofb->registered) { if (ofb->video_mem) free_pages_exact(ofb->video_mem, ofb->video_mem_size); unregister_framebuffer(&ofb->fb); } } } #else static inline void pxafb_overlay_init(struct pxafb_info *fbi) {} static inline void pxafb_overlay_exit(struct pxafb_info *fbi) {} #endif /* CONFIG_FB_PXA_OVERLAY */ /* * Calculate the PCD value from the clock rate (in picoseconds). * We take account of the PPCR clock setting. * From PXA Developer's Manual: * * PixelClock = LCLK * ------------- * 2 ( PCD + 1 ) * * PCD = LCLK * ------------- - 1 * 2(PixelClock) * * Where: * LCLK = LCD/Memory Clock * PCD = LCCR3[7:0] * * PixelClock here is in Hz while the pixclock argument given is the * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 ) * * The function get_lclk_frequency_10khz returns LCLK in units of * 10khz. Calling the result of this function lclk gives us the * following * * PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 ) * -------------------------------------- - 1 * 2 * * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below. */ static inline unsigned int get_pcd(struct pxafb_info *fbi, unsigned int pixclock) { unsigned long long pcd; /* FIXME: Need to take into account Double Pixel Clock mode * (DPC) bit? or perhaps set it based on the various clock * speeds */ pcd = (unsigned long long)(clk_get_rate(fbi->clk) / 10000); pcd *= pixclock; do_div(pcd, 100000000 * 2); /* no need for this, since we should subtract 1 anyway. they cancel */ /* pcd += 1; */ /* make up for integer math truncations */ return (unsigned int)pcd; } /* * Some touchscreens need hsync information from the video driver to * function correctly. We export it here. Note that 'hsync_time' and * the value returned from pxafb_get_hsync_time() is the *reciprocal* * of the hsync period in seconds. */ static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd) { unsigned long htime; if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) { fbi->hsync_time = 0; return; } htime = clk_get_rate(fbi->clk) / (pcd * fbi->fb.var.hsync_len); fbi->hsync_time = htime; } unsigned long pxafb_get_hsync_time(struct device *dev) { struct pxafb_info *fbi = dev_get_drvdata(dev); /* If display is blanked/suspended, hsync isn't active */ if (!fbi || (fbi->state != C_ENABLE)) return 0; return fbi->hsync_time; } EXPORT_SYMBOL(pxafb_get_hsync_time); static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal, unsigned long start, size_t size) { struct pxafb_dma_descriptor *dma_desc, *pal_desc; unsigned int dma_desc_off, pal_desc_off; if (dma < 0 || dma >= DMA_MAX * 2) return -EINVAL; dma_desc = &fbi->dma_buff->dma_desc[dma]; dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[dma]); dma_desc->fsadr = start; dma_desc->fidr = 0; dma_desc->ldcmd = size; if (pal < 0 || pal >= PAL_MAX * 2) { dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off; fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off; } else { pal_desc = &fbi->dma_buff->pal_desc[pal]; pal_desc_off = offsetof(struct pxafb_dma_buff, pal_desc[pal]); pal_desc->fsadr = fbi->dma_buff_phys + pal * PALETTE_SIZE; pal_desc->fidr = 0; if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0) pal_desc->ldcmd = fbi->palette_size * sizeof(u16); else pal_desc->ldcmd = fbi->palette_size * sizeof(u32); pal_desc->ldcmd |= LDCMD_PAL; /* flip back and forth between palette and frame buffer */ pal_desc->fdadr = fbi->dma_buff_phys + dma_desc_off; dma_desc->fdadr = fbi->dma_buff_phys + pal_desc_off; fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off; } return 0; } static void setup_base_frame(struct pxafb_info *fbi, struct fb_var_screeninfo *var, int branch) { struct fb_fix_screeninfo *fix = &fbi->fb.fix; int nbytes, dma, pal, bpp = var->bits_per_pixel; unsigned long offset; dma = DMA_BASE + (branch ? DMA_MAX : 0); pal = (bpp >= 16) ? PAL_NONE : PAL_BASE + (branch ? PAL_MAX : 0); nbytes = fix->line_length * var->yres; offset = fix->line_length * var->yoffset + fbi->video_mem_phys; if (fbi->lccr0 & LCCR0_SDS) { nbytes = nbytes / 2; setup_frame_dma(fbi, dma + 1, PAL_NONE, offset + nbytes, nbytes); } setup_frame_dma(fbi, dma, pal, offset, nbytes); } #ifdef CONFIG_FB_PXA_SMARTPANEL static int setup_smart_dma(struct pxafb_info *fbi) { struct pxafb_dma_descriptor *dma_desc; unsigned long dma_desc_off, cmd_buff_off; dma_desc = &fbi->dma_buff->dma_desc[DMA_CMD]; dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[DMA_CMD]); cmd_buff_off = offsetof(struct pxafb_dma_buff, cmd_buff); dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off; dma_desc->fsadr = fbi->dma_buff_phys + cmd_buff_off; dma_desc->fidr = 0; dma_desc->ldcmd = fbi->n_smart_cmds * sizeof(uint16_t); fbi->fdadr[DMA_CMD] = dma_desc->fdadr; return 0; } int pxafb_smart_flush(struct fb_info *info) { struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); uint32_t prsr; int ret = 0; /* disable controller until all registers are set up */ lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB); /* 1. make it an even number of commands to align on 32-bit boundary * 2. add the interrupt command to the end of the chain so we can * keep track of the end of the transfer */ while (fbi->n_smart_cmds & 1) fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_NOOP; fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_INTERRUPT; fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_WAIT_FOR_VSYNC; setup_smart_dma(fbi); /* continue to execute next command */ prsr = lcd_readl(fbi, PRSR) | PRSR_ST_OK | PRSR_CON_NT; lcd_writel(fbi, PRSR, prsr); /* stop the processor in case it executed "wait for sync" cmd */ lcd_writel(fbi, CMDCR, 0x0001); /* don't send interrupts for fifo underruns on channel 6 */ lcd_writel(fbi, LCCR5, LCCR5_IUM(6)); lcd_writel(fbi, LCCR1, fbi->reg_lccr1); lcd_writel(fbi, LCCR2, fbi->reg_lccr2); lcd_writel(fbi, LCCR3, fbi->reg_lccr3); lcd_writel(fbi, LCCR4, fbi->reg_lccr4); lcd_writel(fbi, FDADR0, fbi->fdadr[0]); lcd_writel(fbi, FDADR6, fbi->fdadr[6]); /* begin sending */ lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB); if (wait_for_completion_timeout(&fbi->command_done, HZ/2) == 0) { pr_warning("%s: timeout waiting for command done\n", __func__); ret = -ETIMEDOUT; } /* quick disable */ prsr = lcd_readl(fbi, PRSR) & ~(PRSR_ST_OK | PRSR_CON_NT); lcd_writel(fbi, PRSR, prsr); lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB); lcd_writel(fbi, FDADR6, 0); fbi->n_smart_cmds = 0; return ret; } int pxafb_smart_queue(struct fb_info *info, uint16_t *cmds, int n_cmds) { int i; struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); for (i = 0; i < n_cmds; i++, cmds++) { /* if it is a software delay, flush and delay */ if ((*cmds & 0xff00) == SMART_CMD_DELAY) { pxafb_smart_flush(info); mdelay(*cmds & 0xff); continue; } /* leave 2 commands for INTERRUPT and WAIT_FOR_SYNC */ if (fbi->n_smart_cmds == CMD_BUFF_SIZE - 8) pxafb_smart_flush(info); fbi->smart_cmds[fbi->n_smart_cmds++] = *cmds; } return 0; } static unsigned int __smart_timing(unsigned time_ns, unsigned long lcd_clk) { unsigned int t = (time_ns * (lcd_clk / 1000000) / 1000); return (t == 0) ? 1 : t; } static void setup_smart_timing(struct pxafb_info *fbi, struct fb_var_screeninfo *var) { struct pxafb_mach_info *inf = dev_get_platdata(fbi->dev); struct pxafb_mode_info *mode = &inf->modes[0]; unsigned long lclk = clk_get_rate(fbi->clk); unsigned t1, t2, t3, t4; t1 = max(mode->a0csrd_set_hld, mode->a0cswr_set_hld); t2 = max(mode->rd_pulse_width, mode->wr_pulse_width); t3 = mode->op_hold_time; t4 = mode->cmd_inh_time; fbi->reg_lccr1 = LCCR1_DisWdth(var->xres) | LCCR1_BegLnDel(__smart_timing(t1, lclk)) | LCCR1_EndLnDel(__smart_timing(t2, lclk)) | LCCR1_HorSnchWdth(__smart_timing(t3, lclk)); fbi->reg_lccr2 = LCCR2_DisHght(var->yres); fbi->reg_lccr3 = fbi->lccr3 | LCCR3_PixClkDiv(__smart_timing(t4, lclk)); fbi->reg_lccr3 |= (var->sync & FB_SYNC_HOR_HIGH_ACT) ? LCCR3_HSP : 0; fbi->reg_lccr3 |= (var->sync & FB_SYNC_VERT_HIGH_ACT) ? LCCR3_VSP : 0; /* FIXME: make this configurable */ fbi->reg_cmdcr = 1; } static int pxafb_smart_thread(void *arg) { struct pxafb_info *fbi = arg; struct pxafb_mach_info *inf = dev_get_platdata(fbi->dev); if (!inf->smart_update) { pr_err("%s: not properly initialized, thread terminated\n", __func__); return -EINVAL; } inf = dev_get_platdata(fbi->dev); pr_debug("%s(): task starting\n", __func__); set_freezable(); while (!kthread_should_stop()) { if (try_to_freeze()) continue; mutex_lock(&fbi->ctrlr_lock); if (fbi->state == C_ENABLE) { inf->smart_update(&fbi->fb); complete(&fbi->refresh_done); } mutex_unlock(&fbi->ctrlr_lock); set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(30 * HZ / 1000); } pr_debug("%s(): task ending\n", __func__); return 0; } static int pxafb_smart_init(struct pxafb_info *fbi) { if (!