/* * mm/page-writeback.c * * Copyright (C) 2002, Linus Torvalds. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> * * Contains functions related to writing back dirty pages at the * address_space level. * * 10Apr2002 Andrew Morton * Initial version */ #include <linux/kernel.h> #include <linux/export.h> #include <linux/spinlock.h> #include <linux/fs.h> #include <linux/mm.h> #include <linux/swap.h> #include <linux/slab.h> #include <linux/pagemap.h> #include <linux/writeback.h> #include <linux/init.h> #include <linux/backing-dev.h> #include <linux/task_io_accounting_ops.h> #include <linux/blkdev.h> #include <linux/mpage.h> #include <linux/rmap.h> #include <linux/percpu.h> #include <linux/notifier.h> #include <linux/smp.h> #include <linux/sysctl.h> #include <linux/cpu.h> #include <linux/syscalls.h> #include <linux/buffer_head.h> /* __set_page_dirty_buffers */ #include <linux/pagevec.h> #include <linux/timer.h> #include <linux/sched/rt.h> #include <linux/mm_inline.h> #include <trace/events/writeback.h> #include "internal.h" /* * Sleep at most 200ms at a time in balance_dirty_pages(). */ #define MAX_PAUSE max(HZ/5, 1) /* * Try to keep balance_dirty_pages() call intervals higher than this many pages * by raising pause time to max_pause when falls below it. */ #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) /* * Estimate write bandwidth at 200ms intervals. */ #define BANDWIDTH_INTERVAL max(HZ/5, 1) #define RATELIMIT_CALC_SHIFT 10 /* * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited * will look to see if it needs to force writeback or throttling. */ static long ratelimit_pages = 32; /* The following parameters are exported via /proc/sys/vm */ /* * Start background writeback (via writeback threads) at this percentage */ int dirty_background_ratio = 10; /* * dirty_background_bytes starts at 0 (disabled) so that it is a function of * dirty_background_ratio * the amount of dirtyable memory */ unsigned long dirty_background_bytes; /* * free highmem will not be subtracted from the total free memory * for calculating free ratios if vm_highmem_is_dirtyable is true */ int vm_highmem_is_dirtyable; /* * The generator of dirty data starts writeback at this percentage */ int vm_dirty_ratio = 20; /* * vm_dirty_bytes starts at 0 (disabled) so that it is a function of * vm_dirty_ratio * the amount of dirtyable memory */ unsigned long vm_dirty_bytes; /* * The interval between `kupdate'-style writebacks */ unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ EXPORT_SYMBOL_GPL(dirty_writeback_interval); /* * The longest time for which data is allowed to remain dirty */ unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ /* * Flag that makes the machine dump writes/reads and block dirtyings. */ int block_dump; /* * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: * a full sync is triggered after this time elapses without any disk activity. */ int laptop_mode; EXPORT_SYMBOL(laptop_mode); /* End of sysctl-exported parameters */ unsigned long global_dirty_limit; /* * Scale the writeback cache size proportional to the relative writeout speeds. * * We do this by keeping a floating proportion between BDIs, based on page * writeback completions [end_page_writeback()]. Those devices that write out * pages fastest will get the larger share, while the slower will get a smaller * share. * * We use page writeout completions because we are interested in getting rid of * dirty pages. Having them written out is the primary goal. * * We introduce a concept of time, a period over which we measure these events, * because demand can/will vary over time. The length of this period itself is * measured in page writeback completions. * */ static struct fprop_global writeout_completions; static void writeout_period(unsigned long t); /* Timer for aging of writeout_completions */ static struct timer_list writeout_period_timer = TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0); static unsigned long writeout_period_time = 0; /* * Length of period for aging writeout fractions of bdis. This is an * arbitrarily chosen number. The longer the period, the slower fractions will * reflect changes in current writeout