/* * fs/f2fs/super.c * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/module.h> #include <linux/init.h> #include <linux/fs.h> #include <linux/statfs.h> #include <linux/buffer_head.h> #include <linux/backing-dev.h> #include <linux/kthread.h> #include <linux/parser.h> #include <linux/mount.h> #include <linux/seq_file.h> #include <linux/proc_fs.h> #include <linux/random.h> #include <linux/exportfs.h> #include <linux/blkdev.h> #include <linux/f2fs_fs.h> #include <linux/sysfs.h> #include "f2fs.h" #include "node.h" #include "segment.h" #include "xattr.h" #include "gc.h" #define CREATE_TRACE_POINTS #include <trace/events/f2fs.h> static struct proc_dir_entry *f2fs_proc_root; static struct kmem_cache *f2fs_inode_cachep; static struct kset *f2fs_kset; enum { Opt_gc_background, Opt_disable_roll_forward, Opt_discard, Opt_noheap, Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, Opt_active_logs, Opt_disable_ext_identify, Opt_inline_xattr, Opt_inline_data, Opt_err, }; static match_table_t f2fs_tokens = { {Opt_gc_background, "background_gc=%s"}, {Opt_disable_roll_forward, "disable_roll_forward"}, {Opt_discard, "discard"}, {Opt_noheap, "no_heap"}, {Opt_user_xattr, "user_xattr"}, {Opt_nouser_xattr, "nouser_xattr"}, {Opt_acl, "acl"}, {Opt_noacl, "noacl"}, {Opt_active_logs, "active_logs=%u"}, {Opt_disable_ext_identify, "disable_ext_identify"}, {Opt_inline_xattr, "inline_xattr"}, {Opt_inline_data, "inline_data"}, {Opt_err, NULL}, }; /* Sysfs support for f2fs */ enum { GC_THREAD, /* struct f2fs_gc_thread */ SM_INFO, /* struct f2fs_sm_info */ F2FS_SBI, /* struct f2fs_sb_info */ }; struct f2fs_attr { struct attribute attr; ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *); ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *, const char *, size_t); int struct_type; int offset; }; static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type) { if (struct_type == GC_THREAD) return (unsigned char *)sbi->gc_thread; else if (struct_type == SM_INFO) return (unsigned char *)SM_I(sbi); else if (struct_type == F2FS_SBI) return (unsigned char *)sbi; return NULL; } static ssize_t f2fs_sbi_show(struct f2fs_attr *a, struct f2fs_sb_info *sbi, char *buf) { unsigned char *ptr = NULL; unsigned int *ui; ptr = __struct_ptr(sbi, a->struct_type); if (!ptr) return -EINVAL; ui = (unsigned int *)(ptr + a->offset); return snprintf(buf, PAGE_SIZE, "%u\n", *ui); } static ssize_t f2fs_sbi_store(struct f2fs_attr *a, struct f2fs_sb_info *sbi, const char *buf, size_t count) { unsigned char *ptr; unsigned long t; unsigned int *ui; ssize_t ret; ptr = __struct_ptr(sbi, a->struct_type); if (!ptr) return -EINVAL; ui = (unsigned int *)(ptr + a->offset); ret = kstrtoul(skip_spaces(buf), 0, &t); if (ret < 0) return ret; *ui = t; return count; } static ssize_t f2fs_attr_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, s_kobj); struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); return a->show ? a->show(a, sbi, buf) : 0; } static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr, const char *buf, size_t len) { struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, s_kobj); struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); return a->store ? a->store(a, sbi, buf, len) : 0; } static void f2fs_sb_release(struct kobject *kobj) { struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, s_kobj); complete(&sbi->s_kobj_unregister); } #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \ static struct f2fs_attr f2fs_attr_##_name = { \ .attr = {.name = __stringify(_name), .mode = _mode }, \ .show = _show, \ .store = _store, \ .struct_type = _struct_type, \ .offset = _offset \ } #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \ F2FS_ATTR_OFFSET(struct_type, name, 0644, \ f2fs_sbi_show, f2fs_sbi_store, \ offsetof(struct