(fbi->lccr0 & LCCR0_LCDT)) return 0; fbi->smart_cmds = (uint16_t *) fbi->dma_buff->cmd_buff; fbi->n_smart_cmds = 0; init_completion(&fbi->command_done); init_completion(&fbi->refresh_done); fbi->smart_thread = kthread_run(pxafb_smart_thread, fbi, "lcd_refresh"); if (IS_ERR(fbi->smart_thread)) { pr_err("%s: unable to create kernel thread\n", __func__); return PTR_ERR(fbi->smart_thread); } return 0; } #else static inline int pxafb_smart_init(struct pxafb_info *fbi) { return 0; } #endif /* CONFIG_FB_PXA_SMARTPANEL */ static void setup_parallel_timing(struct pxafb_info *fbi, struct fb_var_screeninfo *var) { unsigned int lines_per_panel, pcd = get_pcd(fbi, var->pixclock); fbi->reg_lccr1 = LCCR1_DisWdth(var->xres) + LCCR1_HorSnchWdth(var->hsync_len) + LCCR1_BegLnDel(var->left_margin) + LCCR1_EndLnDel(var->right_margin); /* * If we have a dual scan LCD, we need to halve * the YRES parameter. */ lines_per_panel = var->yres; if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual) lines_per_panel /= 2; fbi->reg_lccr2 = LCCR2_DisHght(lines_per_panel) + LCCR2_VrtSnchWdth(var->vsync_len) + LCCR2_BegFrmDel(var->upper_margin) + LCCR2_EndFrmDel(var->lower_margin); fbi->reg_lccr3 = fbi->lccr3 | (var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) | (var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL); if (pcd) { fbi->reg_lccr3 |= LCCR3_PixClkDiv(pcd); set_hsync_time(fbi, pcd); } } /* * pxafb_activate_var(): * Configures LCD Controller based on entries in var parameter. * Settings are only written to the controller if changes were made. */ static int pxafb_activate_var(struct fb_var_screeninfo *var, struct pxafb_info *fbi) { u_long flags; /* Update shadow copy atomically */ local_irq_save(flags); #ifdef CONFIG_FB_PXA_SMARTPANEL if (fbi->lccr0 & LCCR0_LCDT) setup_smart_timing(fbi, var); else #endif setup_parallel_timing(fbi, var); setup_base_frame(fbi, var, 0); fbi->reg_lccr0 = fbi->lccr0 | (LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM | LCCR0_QDM | LCCR0_BM | LCCR0_OUM); fbi->reg_lccr3 |= pxafb_var_to_lccr3(var); fbi->reg_lccr4 = lcd_readl(fbi, LCCR4) & ~LCCR4_PAL_FOR_MASK; fbi->reg_lccr4 |= (fbi->lccr4 & LCCR4_PAL_FOR_MASK); local_irq_restore(flags); /* * Only update the registers if the controller is enabled * and something has changed. */ if ((lcd_readl(fbi, LCCR0) != fbi->reg_lccr0) || (lcd_readl(fbi, LCCR1) != fbi->reg_lccr1) || (lcd_readl(fbi, LCCR2) != fbi->reg_lccr2) || (lcd_readl(fbi, LCCR3) != fbi->reg_lccr3) || (lcd_readl(fbi, LCCR4) != fbi->reg_lccr4) || (lcd_readl(fbi, FDADR0) != fbi->fdadr[0]) || ((fbi->lccr0 & LCCR0_SDS) && (lcd_readl(fbi, FDADR1) != fbi->fdadr[1]))) pxafb_schedule_work(fbi, C_REENABLE); return 0; } /* * NOTE! The following functions are purely helpers for set_ctrlr_state. * Do not call them directly; set_ctrlr_state does the correct serialisation * to ensure that things happen in the right way 100% of time time. * -- rmk */ static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on) { pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff"); if (fbi->backlight_power) fbi->backlight_power(on); } static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on) { pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff"); if (fbi->lcd_power) fbi->lcd_power(on, &fbi->fb.var); } static void pxafb_enable_controller(struct pxafb_info *fbi) { pr_debug("pxafb: Enabling LCD controller\n"); pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr[0]); pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr[1]); pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0); pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1); pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2); pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3); /* enable LCD controller clock */ clk_prepare_enable(fbi->clk); if (fbi->lccr0 & LCCR0_LCDT) return; /* Sequence from 11.7.10 */ lcd_writel(fbi, LCCR4, fbi->reg_lccr4); lcd_writel(fbi, LCCR3, fbi->reg_lccr3); lcd_writel(fbi, LCCR2, fbi->reg_lccr2); lcd_writel(fbi, LCCR1, fbi->reg_lccr1); lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB); lcd_writel(fbi, FDADR0, fbi->fdadr[0]); if (fbi->lccr0 & LCCR0_SDS) lcd_writel(fbi, FDADR1, fbi->fdadr[1]); lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB); } static void pxafb_disable_controller(struct pxafb_info *fbi) { uint32_t lccr0; #ifdef CONFIG_FB_PXA_SMARTPANEL if (fbi->lccr0 & LCCR0_LCDT) { wait_for_completion_timeout(&fbi->refresh_done, 200 * HZ / 1000); return; } #endif /* Clear LCD Status Register */ lcd_writel(fbi, LCSR, 0xffffffff); lccr0 = lcd_readl(fbi, LCCR0) & ~LCCR0_LDM; lcd_writel(fbi, LCCR0, lccr0); lcd_writel(fbi, LCCR0, lccr0 | LCCR0_DIS); wait_for_completion_timeout(&fbi->disable_done, 200 * HZ / 1000); /* disable LCD controller clock */ clk_disable_unprepare(fbi->clk); } /* * pxafb_handle_irq: Handle 'LCD DONE' interrupts. */ static irqreturn_t pxafb_handle_irq(int irq, void *dev_id) { struct pxafb_info *fbi = dev_id; unsigned int lccr0, lcsr; lcsr = lcd_readl(fbi, LCSR); if (lcsr & LCSR_LDD) { lccr0 = lcd_readl(fbi, LCCR0); lcd_writel(fbi, LCCR0, lccr0 | LCCR0_LDM); complete(&fbi->disable_done); } #ifdef CONFIG_FB_PXA_SMARTPANEL if (lcsr & LCSR_CMD_INT) complete(&fbi->command_done); #endif lcd_writel(fbi, LCSR, lcsr); #ifdef CONFIG_FB_PXA_OVERLAY { unsigned int lcsr1 = lcd_readl(fbi, LCSR1); if (lcsr1 & LCSR1_BS(1)) complete(&fbi->overlay[0].branch_done); if (lcsr1 & LCSR1_BS(2)) complete(&fbi->overlay[1].branch_done); lcd_writel(fbi, LCSR1, lcsr1); } #endif return IRQ_HANDLED; } /* * This function must be called from task context only, since it will * sleep when disabling the LCD controller, or if we get two contending * processes trying to alter state. */ static void set_ctrlr_state(struct pxafb_info *fbi, u_int state) { u_int old_state; mutex_lock(&fbi->ctrlr_lock); old_state = fbi->state; /* * Hack around fbcon initialisation. */ if (old_state == C_STARTUP && state == C_REENABLE) state = C_ENABLE; switch (state) { case C_DISABLE_CLKCHANGE: /* * Disable controller for clock change. If the * controller is already disabled, then do nothing. */ if (old_state != C_DISABLE && old_state != C_DISABLE_PM) { fbi->state = state; /* TODO __pxafb_lcd_power(fbi, 0); */ pxafb_disable_controller(fbi); } break; case C_DISABLE_PM: case C_DISABLE: /* * Disable controller */ if (old_state != C_DISABLE) { fbi->state = state; __pxafb_backlight_power(fbi, 0); __pxafb_lcd_power(fbi, 0); if (old_state != C_DISABLE_CLKCHANGE) pxafb_disable_controller(fbi); } break; case C_ENABLE_CLKCHANGE: /* * Enable the controller after clock change. Only * do this if we were disabled for the clock change. */ if (old_state == C_DISABLE_CLKCHANGE) { fbi->state = C_ENABLE; pxafb_enable_controller(fbi); /* TODO __pxafb_lcd_power(fbi, 1); */ } break; case C_REENABLE: /* * Re-enable the controller only if it was already * enabled. This is so we reprogram the control * registers. */ if (old_state == C_ENABLE) { __pxafb_lcd_power(fbi, 0); pxafb_disable_controller(fbi); pxafb_enable_controller(fbi); __pxafb_lcd_power(fbi, 1); } break; case C_ENABLE_PM: /* * Re-enable the controller after PM. This is not * perfect - think about the case where we were doing * a clock change, and we suspended half-way through. */ if (old_state != C_DISABLE_PM) break; /* fall through */ case C_ENABLE: /* * Power up the LCD screen, enable controller, and * turn on the backlight. */ if (old_state != C_ENABLE) { fbi->state = C_ENABLE; pxafb_enable_controller(fbi); __pxafb_lcd_power(fbi, 1); __pxafb_backlight_power(fbi, 1); } break; } mutex_unlock(&fbi->ctrlr_lock); } /* * Our LCD controller task (which is called when we blank or unblank) * via keventd. */ static void pxafb_task(struct work_struct *work) { struct pxafb_info *fbi = container_of(work, struct pxafb_info, task); u_int state = xchg(&fbi->task_state, -1); set_ctrlr_state(fbi, state); } #ifdef CONFIG_CPU_FREQ /* * CPU clock speed change handler. We need to adjust the LCD timing * parameters when the CPU clock is adjusted by the power management * subsystem. * * TODO: Determine why f->new != 10*get_lclk_frequency_10khz() */ static int pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data) { struct pxafb_info *fbi = TO_INF(nb, freq_transition); /* TODO struct cpufreq_freqs *f = data; */ u_int pcd; switch (val) { case CPUFREQ_PRECHANGE: #ifdef CONFIG_FB_PXA_OVERLAY if (!