/* -*- linux-c -*- ------------------------------------------------------- * * * Copyright 2001 H. Peter Anvin - All Rights Reserved * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, Inc., 675 Mass Ave, Cambridge MA 02139, * USA; either version 2 of the License, or (at your option) any later * version; incorporated herein by reference. * * ----------------------------------------------------------------------- */ /* * linux/fs/isofs/compress.c * * Transparent decompression of files on an iso9660 filesystem */ #include <linux/module.h> #include <linux/init.h> #include <linux/vmalloc.h> #include <linux/zlib.h> #include "isofs.h" #include "zisofs.h" /* This should probably be global. */ static char zisofs_sink_page[PAGE_CACHE_SIZE]; /* * This contains the zlib memory allocation and the mutex for the * allocation; this avoids failures at block-decompression time. */ static void *zisofs_zlib_workspace; static DEFINE_MUTEX(zisofs_zlib_lock); /* * Read data of @inode from @block_start to @block_end and uncompress * to one zisofs block. Store the data in the @pages array with @pcount * entries. Start storing at offset @poffset of the first page. */ static loff_t zisofs_uncompress_block(struct inode *inode, loff_t block_start, loff_t block_end, int pcount, struct page **pages, unsigned poffset, int *errp) { unsigned int zisofs_block_shift = ISOFS_I(inode)->i_format_parm[1]; unsigned int bufsize = ISOFS_BUFFER_SIZE(inode); unsigned int bufshift = ISOFS_BUFFER_BITS(inode); unsigned int bufmask = bufsize - 1; int i, block_size = block_end - block_start; z_stream stream = { .total_out = 0, .avail_in = 0, .avail_out = 0, }; int zerr; int needblocks = (block_size + (block_start & bufmask) + bufmask) >> bufshift; int haveblocks; blkcnt_t blocknum; struct buffer_head *bhs[needblocks + 1]; int curbh, curpage; if (block_size > deflateBound(1UL << zisofs_block_shift)) { *errp = -EIO; return 0; } /* Empty block? */ if (block_size == 0) { for ( i = 0 ; i < pcount ; i++ ) { if (!pages[i]) continue; memset(page_address(pages[i]), 0, PAGE_CACHE_SIZE); flush_dcache_page(pages[i]); SetPageUptodate(pages[i]); } return ((loff_t)pcount) << PAGE_CACHE_SHIFT; } /* Because zlib is not thread-safe, do all the I/O at the top. */ blocknum = block_start >> bufshift; memset(bhs, 0, (needblocks + 1) * sizeof(struct buffer_head *)); haveblocks = isofs_get_blocks(inode, blocknum, bhs, needblocks); ll_rw_block(READ, haveblocks, bhs); curbh = 0; curpage = 0; /* * First block is special since it may be fractional. We also wait for * it before grabbing the zlib mutex; odds are that the subsequent * blocks are going to come in in short order so we don't hold the zlib * mutex longer than necessary. */ if (!bhs[0]) goto b_eio; wait_on_buffer(bhs[0]); if (!buffer_uptodate(bhs[0])) { *errp = -EIO; goto b_eio; } stream.workspace = zisofs_zlib_workspace; mutex_lock(&zisofs_zlib_lock); zerr = zlib_inflateInit(&stream); if (zerr != Z_OK) { if (zerr == Z_MEM_ERROR) *errp = -ENOMEM; else *errp = -EIO; printk(KERN_DEBUG "zisofs: zisofs_inflateInit returned %d\n", zerr); goto z_eio; } while (curpage < pcount && curbh < haveblocks && zerr != Z_STREAM_END) { if (!stream.avail_out) { if (pages[curpage]) { stream.next_out = page_address(pages[curpage]) + poffset; stream.avail_out = PAGE_CACHE_SIZE - poffset; poffset = 0; } else { stream.next_out = (void *)&zisofs_sink_page; stream.avail_out = PAGE_CACHE_SIZE; } } if (!stream.avail_in) { wait_on_buffer(bhs[curbh]); if (!buffer_uptodate(bhs[curbh])) { *errp = -EIO; break; } stream.next_in = bhs[curbh]->b_data + (block_start & bufmask); stream.avail_in = min_t(unsigned, bufsize - (block_start & bufmask), block_size); block_size -= stream.avail_in; block_start = 0; } while (stream.avail_out && stream.avail_in) { zerr = zlib_inflate(&stream, Z_SYNC_FLUSH); if (zerr == Z_BUF_ERROR && stream.avail_in == 0) break; if (zerr == Z_STREAM_END) break; if (zerr != Z_OK) { /* EOF, error, or trying to read beyond end of input */ if (zerr == Z_MEM_ERROR) *errp = -ENOMEM; else { printk(KERN_DEBUG "zisofs: zisofs_inflate returned" " %d, inode = %lu," " page idx = %d, bh idx = %d," " avail_in = %d," " avail_out = %d\n", zerr, inode->i_ino, curpage, curbh, stream.avail_in, stream.avail_out); *errp = -EIO; } goto inflate_out; } } if (!stream.avail_out) { /* This page completed */ if (pages[curpage]) { flush_dcache_page(pages[curpage]); SetPageUptodate(pages[curpage]); } curpage++; } if (!stream.avail_in) curbh++; } inflate_out: zlib_inflateEnd(&stream); z_eio: mutex_unlock(&zisofs_zlib_lock); b_eio: for (i = 0; i < haveblocks; i++) brelse(bhs[i]); return stream.total_out; } /* * Uncompress data so that pages[full_page] is fully uptodate and possibly * fills