struct_name, elname)) F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time); F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time); F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time); F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle); F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments); F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards); F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy); F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util); F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search); #define ATTR_LIST(name) (&f2fs_attr_##name.attr) static struct attribute *f2fs_attrs[] = { ATTR_LIST(gc_min_sleep_time), ATTR_LIST(gc_max_sleep_time), ATTR_LIST(gc_no_gc_sleep_time), ATTR_LIST(gc_idle), ATTR_LIST(reclaim_segments), ATTR_LIST(max_small_discards), ATTR_LIST(ipu_policy), ATTR_LIST(min_ipu_util), ATTR_LIST(max_victim_search), NULL, }; static const struct sysfs_ops f2fs_attr_ops = { .show = f2fs_attr_show, .store = f2fs_attr_store, }; static struct kobj_type f2fs_ktype = { .default_attrs = f2fs_attrs, .sysfs_ops = &f2fs_attr_ops, .release = f2fs_sb_release, }; void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...) { struct va_format vaf; va_list args; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf); va_end(args); } static void init_once(void *foo) { struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; inode_init_once(&fi->vfs_inode); } static int parse_options(struct super_block *sb, char *options) { struct f2fs_sb_info *sbi = F2FS_SB(sb); substring_t args[MAX_OPT_ARGS]; char *p, *name; int arg = 0; if (!options) return 0; while ((p = strsep(&options, ",")) != NULL) { int token; if (!*p) continue; /* * Initialize args struct so we know whether arg was * found; some options take optional arguments. */ args[0].to = args[0].from = NULL; token = match_token(p, f2fs_tokens, args); switch (token) { case Opt_gc_background: name = match_strdup(&args[0]); if (!name) return -ENOMEM; if (!strncmp(name, "on", 2)) set_opt(sbi, BG_GC); else if (!strncmp(name, "off", 3)) clear_opt(sbi, BG_GC); else { kfree(name); return -EINVAL; } kfree(name); break; case Opt_disable_roll_forward: set_opt(sbi, DISABLE_ROLL_FORWARD); break; case Opt_discard: set_opt(sbi, DISCARD); break; case Opt_noheap: set_opt(sbi, NOHEAP); break; #ifdef CONFIG_F2FS_FS_XATTR case Opt_user_xattr: set_opt(sbi, XATTR_USER); break; case Opt_nouser_xattr: clear_opt(sbi, XATTR_USER); break; case Opt_inline_xattr: set_opt(sbi, INLINE_XATTR); break; #else case Opt_user_xattr: f2fs_msg(sb, KERN_INFO, "user_xattr options not supported"); break; case Opt_nouser_xattr: f2fs_msg(sb, KERN_INFO, "nouser_xattr options not supported"); break; case Opt_inline_xattr: f2fs_msg(sb, KERN_INFO, "inline_xattr options not supported"); break; #endif #ifdef CONFIG_F2FS_FS_POSIX_ACL case Opt_acl: set_opt(sbi, POSIX_ACL); break; case Opt_noacl: clear_opt(sbi, POSIX_ACL); break; #else case Opt_acl: f2fs_msg(sb, KERN_INFO, "acl options not supported"); break; case Opt_noacl: f2fs_msg(sb, KERN_INFO, "noacl options not supported"); break; #endif case Opt_active_logs: if (args->from && match_int(args, &arg)) return -EINVAL; if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) return -EINVAL; sbi->active_logs = arg; break; case Opt_disable_ext_identify: set_opt(sbi, DISABLE_EXT_IDENTIFY); break; case Opt_inline_data: set_opt(sbi, INLINE_DATA); break; default: f2fs_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" or missing value", p); return -EINVAL; } } return 0; } static struct inode *f2fs_alloc_inode(struct super_block *sb) { struct f2fs_inode_info *fi; fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); if (!fi) return NULL; init_once((void *) fi); /* Initialize f2fs-specific inode info */ fi->vfs_inode.i_version = 1; atomic_set(&fi->dirty_dents, 0); fi->i_current_depth = 1; fi->i_advise = 0; rwlock_init(&fi->ext.ext_lock); set_inode_flag(fi, FI_NEW_INODE); if (test_opt(F2FS_SB(sb), INLINE_XATTR)) set_inode_flag(fi, FI_INLINE_XATTR); return &fi->vfs_inode; } static int f2fs_drop_inode(struct inode *inode) { /* * This is to avoid a deadlock condition like below. * writeback_single_inode(inode) * - f2fs_write_data_page * - f2fs_gc -> iput -> evict * - inode_wait_for_writeback(inode) */ if (!inode_unhashed(inode) && inode->i_state & I_SYNC) return 0; return generic_drop_inode(inode); } /* * f2fs_dirty_inode() is called from __mark_inode_dirty() * * We should call set_dirty_inode to write the dirty inode through write_inode. */ static void f2fs_dirty_inode(struct inode *inode, int flags) { set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE); } static void f2fs_i_callback(struct rcu_head *head) { struct inode *inode = container_of(head, struct inode, i_rcu); kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); } static void f2fs_destroy_inode(struct inode *inode) { call_rcu(&inode->i_rcu, f2fs_i_callback); } static void f2fs_put_super(struct super_block *sb) { struct f2fs_sb_info *sbi = F2FS_SB(sb); if (sbi->s_proc) { remove_proc_entry("segment_info", sbi->s_proc); remove_proc_entry(sb->s_id, f2fs_proc_root); } kobject_del(&sbi->s_kobj); f2fs_destroy_stats(sbi); stop_gc_thread(sbi); /* We don't need to do checkpoint when it's clean */ if (sbi->s_dirty && get_pages(sbi, F2FS_DIRTY_NODES)) write_checkpoint(sbi, true); iput(sbi->node_inode); iput(sbi->meta_inode); /* destroy f2fs internal modules */ destroy_node_manager(sbi); destroy_segment_manager(sbi); kfree(sbi->ckpt); kobject_put(&sbi->s_kobj); wait_for_completion(&sbi->s_kobj_unregister); sb->s_fs_info = NULL; brelse(sbi->raw_super_buf); kfree(sbi); } int f2fs_sync_fs(struct super_block *sb, int sync) { struct f2fs_sb_info *sbi = F2FS_SB(sb); trace_f2fs_sync_fs(sb, sync); if (!sbi->s_dirty && !get_pages(sbi, F2FS_DIRTY_NODES)) return 0; if (sync) { mutex_lock(&sbi->gc_mutex); write_checkpoint(sbi, false); mutex_unlock(&sbi->gc_mutex); } else { f2fs_balance_fs(sbi); } return 0; } static int f2fs_freeze(struct super_block *sb) { int err; if (f2fs_readonly(sb)) return 0; err = f2fs_sync_fs(sb, 1); return err; } static int f2fs_unfreeze(struct super_block *sb) { return 0; } static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) { struct super_block *sb = dentry->d_sb; struct f2fs_sb_info *sbi = F2FS_SB(sb); u64 id = huge_encode_dev(sb->s_bdev->bd_dev); block_t total_count, user_block_count, start_count, ovp_count; total_count = le64_to_cpu(sbi->raw_super->block_count); user_block_count = sbi->user_block_count; start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg; buf->f_type = F2FS_SUPER_MAGIC; buf->f_bsize = sbi->blocksize; buf->f_blocks = total_count - start_count; buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count; buf->f_bavail = user_block_count - valid_user_blocks(sbi); buf->f_files = sbi->total_node_count; buf->f_ffree = sbi->total_node_count - valid_inode_count(sbi); buf->f_namelen = F2FS_NAME_LEN; buf->f_fsid.val[0] = (u32)id; buf->f_fsid.val[1] = (u32)(id >> 32); return 0; } static int f2fs_show_options(struct seq_file *seq, struct dentry *root) { struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); if (!