(fbi->overlay[0].usage || fbi->overlay[1].usage)) #endif set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE); break; case CPUFREQ_POSTCHANGE: pcd = get_pcd(fbi, fbi->fb.var.pixclock); set_hsync_time(fbi, pcd); fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd); set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE); break; } return 0; } static int pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data) { struct pxafb_info *fbi = TO_INF(nb, freq_policy); struct fb_var_screeninfo *var = &fbi->fb.var; struct cpufreq_policy *policy = data; switch (val) { case CPUFREQ_ADJUST: case CPUFREQ_INCOMPATIBLE: pr_debug("min dma period: %d ps, " "new clock %d kHz\n", pxafb_display_dma_period(var), policy->max); /* TODO: fill in min/max values */ break; } return 0; } #endif #ifdef CONFIG_PM /* * Power management hooks. Note that we won't be called from IRQ context, * unlike the blank functions above, so we may sleep. */ static int pxafb_suspend(struct device *dev) { struct pxafb_info *fbi = dev_get_drvdata(dev); set_ctrlr_state(fbi, C_DISABLE_PM); return 0; } static int pxafb_resume(struct device *dev) { struct pxafb_info *fbi = dev_get_drvdata(dev); set_ctrlr_state(fbi, C_ENABLE_PM); return 0; } static const struct dev_pm_ops pxafb_pm_ops = { .suspend = pxafb_suspend, .resume = pxafb_resume, }; #endif static int pxafb_init_video_memory(struct pxafb_info *fbi) { int size = PAGE_ALIGN(fbi->video_mem_size); fbi->video_mem = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO); if (fbi->video_mem == NULL) return -ENOMEM; fbi->video_mem_phys = virt_to_phys(fbi->video_mem); fbi->video_mem_size = size; fbi->fb.fix.smem_start = fbi->video_mem_phys; fbi->fb.fix.smem_len = fbi->video_mem_size; fbi->fb.screen_base = fbi->video_mem; return fbi->video_mem ? 0 : -ENOMEM; } static void pxafb_decode_mach_info(struct pxafb_info *fbi, struct pxafb_mach_info *inf) { unsigned int lcd_conn = inf->lcd_conn; struct pxafb_mode_info *m; int i; fbi->cmap_inverse = inf->cmap_inverse; fbi->cmap_static = inf->cmap_static; fbi->lccr4 = inf->lccr4; switch (lcd_conn & LCD_TYPE_MASK) { case LCD_TYPE_MONO_STN: fbi->lccr0 = LCCR0_CMS; break; case LCD_TYPE_MONO_DSTN: fbi->lccr0 = LCCR0_CMS | LCCR0_SDS; break; case LCD_TYPE_COLOR_STN: fbi->lccr0 = 0; break; case LCD_TYPE_COLOR_DSTN: fbi->lccr0 = LCCR0_SDS; break; case LCD_TYPE_COLOR_TFT: fbi->lccr0 = LCCR0_PAS; break; case LCD_TYPE_SMART_PANEL: fbi->lccr0 = LCCR0_LCDT | LCCR0_PAS; break; default: /* fall back to backward compatibility way */ fbi->lccr0 = inf->lccr0; fbi->lccr3 = inf->lccr3; goto decode_mode; } if (lcd_conn == LCD_MONO_STN_8BPP) fbi->lccr0 |= LCCR0_DPD; fbi->lccr0 |= (lcd_conn & LCD_ALTERNATE_MAPPING) ? LCCR0_LDDALT : 0; fbi->lccr3 = LCCR3_Acb((inf->lcd_conn >> 10) & 0xff); fbi->lccr3 |= (lcd_conn & LCD_BIAS_ACTIVE_LOW) ? LCCR3_OEP : 0; fbi->lccr3 |= (lcd_conn & LCD_PCLK_EDGE_FALL) ? LCCR3_PCP : 0; decode_mode: pxafb_setmode(&fbi->fb.var, &inf->modes[0]); /* decide video memory size as follows: * 1. default to mode of maximum resolution * 2. allow platform to override * 3. allow module parameter to override */ for (i = 0, m = &inf->modes[0]; i < inf->num_modes; i++, m++) fbi->video_mem_size = max_t(size_t, fbi->video_mem_size, m->xres * m->yres * m->bpp / 8); if (inf->video_mem_size > fbi->video_mem_size) fbi->video_mem_size = inf->video_mem_size; if (video_mem_size > fbi->video_mem_size) fbi->video_mem_size = video_mem_size; } static struct pxafb_info *pxafb_init_fbinfo(struct device *dev) { struct pxafb_info *fbi; void *addr; struct pxafb_mach_info *inf = dev_get_platdata(dev); /* Alloc the pxafb_info and pseudo_palette in one step */ fbi = kmalloc(sizeof(struct pxafb_info) + sizeof(u32) * 16, GFP_KERNEL); if (!fbi) return NULL; memset(fbi, 0, sizeof(struct pxafb_info)); fbi->dev = dev; fbi->clk = clk_get(dev, NULL); if (IS_ERR(fbi->clk)) { kfree(fbi); return NULL; } strcpy(fbi->fb.fix.id, PXA_NAME); fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS; fbi->fb.fix.type_aux = 0; fbi->fb.fix.xpanstep = 0; fbi->fb.fix.ypanstep = 1; fbi->fb.fix.ywrapstep = 0; fbi->fb.fix.accel = FB_ACCEL_NONE; fbi->fb.var.nonstd = 