rate. */ #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) /* * Work out the current dirty-memory clamping and background writeout * thresholds. * * The main aim here is to lower them aggressively if there is a lot of mapped * memory around. To avoid stressing page reclaim with lots of unreclaimable * pages. It is better to clamp down on writers than to start swapping, and * performing lots of scanning. * * We only allow 1/2 of the currently-unmapped memory to be dirtied. * * We don't permit the clamping level to fall below 5% - that is getting rather * excessive. * * We make sure that the background writeout level is below the adjusted * clamping level. */ /* * In a memory zone, there is a certain amount of pages we consider * available for the page cache, which is essentially the number of * free and reclaimable pages, minus some zone reserves to protect * lowmem and the ability to uphold the zone's watermarks without * requiring writeback. * * This number of dirtyable pages is the base value of which the * user-configurable dirty ratio is the effictive number of pages that * are allowed to be actually dirtied. Per individual zone, or * globally by using the sum of dirtyable pages over all zones. * * Because the user is allowed to specify the dirty limit globally as * absolute number of bytes, calculating the per-zone dirty limit can * require translating the configured limit into a percentage of * global dirtyable memory first. */ /** * zone_dirtyable_memory - number of dirtyable pages in a zone * @zone: the zone * * Returns the zone's number of pages potentially available for dirty * page cache. This is the base value for the per-zone dirty limits. */ static unsigned long zone_dirtyable_memory(struct zone *zone) { unsigned long nr_pages; nr_pages = zone_page_state(zone, NR_FREE_PAGES); nr_pages -= min(nr_pages, zone->dirty_balance_reserve); nr_pages += zone_page_state(zone, NR_INACTIVE_FILE); nr_pages += zone_page_state(zone, NR_ACTIVE_FILE); return nr_pages; } static unsigned long highmem_dirtyable_memory(unsigned long total) { #ifdef CONFIG_HIGHMEM int node; unsigned long x = 0; for_each_node_state(node, N_HIGH_MEMORY) { struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM]; x += zone_dirtyable_memory(z); } /* * Unreclaimable memory (kernel memory or anonymous memory * without swap) can bring down the dirtyable pages below * the zone's dirty balance reserve and the above calculation * will underflow. However we still want to add in nodes * which are below threshold (negative values) to get a more * accurate calculation but make sure that the total never * underflows. */ if ((long)x < 0) x = 0; /* * Make sure that the number of highmem pages is never larger * than the number of the total dirtyable memory. This can only * occur in very strange VM situations but we want to make sure * that this does not occur. */ return min(x, total); #else return 0; #endif } /** * global_dirtyable_memory - number of globally dirtyable pages * * Returns the global number of pages potentially available for dirty * page cache. This is the base value for the global dirty limits. */ static unsigned long global_dirtyable_memory(void) { unsigned long x; x = global_page_state(NR_FREE_PAGES); x -= min(x, dirty_balance_reserve); x += global_page_state(NR_INACTIVE_FILE); x += global_page_state(NR_ACTIVE_FILE); if (!vm_highmem_is_dirtyable) x -= highmem_dirtyable_memory(x); return x + 1; /* Ensure that we never return 0 */ } /* * global_dirty_limits - background-writeback and dirty-throttling thresholds * * Calculate the dirty thresholds based on sysctl parameters * - vm.dirty_background_ratio or vm.dirty_background_bytes * - vm.dirty_ratio or vm.dirty_bytes * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and * real-time tasks. */ void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) { unsigned long background; unsigned long dirty; unsigned long uninitialized_var(available_memory); struct task_struct *tsk; if (!vm_dirty_bytes || !dirty_background_bytes) available_memory = global_dirtyable_memory(); if (vm_dirty_bytes) dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE); else dirty = (vm_dirty_ratio * available_memory) / 100; if (dirty_background_bytes) background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE); else background = (dirty_background_ratio * available_memory) / 100; if (background >= dirty) background = dirty / 2; tsk = current; if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { background += background / 4; dirty += dirty / 4; } *pbackground = background; *pdirty = dirty; trace_global_dirty_state(background, dirty); } /** * zone_dirty_limit - maximum number of dirty pages allowed in a zone * @zone: the zone * * Returns the maximum number of dirty pages allowed in a zone, based * on the zone's dirtyable memory. */ static unsigned long zone_dirty_limit(struct zone *zone) { unsigned long zone_memory = zone_dirtyable_memory(zone); struct task_struct *tsk = current; unsigned long dirty; if (vm_dirty_bytes) dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * zone_memory / global_dirtyable_memory(); else dirty = vm_dirty_ratio * zone_memory / 100; if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) dirty += dirty / 4; return dirty; } /** * zone_dirty_ok - tells whether a zone is within its dirty limits * @zone: the zone to check * * Returns %true when the dirty pages in @zone are within the zone's * dirty limit, %false if the limit is exceeded. */ bool zone_dirty_ok(struct zone *zone) { unsigned long limit = zone_dirty_limit(zone); return zone_page_state(zone, NR_FILE_DIRTY) + zone_page_state(zone, NR_UNSTABLE_NFS) + zone_page_state(zone, NR_WRITEBACK) <= limit; } int dirty_background_ratio_handler(struct ctl_table *table, int write, void __user *buffer, size_t *lenp, loff_t *ppos) { int ret; ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); if (ret == 0 && write) dirty_background_bytes = 0; return ret; } int dirty_background_bytes_handler(struct ctl_table *table, int write, void __user *buffer, size_t *lenp, loff_t *ppos) { int ret; ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); if (ret == 0 && write) dirty_background_ratio = 0; return ret; } int dirty_ratio_handler(struct ctl_table *table, int write, void __user *buffer, size_t *lenp, loff_t *ppos) { int old_ratio = vm_dirty_ratio; int ret; ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); if (ret == 0 && write && vm_dirty_ratio != old_ratio) { writeback_set_ratelimit(); vm_dirty_bytes = 0; } return ret; } int dirty_bytes_handler(struct ctl_table *table, int write, void __user *buffer, size_t *lenp, loff_t *ppos) { unsigned long old_bytes = vm_dirty_bytes; int ret; ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); if (ret == 0 && write && vm_dirty_bytes != old_bytes) { writeback_set_ratelimit(); vm_dirty_ratio = 0; } return ret; } static unsigned long wp_next_time(unsigned long cur_time) { cur_time += VM_COMPLETIONS_PERIOD_LEN; /* 0 has a special meaning... */ if (!cur_time) return 1; return cur_time; } /* * Increment the BDI's writeout completion count and the global writeout * completion count. Called from test_clear_page_writeback(). */ static inline void __bdi_writeout_inc(struct backing_dev_info *bdi) { __inc_bdi_stat(bdi, BDI_WRITTEN); __fprop_inc_percpu_max(&writeout_completions, &bdi->completions, bdi->max_prop_frac); /* First event after period switching was turned off? */ if (!unlikely(writeout_period_time)) { /* * We can race with other __bdi_writeout_inc calls here but * it does not cause any harm since the resulting time when * timer will fire and what is in writeout_period_time will be * roughly the same. */ writeout_period_time = wp_next_time(jiffies); mod_timer(&writeout_period_timer, writeout_period_time); } } void bdi_writeout_inc(struct backing_dev_info *bdi) { unsigned long flags; local_irq_save(flags); __bdi_writeout_inc(bdi); local_irq_restore(flags); } EXPORT_SYMBOL_GPL(bdi_writeout_inc); /* * Obtain an accurate fraction of the BDI's portion. */ static void bdi_writeout_fraction(struct backing_dev_info *bdi, long *numerator, long *denominator) { fprop_fraction_percpu(&writeout_completions, &bdi->completions, numerator, denominator); } /* * On idle system, we can be called long after we scheduled because we use * deferred timers so count with missed