(root->d_sb->s_flags & MS_RDONLY) && test_opt(sbi, BG_GC)) seq_printf(seq, ",background_gc=%s", "on"); else seq_printf(seq, ",background_gc=%s", "off"); if (test_opt(sbi, DISABLE_ROLL_FORWARD)) seq_puts(seq, ",disable_roll_forward"); if (test_opt(sbi, DISCARD)) seq_puts(seq, ",discard"); if (test_opt(sbi, NOHEAP)) seq_puts(seq, ",no_heap_alloc"); #ifdef CONFIG_F2FS_FS_XATTR if (test_opt(sbi, XATTR_USER)) seq_puts(seq, ",user_xattr"); else seq_puts(seq, ",nouser_xattr"); if (test_opt(sbi, INLINE_XATTR)) seq_puts(seq, ",inline_xattr"); #endif #ifdef CONFIG_F2FS_FS_POSIX_ACL if (test_opt(sbi, POSIX_ACL)) seq_puts(seq, ",acl"); else seq_puts(seq, ",noacl"); #endif if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) seq_puts(seq, ",disable_ext_identify"); if (test_opt(sbi, INLINE_DATA)) seq_puts(seq, ",inline_data"); seq_printf(seq, ",active_logs=%u", sbi->active_logs); return 0; } static int segment_info_seq_show(struct seq_file *seq, void *offset) { struct super_block *sb = seq->private; struct f2fs_sb_info *sbi = F2FS_SB(sb); unsigned int total_segs = le32_to_cpu(sbi->raw_super->segment_count_main); int i; for (i = 0; i < total_segs; i++) { seq_printf(seq, "%u", get_valid_blocks(sbi, i, 1)); if (i != 0 && (i % 10) == 0) seq_puts(seq, "\n"); else seq_puts(seq, " "); } return 0; } static int segment_info_open_fs(struct inode *inode, struct file *file) { return single_open(file, segment_info_seq_show, PDE_DATA(inode)); } static const struct file_operations f2fs_seq_segment_info_fops = { .owner = THIS_MODULE, .open = segment_info_open_fs, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int f2fs_remount(struct super_block *sb, int *flags, char *data) { struct f2fs_sb_info *sbi = F2FS_SB(sb); struct f2fs_mount_info org_mount_opt; int err, active_logs; /* * Save the old mount options in case we * need to restore them. */ org_mount_opt = sbi->mount_opt; active_logs = sbi->active_logs; /* parse mount options */ err = parse_options(sb, data); if (err) goto restore_opts; /* * Previous and new state of filesystem is RO, * so no point in checking GC conditions. */ if ((sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) goto skip; /* * We stop the GC thread if FS is mounted as RO * or if background_gc = off is passed in mount * option. Also sync the filesystem. */ if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) { if (sbi->gc_thread) { stop_gc_thread(sbi); f2fs_sync_fs(sb, 1); } } else if (test_opt(sbi, BG_GC) && !sbi->gc_thread) { err = start_gc_thread(sbi); if (err) goto restore_opts; } skip: /* Update the POSIXACL Flag */ sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); return 0; restore_opts: sbi->mount_opt = org_mount_opt; sbi->active_logs = active_logs; return err; } static struct super_operations f2fs_sops = { .alloc_inode = f2fs_alloc_inode, .drop_inode = f2fs_drop_inode, .destroy_inode = f2fs_destroy_inode, .write_inode = f2fs_write_inode, .dirty_inode = f2fs_dirty_inode, .show_options = f2fs_show_options, .evict_inode = f2fs_evict_inode, .put_super = f2fs_put_super, .sync_fs = f2fs_sync_fs, .freeze_fs = f2fs_freeze, .unfreeze_fs = f2fs_unfreeze, .statfs = f2fs_statfs, .remount_fs = f2fs_remount, }; static struct inode *f2fs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation) { struct f2fs_sb_info *sbi = F2FS_SB(sb); struct inode *inode; if (unlikely(ino < F2FS_ROOT_INO(sbi))) return ERR_PTR(-ESTALE); /* * f2fs_iget isn't quite right if the inode is currently unallocated! * However f2fs_iget currently does appropriate checks to handle stale * inodes so everything is OK. */ inode = f2fs_iget(sb, ino); if (IS_ERR(inode)) return ERR_CAST(inode); if (unlikely(generation && inode->i_generation != generation)) { /* we didn't find the right inode.. */ iput(inode); return ERR_PTR(-ESTALE); } return inode; } static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { return generic_fh_to_dentry(sb, fid, fh_len, fh_type, f2fs_nfs_get_inode); } static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { return generic_fh_to_parent(sb, fid, fh_len, fh_type, f2fs_nfs_get_inode); } static const struct export_operations f2fs_export_ops = { .fh_to_dentry = f2fs_fh_to_dentry, .fh_to_parent = f2fs_fh_to_parent, .get_parent = f2fs_get_parent, }; static loff_t max_file_size(unsigned bits) { loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS); loff_t leaf_count = ADDRS_PER_BLOCK; /* two direct node blocks */ result += (leaf_count * 2); /* two indirect node blocks */ leaf_count *= NIDS_PER_BLOCK; result += (leaf_count * 2); /* one double indirect node block */ leaf_count *= NIDS_PER_BLOCK; result += leaf_count; result <<= bits; return result; } static int sanity_check_raw_super(struct super_block *sb, struct f2fs_super_block *raw_super) { unsigned int blocksize; if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) { f2fs_msg(sb, KERN_INFO, "Magic Mismatch, valid(0x%x) - read(0x%x)", F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); return 1; } /* Currently, support only 4KB page cache size */ if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) { f2fs_msg(sb, KERN_INFO, "Invalid page_cache_size (%lu), supports only 4KB\n", PAGE_CACHE_SIZE); return 1; } /* Currently, support only 4KB block size */ blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); if (blocksize != F2FS_BLKSIZE) { f2fs_msg(sb, KERN_INFO, "Invalid blocksize (%u), supports only 4KB\n", blocksize); return 1; } if (le32_to_cpu(raw_super->log_sectorsize) != F2FS_LOG_SECTOR_SIZE) { f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize"); return 1; } if (le32_to_cpu(raw_super->log_sectors_per_block) != F2FS_LOG_SECTORS_PER_BLOCK) { f2fs_msg(sb, KERN_INFO, "Invalid log sectors per block"); return 1; } return 0; } static int sanity_check_ckpt(struct f2fs_sb_info *sbi) { unsigned int total, fsmeta; struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); total = le32_to_cpu(raw_super->segment_count); fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); fsmeta += le32_to_cpu(raw_super->segment_count_sit); fsmeta += le32_to_cpu(raw_super->segment_count_nat); fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); fsmeta += le32_to_cpu(raw_super->segment_count_ssa); if (unlikely(fsmeta >= total)) return 1; if (unlikely(is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) { f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck"); return 1; } return 0; } static void init_sb_info(struct f2fs_sb_info *sbi) { struct f2fs_super_block *raw_super = sbi->raw_super; int i; sbi->log_sectors_per_block = le32_to_cpu(raw_super->log_sectors_per_block); sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); sbi->blocksize = 1 << sbi->log_blocksize; sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); sbi->total_sections = le32_to_cpu(raw_super->section_count); sbi->total_node_count = (le32_to_cpu(raw_super->segment_count_nat) / 2) * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); sbi->cur_victim_sec = NULL_SECNO; sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; for (i = 0; i < NR_COUNT_TYPE; i++) atomic_set(&sbi->nr_pages[i], 0); } /* * Read f2fs raw super block. * Because we have two copies of super block, so read the first one at first, * if the first one is invalid, move to read the second one. */ static int read_raw_super_block(struct super_block *sb, struct f2fs_super_block **raw_super, struct buffer_head **raw_super_buf) { int block = 0; retry: *raw_super_buf = sb_bread(sb, block); if (!