0; fbi->fb.var.activate = FB_ACTIVATE_NOW; fbi->fb.var.height = -1; fbi->fb.var.width = -1; fbi->fb.var.accel_flags = FB_ACCELF_TEXT; fbi->fb.var.vmode = FB_VMODE_NONINTERLACED; fbi->fb.fbops = &pxafb_ops; fbi->fb.flags = FBINFO_DEFAULT; fbi->fb.node = -1; addr = fbi; addr = addr + sizeof(struct pxafb_info); fbi->fb.pseudo_palette = addr; fbi->state = C_STARTUP; fbi->task_state = (u_char)-1; pxafb_decode_mach_info(fbi, inf); #ifdef CONFIG_FB_PXA_OVERLAY /* place overlay(s) on top of base */ if (pxafb_overlay_supported()) fbi->lccr0 |= LCCR0_OUC; #endif init_waitqueue_head(&fbi->ctrlr_wait); INIT_WORK(&fbi->task, pxafb_task); mutex_init(&fbi->ctrlr_lock); init_completion(&fbi->disable_done); return fbi; } #ifdef CONFIG_FB_PXA_PARAMETERS static int parse_opt_mode(struct device *dev, const char *this_opt) { struct pxafb_mach_info *inf = dev_get_platdata(dev); const char *name = this_opt+5; unsigned int namelen = strlen(name); int res_specified = 0, bpp_specified = 0; unsigned int xres = 0, yres = 0, bpp = 0; int yres_specified = 0; int i; for (i = namelen-1; i >= 0; i--) { switch (name[i]) { case '-': namelen = i; if (!bpp_specified && !yres_specified) { bpp = simple_strtoul(&name[i+1], NULL, 0); bpp_specified = 1; } else goto done; break; case 'x': if (!yres_specified) { yres = simple_strtoul(&name[i+1], NULL, 0); yres_specified = 1; } else goto done; break; case '0' ... '9': break; default: goto done; } } if (i < 0 && yres_specified) { xres = simple_strtoul(name, NULL, 0); res_specified = 1; } done: if (res_specified) { dev_info(dev, "overriding resolution: %dx%d\n", xres, yres); inf->modes[0].xres = xres; inf->modes[0].yres = yres; } if (bpp_specified) switch (bpp) { case 1: case 2: case 4: case 8: case 16: inf->modes[0].bpp = bpp; dev_info(dev, "overriding bit depth: %d\n", bpp); break; default: dev_err(dev, "Depth %d is not valid\n", bpp); return -EINVAL; } return 0; } static int parse_opt(struct device *dev, char *this_opt) { struct pxafb_mach_info *inf = dev_get_platdata(dev); struct pxafb_mode_info *mode = &inf->modes[0]; char s[64]; s[0] = '\0'; if (!strncmp(this_opt, "vmem:", 5)) { video_mem_size = memparse(this_opt + 5, NULL); } else if (!strncmp(this_opt, "mode:", 5)) { return parse_opt_mode(dev, this_opt); } else if (!strncmp(this_opt, "pixclock:", 9)) { mode->pixclock = simple_strtoul(this_opt+9, NULL, 0); sprintf(s, "pixclock: %ld\n", mode->pixclock); } else if (!strncmp(this_opt, "left:", 5)) { mode->left_margin = simple_strtoul(this_opt+5, NULL, 0); sprintf(s, "left: %u\n", mode->left_margin); } else if (!strncmp(this_opt, "right:", 6)) { mode->right_margin = simple_strtoul(this_opt+6, NULL, 0); sprintf(s, "right: %u\n", mode->right_margin); } else if (!strncmp(this_opt, "upper:", 6)) { mode->upper_margin = simple_strtoul(this_opt+6, NULL, 0); sprintf(s, "upper: %u\n", mode->upper_margin); } else if (!strncmp(this_opt, "lower:", 6)) { mode->lower_margin = simple_strtoul(this_opt+6, NULL, 0); sprintf(s, "lower: %u\n", mode->lower_margin); } else if (!strncmp(this_opt, "hsynclen:", 9)) { mode->hsync_len = simple_strtoul(this_opt+9, NULL, 0); sprintf(s, "hsynclen: %u\n", mode->hsync_len); } else if (!strncmp(this_opt, "vsynclen:", 9)) { mode->vsync_len = simple_strtoul(this_opt+9, NULL, 0); sprintf(s, "vsynclen: %u\n", mode->vsync_len); } else if (!strncmp(this_opt, "hsync:", 6)) { if (simple_strtoul(this_opt+6, NULL, 0) == 0) { sprintf(s, "hsync: Active Low\n"); mode->sync &= ~FB_SYNC_HOR_HIGH_ACT; } else { sprintf(s, "hsync: Active High\n"); mode->sync |= FB_SYNC_HOR_HIGH_ACT; } } else if (!strncmp(this_opt, "vsync:", 6)) { if (simple_strtoul(this_opt+6, NULL, 0) == 0) { sprintf(s, "vsync: Active Low\n"); mode->sync &= ~FB_SYNC_VERT_HIGH_ACT; } else { sprintf(s, "vsync: Active High\n"); mode->sync |= FB_SYNC_VERT_HIGH_ACT; } } else if (!strncmp(this_opt, "dpc:", 4)) { if (simple_strtoul(this_opt+4, NULL, 0) == 0) { sprintf(s, "double pixel clock: false\n"); inf->lccr3 &= ~LCCR3_DPC; } else { sprintf(s, "double pixel clock: true\n"); inf->lccr3 |= LCCR3_DPC; } } else if (!strncmp(this_opt, "outputen:", 9)) { if (simple_strtoul(this_opt+9, NULL, 0) == 0) { sprintf(s, "output enable: active low\n"); inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL; } else { sprintf(s, "output enable: active high\n"); inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH; } } else if (!strncmp(this_opt, "pixclockpol:", 12)) { if (simple_strtoul(this_opt+12, NULL, 0) == 0) { sprintf(s, "pixel clock polarity: falling edge\n"); inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg; } else { sprintf(s, "pixel clock polarity: rising edge\n"); inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg; } } else if (!strncmp(this_opt, "color", 5)) { inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color; } else if (!strncmp(this_opt, "mono", 4)) { inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono; } else if (!strncmp(this_opt, "active", 6)) { inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act; } else if (!strncmp(this_opt, "passive", 7)) { inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas; } else if (!strncmp(this_opt, "single", 6)) { inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl; } else if (!strncmp(this_opt, "dual", 4)) { inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual; } else if (!strncmp(this_opt, "4pix", 4)) { inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono; } else if (!strncmp(this_opt, "8pix", 4)) { inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono; } else { dev_err(dev, "unknown option: %s\n", this_opt); return -EINVAL; } if (s[0] != '\0') dev_info(dev, "override %s", s); return 0; } static int pxafb_parse_options(struct device *dev, char *options) { char *this_opt; int ret; if (!options || !*options) return 0; dev_dbg(dev, "options are \"%s\"\n", options ? options : "null"); /* could be made table driven or similar?... */ while ((this_opt = strsep(&options, ",")) != NULL) { ret = parse_opt(dev, this_opt); if (ret) return ret; } return 0; } static char g_options[256] = ""; #ifndef MODULE static int __init pxafb_setup_options(void) { char *options = NULL; if (fb_get_options("pxafb", &options)) return -ENODEV; if (options) strlcpy(g_options, options, sizeof(g_options)); return 0; } #else #define pxafb_setup_options() (0) module_param_string(options, g_options, sizeof(g_options), 0); MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.txt)"); #endif #else #define pxafb_parse_options(...) (0) #define pxafb_setup_options() (0) #endif #ifdef DEBUG_VAR /* Check for various illegal bit-combinations. Currently only * a warning is given. */ static void pxafb_check_options(struct device *dev, struct pxafb_mach_info *inf) { if (inf->lcd_conn) return; if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK) dev_warn(dev, "machine LCCR0 setting contains " "illegal bits: %08x\n", inf->lccr0 & LCCR0_INVALID_CONFIG_MASK); if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK) dev_warn(dev, "machine LCCR3 setting contains " "illegal bits: %08x\n", inf->lccr3 & LCCR3_INVALID_CONFIG_MASK); if (inf->lccr0 & LCCR0_DPD && ((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas || (inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl || (inf->lccr0 & LCCR0_CMS) != LCCR0_Mono)) dev_warn(dev, "Double Pixel Data (DPD) mode is " "only valid in passive mono" " single panel mode\n"); if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act && (inf->lccr0 & LCCR0_SDS) == LCCR0_Dual) dev_warn(dev, "Dual panel only valid in passive mode\n"); if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas && (inf->modes->upper_margin || inf->modes->lower_margin)) dev_warn(dev, "Upper and lower margins must be 0 in " "passive mode\n"); } #else #define pxafb_check_options(...) do {} while (0) #endif static int pxafb_probe(struct platform_device *dev) { struct pxafb_info *fbi; struct pxafb_mach_info *inf; struct resource *r; int irq, ret; dev_dbg(&dev->dev, "pxafb_probe\n"); inf = dev_get_platdata(&dev->dev); ret = -ENOMEM; fbi = NULL; if (!inf) goto failed; ret = pxafb_parse_options(&dev->dev, g_options); if (ret < 0) goto failed; pxafb_check_options(&dev->dev, inf); dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n", inf->modes->xres, inf->modes->yres, inf->modes->bpp); if (inf->modes->xres == 0 || inf->modes->yres == 0 || inf->modes->bpp == 0) { dev_err(&dev->dev, "Invalid resolution or bit depth\n"); ret = -EINVAL; goto failed; } fbi = pxafb_init_fbinfo(&dev->dev); if (!fbi) { /* only