periods. */ static void writeout_period(unsigned long t) { int miss_periods = (jiffies - writeout_period_time) / VM_COMPLETIONS_PERIOD_LEN; if (fprop_new_period(&writeout_completions, miss_periods + 1)) { writeout_period_time = wp_next_time(writeout_period_time + miss_periods * VM_COMPLETIONS_PERIOD_LEN); mod_timer(&writeout_period_timer, writeout_period_time); } else { /* * Aging has zeroed all fractions. Stop wasting CPU on period * updates. */ writeout_period_time = 0; } } /* * bdi_min_ratio keeps the sum of the minimum dirty shares of all * registered backing devices, which, for obvious reasons, can not * exceed 100%. */ static unsigned int bdi_min_ratio; int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) { int ret = 0; spin_lock_bh(&bdi_lock); if (min_ratio > bdi->max_ratio) { ret = -EINVAL; } else { min_ratio -= bdi->min_ratio; if (bdi_min_ratio + min_ratio < 100) { bdi_min_ratio += min_ratio; bdi->min_ratio += min_ratio; } else { ret = -EINVAL; } } spin_unlock_bh(&bdi_lock); return ret; } int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) { int ret = 0; if (max_ratio > 100) return -EINVAL; spin_lock_bh(&bdi_lock); if (bdi->min_ratio > max_ratio) { ret = -EINVAL; } else { bdi->max_ratio = max_ratio; bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100; } spin_unlock_bh(&bdi_lock); return ret; } EXPORT_SYMBOL(bdi_set_max_ratio); static unsigned long dirty_freerun_ceiling(unsigned long thresh, unsigned long bg_thresh) { return (thresh + bg_thresh) / 2; } static unsigned long hard_dirty_limit(unsigned long thresh) { return max(thresh, global_dirty_limit); } /** * bdi_dirty_limit - @bdi's share of dirty throttling threshold * @bdi: the backing_dev_info to query * @dirty: global dirty limit in pages * * Returns @bdi's dirty limit in pages. The term "dirty" in the context of * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages. * * Note that balance_dirty_pages() will only seriously take it as a hard limit * when sleeping max_pause per page is not enough to keep the dirty pages under * control. For example, when the device is completely stalled due to some error * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. * In the other normal situations, it acts more gently by throttling the tasks * more (rather than completely block them) when the bdi dirty pages go high. * * It allocates high/low dirty limits to fast/slow devices, in order to prevent * - starving fast devices * - piling up dirty pages (that will take long time to sync) on slow devices * * The bdi's share of dirty limit will be adapting to its throughput and * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. */ unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty) { u64 bdi_dirty; long numerator, denominator; /* * Calculate this BDI's share of the dirty ratio. */ bdi_writeout_fraction(bdi, &numerator, &denominator); bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100; bdi_dirty *= numerator; do_div(bdi_dirty, denominator); bdi_dirty += (dirty * bdi->min_ratio) / 100; if (bdi_dirty > (dirty * bdi->max_ratio) / 100) bdi_dirty = dirty * bdi->max_ratio / 100; return bdi_dirty; } /* * setpoint - dirty 3 * f(dirty) := 1.0 + (----------------) * limit - setpoint * * it's a 3rd order polynomial that subjects to * * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast * (2) f(setpoint) = 1.0 => the balance point * (3) f(limit) = 0 => the hard limit * (4) df/dx <= 0 => negative feedback control * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) * => fast response on large errors; small oscillation near setpoint */ static inline long long pos_ratio_polynom(unsigned long setpoint, unsigned long dirty, unsigned long limit) { long long pos_ratio; long x; x = div_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, limit - setpoint + 1); pos_ratio = x; pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; pos_ratio += 1 << RATELIMIT_CALC_SHIFT; return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); } /* * Dirty position control. * * (o) global/bdi setpoints * * We want the dirty pages be balanced around the global/bdi setpoints. * When the number of dirty pages is higher/lower than the setpoint, the * dirty position control ratio (and hence task dirty ratelimit) will be * decreased/increased to bring the dirty pages back to the setpoint. * * pos_ratio = 1 << RATELIMIT_CALC_SHIFT * * if (dirty < setpoint) scale up pos_ratio * if (dirty > setpoint) scale down pos_ratio * * if (bdi_dirty < bdi_setpoint) scale up pos_ratio * if (bdi_dirty > bdi_setpoint) scale down pos_ratio * * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT * * (o) global control line * * ^ pos_ratio * | * | |<===== global dirty control scope ======>| * 2.0 .............