*raw_super_buf) { f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock", block + 1); if (block == 0) { block++; goto retry; } else { return -EIO; } } *raw_super = (struct f2fs_super_block *) ((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET); /* sanity checking of raw super */ if (sanity_check_raw_super(sb, *raw_super)) { brelse(*raw_super_buf); f2fs_msg(sb, KERN_ERR, "Can't find valid F2FS filesystem in %dth superblock", block + 1); if (block == 0) { block++; goto retry; } else { return -EINVAL; } } return 0; } static int f2fs_fill_super(struct super_block *sb, void *data, int silent) { struct f2fs_sb_info *sbi; struct f2fs_super_block *raw_super; struct buffer_head *raw_super_buf; struct inode *root; long err = -EINVAL; int i; /* allocate memory for f2fs-specific super block info */ sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); if (!sbi) return -ENOMEM; /* set a block size */ if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { f2fs_msg(sb, KERN_ERR, "unable to set blocksize"); goto free_sbi; } err = read_raw_super_block(sb, &raw_super, &raw_super_buf); if (err) goto free_sbi; sb->s_fs_info = sbi; /* init some FS parameters */ sbi->active_logs = NR_CURSEG_TYPE; set_opt(sbi, BG_GC); #ifdef CONFIG_F2FS_FS_XATTR set_opt(sbi, XATTR_USER); #endif #ifdef CONFIG_F2FS_FS_POSIX_ACL set_opt(sbi, POSIX_ACL); #endif /* parse mount options */ err = parse_options(sb, (char *)data); if (err) goto free_sb_buf; sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize)); sb->s_max_links = F2FS_LINK_MAX; get_random_bytes(&sbi->s_next_generation, sizeof(u32)); sb->s_op = &f2fs_sops; sb->s_xattr = f2fs_xattr_handlers; sb->s_export_op = &f2fs_export_ops; sb->s_magic = F2FS_SUPER_MAGIC; sb->s_time_gran = 1; sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); /* init f2fs-specific super block info */ sbi->sb = sb; sbi->raw_super = raw_super; sbi->raw_super_buf = raw_super_buf; mutex_init(&sbi->gc_mutex); mutex_init(&sbi->writepages); mutex_init(&sbi->cp_mutex); mutex_init(&sbi->node_write); sbi->por_doing = false; spin_lock_init(&sbi->stat_lock); mutex_init(&sbi->read_io.io_mutex); sbi->read_io.sbi = sbi; sbi->read_io.bio = NULL; for (i = 0; i < NR_PAGE_TYPE; i++) { mutex_init(&sbi->write_io[i].io_mutex); sbi->write_io[i].sbi = sbi; sbi->write_io[i].bio = NULL; } init_rwsem(&sbi->cp_rwsem); init_waitqueue_head(&sbi->cp_wait); init_sb_info(sbi); /* get an inode for meta space */ sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); if (IS_ERR(sbi->meta_inode)) { f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode"); err = PTR_ERR(sbi->meta_inode); goto free_sb_buf; } err = get_valid_checkpoint(sbi); if (err) { f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint"); goto free_meta_inode; } /* sanity checking of checkpoint */ err = -EINVAL; if (sanity_check_ckpt(sbi)) { f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint"); goto free_cp; } sbi->total_valid_node_count = le32_to_cpu(sbi->ckpt->valid_node_count); sbi->total_valid_inode_count = le32_to_cpu(sbi->ckpt->valid_inode_count); sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); sbi->total_valid_block_count = le64_to_cpu(sbi->ckpt->valid_block_count); sbi->last_valid_block_count = sbi->total_valid_block_count; sbi->alloc_valid_block_count = 0; INIT_LIST_HEAD(&sbi->dir_inode_list); spin_lock_init(&sbi->dir_inode_lock); init_orphan_info(sbi); /* setup f2fs internal modules */ err = build_segment_manager(sbi); if (err) { f2fs_msg(sb, KERN_ERR, "Failed to initialize F2FS segment manager"); goto free_sm; } err = build_node_manager(sbi); if (err) { f2fs_msg(sb, KERN_ERR, "Failed to initialize F2FS node manager"); goto free_nm; } build_gc_manager(sbi); /* get an inode for node space */ sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); if (IS_ERR(sbi->node_inode)) { f2fs_msg(sb, KERN_ERR, "Failed to read node inode"); err = PTR_ERR(sbi->node_inode); goto free_nm; } /* if there are nt orphan nodes free them */ recover_orphan_inodes(sbi); /* read root inode and dentry */ root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); if (IS_ERR(root)) { f2fs_msg(sb, KERN_ERR, "Failed to read root inode"); err = PTR_ERR(root); goto free_node_inode; } if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { err = -EINVAL; goto free_root_inode; } sb->s_root = d_make_root(root); /* allocate root dentry */ if (!sb->s_root) { err = -ENOMEM; goto free_root_inode; } /* recover fsynced data */ if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { err = recover_fsync_data(sbi); if (err) f2fs_msg(sb, KERN_ERR, "Cannot recover all fsync data errno=%ld", err); } /* * If filesystem is not mounted as read-only then * do start the gc_thread. */ if (!