reason for pxafb_init_fbinfo to fail is kmalloc */ dev_err(&dev->dev, "Failed to initialize framebuffer device\n"); ret = -ENOMEM; goto failed; } if (cpu_is_pxa3xx() && inf->acceleration_enabled) fbi->fb.fix.accel = FB_ACCEL_PXA3XX; fbi->backlight_power = inf->pxafb_backlight_power; fbi->lcd_power = inf->pxafb_lcd_power; r = platform_get_resource(dev, IORESOURCE_MEM, 0); if (r == NULL) { dev_err(&dev->dev, "no I/O memory resource defined\n"); ret = -ENODEV; goto failed_fbi; } r = request_mem_region(r->start, resource_size(r), dev->name); if (r == NULL) { dev_err(&dev->dev, "failed to request I/O memory\n"); ret = -EBUSY; goto failed_fbi; } fbi->mmio_base = ioremap(r->start, resource_size(r)); if (fbi->mmio_base == NULL) { dev_err(&dev->dev, "failed to map I/O memory\n"); ret = -EBUSY; goto failed_free_res; } fbi->dma_buff_size = PAGE_ALIGN(sizeof(struct pxafb_dma_buff)); fbi->dma_buff = dma_alloc_coherent(fbi->dev, fbi->dma_buff_size, &fbi->dma_buff_phys, GFP_KERNEL); if (fbi->dma_buff == NULL) { dev_err(&dev->dev, "failed to allocate memory for DMA\n"); ret = -ENOMEM; goto failed_free_io; } ret = pxafb_init_video_memory(fbi); if (ret) { dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret); ret = -ENOMEM; goto failed_free_dma; } irq = platform_get_irq(dev, 0); if (irq < 0) { dev_err(&dev->dev, "no IRQ defined\n"); ret = -ENODEV; goto failed_free_mem; } ret = request_irq(irq, pxafb_handle_irq, 0, "LCD", fbi); if (ret) { dev_err(&dev->dev, "request_irq failed: %d\n", ret); ret = -EBUSY; goto failed_free_mem; } ret = pxafb_smart_init(fbi); if (ret) { dev_err(&dev->dev, "failed to initialize smartpanel\n"); goto failed_free_irq; } /* * This makes sure that our colour bitfield * descriptors are correctly initialised. */ ret = pxafb_check_var(&fbi->fb.var, &fbi->fb); if (ret) { dev_err(&dev->dev, "failed to get suitable mode\n"); goto failed_free_irq; } ret = pxafb_set_par(&fbi->fb); if (ret) { dev_err(&dev->dev, "Failed to set parameters\n"); goto failed_free_irq; } platform_set_drvdata(dev, fbi); ret = register_framebuffer(&fbi->fb); if (ret < 0) { dev_err(&dev->dev, "Failed to register framebuffer device: %d\n", ret); goto failed_free_cmap; } pxafb_overlay_init(fbi); #ifdef CONFIG_CPU_FREQ fbi->freq_transition.notifier_call = pxafb_freq_transition; fbi->freq_policy.notifier_call = pxafb_freq_policy; cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER); cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER); #endif /* * Ok, now enable the LCD controller */ set_ctrlr_state(fbi, C_ENABLE); return 0; failed_free_cmap: if (fbi->fb.cmap.len) fb_dealloc_cmap(&fbi->fb.cmap); failed_free_irq: free_irq(irq, fbi); failed_free_mem: free_pages_exact(fbi->video_mem, fbi->video_mem_size); failed_free_dma: dma_free_coherent(&dev->dev, fbi->dma_buff_size, fbi->dma_buff, fbi->dma_buff_phys); failed_free_io: iounmap(fbi->mmio_base); failed_free_res: release_mem_region(r->start, resource_size(r)); failed_fbi: clk_put(fbi->clk); kfree(fbi); failed: return ret; } static int pxafb_remove(struct platform_device *dev) { struct pxafb_info *fbi = platform_get_drvdata(dev); struct resource *r; int irq; struct fb_info *info; if (!fbi) return 0; info = &fbi->fb; pxafb_overlay_exit(fbi); unregister_framebuffer(info); pxafb_disable_controller(fbi); if (fbi->fb.cmap.len) fb_dealloc_cmap(&fbi->fb.cmap); irq = platform_get_irq(dev, 0); free_irq(irq, fbi); free_pages_exact(fbi->video_mem, fbi->video_mem_size); dma_free_writecombine(&dev->dev, fbi->dma_buff_size, fbi->dma_buff, fbi->dma_buff_phys); iounmap(fbi->mmio_base); r = platform_get_resource(dev, IORESOURCE_MEM, 0); release_mem_region(r->start, resource_size(r)); clk_put(fbi->clk); kfree(fbi); return 0; } static struct platform_driver pxafb_driver = { .probe = pxafb_probe, .remove = pxafb_remove, .driver = { .owner = THIS_MODULE, .name = "pxa2xx-fb", #ifdef CONFIG_PM .pm = &pxafb_pm_ops, #endif }, }; static int __init pxafb_init(void) { if (pxafb_setup_options()) return -EINVAL; return platform_driver_register(&pxafb_driver); } static void __exit pxafb_exit(void) { platform_driver_unregister(&pxafb_driver); } module_init(pxafb_init); module_exit(pxafb_exit); MODULE_DESCRIPTION("loadable framebuffer driver for PXA"); MODULE_LICENSE("GPL");