in other pages if we have data for them. */ static int zisofs_fill_pages(struct inode *inode, int full_page, int pcount, struct page **pages) { loff_t start_off, end_off; loff_t block_start, block_end; unsigned int header_size = ISOFS_I(inode)->i_format_parm[0]; unsigned int zisofs_block_shift = ISOFS_I(inode)->i_format_parm[1]; unsigned int blockptr; loff_t poffset = 0; blkcnt_t cstart_block, cend_block; struct buffer_head *bh; unsigned int blkbits = ISOFS_BUFFER_BITS(inode); unsigned int blksize = 1 << blkbits; int err; loff_t ret; BUG_ON(!pages[full_page]); /* * We want to read at least 'full_page' page. Because we have to * uncompress the whole compression block anyway, fill the surrounding * pages with the data we have anyway... */ start_off = page_offset(pages[full_page]); end_off = min_t(loff_t, start_off + PAGE_CACHE_SIZE, inode->i_size); cstart_block = start_off >> zisofs_block_shift; cend_block = (end_off + (1 << zisofs_block_shift) - 1) >> zisofs_block_shift; WARN_ON(start_off - (full_page << PAGE_CACHE_SHIFT) != ((cstart_block << zisofs_block_shift) & PAGE_CACHE_MASK)); /* Find the pointer to this specific chunk */ /* Note: we're not using isonum_731() here because the data is known aligned */ /* Note: header_size is in 32-bit words (4 bytes) */ blockptr = (header_size + cstart_block) << 2; bh = isofs_bread(inode, blockptr >> blkbits); if (!bh) return -EIO; block_start = le32_to_cpu(*(__le32 *) (bh->b_data + (blockptr & (blksize - 1)))); while (cstart_block < cend_block && pcount > 0) { /* Load end of the compressed block in the file */ blockptr += 4; /* Traversed to next block? */ if (!(blockptr & (blksize - 1))) { brelse(bh); bh = isofs_bread(inode, blockptr >> blkbits); if (!bh) return -EIO; } block_end = le32_to_cpu(*(__le32 *) (bh->b_data + (blockptr & (blksize - 1)))); if (block_start > block_end) { brelse(bh); return -EIO; } err = 0; ret = zisofs_uncompress_block(inode, block_start, block_end, pcount, pages, poffset, &err); poffset += ret; pages += poffset >> PAGE_CACHE_SHIFT; pcount -= poffset >> PAGE_CACHE_SHIFT; full_page -= poffset >> PAGE_CACHE_SHIFT; poffset &= ~PAGE_CACHE_MASK; if (err) { brelse(bh); /* * Did we finish reading the page we really wanted * to read? */ if (full_page < 0) return 0; return err; } block_start = block_end; cstart_block++; } if (poffset && *pages) { memset(page_address(*pages) + poffset, 0, PAGE_CACHE_SIZE - poffset); flush_dcache_page(*pages); SetPageUptodate(*pages); } return 0; } /* * When decompressing, we typically obtain more than one page * per reference. We inject the additional pages into the page * cache as a form of readahead. */ static int zisofs_readpage(struct file *file, struct page *page) { struct inode *inode = file_inode(file); struct address_space *mapping = inode->i_mapping; int err; int i, pcount, full_page; unsigned int zisofs_block_shift = ISOFS_I(inode)->i_format_parm[1]; unsigned int zisofs_pages_per_cblock = PAGE_CACHE_SHIFT <= zisofs_block_shift ? (1 << (zisofs_block_shift - PAGE_CACHE_SHIFT)) : 0; struct page *pages[max_t(unsigned, zisofs_pages_per_cblock, 1)]; pgoff_t index = page->index, end_index; end_index = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; /* * If this page is wholly outside i_size we just return zero; * do_generic_file_read() will handle this for us */ if (index >= end_index) { SetPageUptodate(page); unlock_page(page); return 0; } if (PAGE_CACHE_SHIFT <= zisofs_block_shift) { /* We have already been given one page, this is the one we must do. */ full_page = index & (zisofs_pages_per_cblock - 1); pcount = min_t(int, zisofs_pages_per_cblock, end_index - (index & ~(zisofs_pages_per_cblock - 1))); index -= full_page; } else { full_page = 0; pcount = 1; } pages[full_page] = page; for (i = 0; i < pcount; i++, index++) { if (i != full_page) pages[i] = grab_cache_page_nowait(mapping, index); if (pages[i]) { ClearPageError(pages[i]); kmap(pages[i]); } } err = zisofs_fill_pages(inode, full_page, pcount, pages); /* Release any residual pages, do not SetPageUptodate */ for (i = 0; i < pcount; i++) { if (pages[i]) { flush_dcache_page(pages[i]); if (i == full_page && err) SetPageError(pages[i]); kunmap(pages[i]); unlock_page(pages[i]); if (i != full_page) page_cache_release(pages[i]); } } /* At this point, err contains 0 or -EIO depending on the "critical" page */ return err; } const struct address_space_operations zisofs_aops = { .readpage = zisofs_readpage, /* No sync_page operation supported? */ /* No bmap operation supported */ }; int __init zisofs_init(void) { zisofs_zlib_workspace = vmalloc(zlib_inflate_workspacesize()); if ( !zisofs_zlib_workspace ) return -ENOMEM; return 0; } void zisofs_cleanup(void) { vfree(zisofs_zlib_workspace); }