(sb->s_flags & MS_RDONLY)) { /* After POR, we can run background GC thread.*/ err = start_gc_thread(sbi); if (err) goto free_gc; } err = f2fs_build_stats(sbi); if (err) goto free_gc; if (f2fs_proc_root) sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root); if (sbi->s_proc) proc_create_data("segment_info", S_IRUGO, sbi->s_proc, &f2fs_seq_segment_info_fops, sb); if (test_opt(sbi, DISCARD)) { struct request_queue *q = bdev_get_queue(sb->s_bdev); if (!blk_queue_discard(q)) f2fs_msg(sb, KERN_WARNING, "mounting with \"discard\" option, but " "the device does not support discard"); } sbi->s_kobj.kset = f2fs_kset; init_completion(&sbi->s_kobj_unregister); err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL, "%s", sb->s_id); if (err) goto fail; return 0; fail: if (sbi->s_proc) { remove_proc_entry("segment_info", sbi->s_proc); remove_proc_entry(sb->s_id, f2fs_proc_root); } f2fs_destroy_stats(sbi); free_gc: stop_gc_thread(sbi); free_root_inode: dput(sb->s_root); sb->s_root = NULL; free_node_inode: iput(sbi->node_inode); free_nm: destroy_node_manager(sbi); free_sm: destroy_segment_manager(sbi); free_cp: kfree(sbi->ckpt); free_meta_inode: make_bad_inode(sbi->meta_inode); iput(sbi->meta_inode); free_sb_buf: brelse(raw_super_buf); free_sbi: kfree(sbi); return err; } static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data) { return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); } static struct file_system_type f2fs_fs_type = { .owner = THIS_MODULE, .name = "f2fs", .mount = f2fs_mount, .kill_sb = kill_block_super, .fs_flags = FS_REQUIRES_DEV, }; MODULE_ALIAS_FS("f2fs"); static int __init init_inodecache(void) { f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache", sizeof(struct f2fs_inode_info), NULL); if (!f2fs_inode_cachep) return -ENOMEM; return 0; } static void destroy_inodecache(void) { /* * Make sure all delayed rcu free inodes are flushed before we * destroy cache. */ rcu_barrier(); kmem_cache_destroy(f2fs_inode_cachep); } static int __init init_f2fs_fs(void) { int err; err = init_inodecache(); if (err) goto fail; err = create_node_manager_caches(); if (err) goto free_inodecache; err = create_segment_manager_caches(); if (err) goto free_node_manager_caches; err = create_gc_caches(); if (err) goto free_segment_manager_caches; err = create_checkpoint_caches(); if (err) goto free_gc_caches; f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj); if (!f2fs_kset) { err = -ENOMEM; goto free_checkpoint_caches; } err = register_filesystem(&f2fs_fs_type); if (err) goto free_kset; f2fs_create_root_stats(); f2fs_proc_root = proc_mkdir("fs/f2fs", NULL); return 0; free_kset: kset_unregister(f2fs_kset); free_checkpoint_caches: destroy_checkpoint_caches(); free_gc_caches: destroy_gc_caches(); free_segment_manager_caches: destroy_segment_manager_caches(); free_node_manager_caches: destroy_node_manager_caches(); free_inodecache: destroy_inodecache(); fail: return err; } static void __exit exit_f2fs_fs(void) { remove_proc_entry("fs/f2fs", NULL); f2fs_destroy_root_stats(); unregister_filesystem(&f2fs_fs_type); destroy_checkpoint_caches(); destroy_gc_caches(); destroy_segment_manager_caches(); destroy_node_manager_caches(); destroy_inodecache(); kset_unregister(f2fs_kset); } module_init(init_f2fs_fs) module_exit(exit_f2fs_fs) MODULE_AUTHOR("Samsung Electronics's Praesto Team"); MODULE_DESCRIPTION("Flash Friendly File System"); MODULE_LICENSE("GPL");