* * | .* * | . * * | . * * | . * * | . * * | . * * 1.0 ................................* * | . . * * | . . * * | . . * * | . . * * | . . * * 0 +------------.------------------.----------------------*-------------> * freerun^ setpoint^ limit^ dirty pages * * (o) bdi control line * * ^ pos_ratio * | * | * * | * * | * * | * * | * |<=========== span ============>| * 1.0 .......................* * | . * * | . * * | . * * | . * * | . * * | . * * | . * * | . * * | . * * | . * * | . * * 1/4 ...............................................* * * * * * * * * * * * * | . . * | . . * | . . * 0 +----------------------.-------------------------------.-------------> * bdi_setpoint^ x_intercept^ * * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can * be smoothly throttled down to normal if it starts high in situations like * - start writing to a slow SD card and a fast disk at the same time. The SD * card's bdi_dirty may rush to many times higher than bdi_setpoint. * - the bdi dirty thresh drops quickly due to change of JBOD workload */ static unsigned long bdi_position_ratio(struct backing_dev_info *bdi, unsigned long thresh, unsigned long bg_thresh, unsigned long dirty, unsigned long bdi_thresh, unsigned long bdi_dirty) { unsigned long write_bw = bdi->avg_write_bandwidth; unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh); unsigned long limit = hard_dirty_limit(thresh); unsigned long x_intercept; unsigned long setpoint; /* dirty pages' target balance point */ unsigned long bdi_setpoint; unsigned long span; long long pos_ratio; /* for scaling up/down the rate limit */ long x; if (unlikely(dirty >= limit)) return 0; /* * global setpoint * * See comment for pos_ratio_polynom(). */ setpoint = (freerun + limit) / 2; pos_ratio = pos_ratio_polynom(setpoint, dirty, limit); /* * The strictlimit feature is a tool preventing mistrusted filesystems * from growing a large number of dirty pages before throttling. For * such filesystems balance_dirty_pages always checks bdi counters * against bdi limits. Even if global "nr_dirty" is under "freerun". * This is especially important for fuse which sets bdi->max_ratio to * 1% by default. Without strictlimit feature, fuse writeback may * consume arbitrary amount of RAM because it is accounted in * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". * * Here, in bdi_position_ratio(), we calculate pos_ratio based on * two values: bdi_dirty and bdi_thresh. Let's consider an example: * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global * limits are set by default to 10% and 20% (background and throttle). * Then bdi_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. * bdi_dirty_limit(bdi, bg_thresh) is about ~4K pages. bdi_setpoint is * about ~6K pages (as the average of background and throttle bdi * limits). The 3rd order polynomial will provide positive feedback if * bdi_dirty is under bdi_setpoint and vice versa. * * Note, that we cannot use global counters in these calculations * because we want to throttle process writing to a strictlimit BDI * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB * in the example above). */ if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) { long long bdi_pos_ratio; unsigned long bdi_bg_thresh; if (bdi_dirty < 8) return min_t(long long, pos_ratio * 2, 2 << RATELIMIT_CALC_SHIFT); if (bdi_dirty >= bdi_thresh) return 0; bdi_bg_thresh = div_u64((u64)bdi_thresh * bg_thresh, thresh); bdi_setpoint = dirty_freerun_ceiling(bdi_thresh, bdi_bg_thresh); if (bdi_setpoint == 0 || bdi_setpoint == bdi_thresh) return 0; bdi_pos_ratio = pos_ratio_polynom(bdi_setpoint, bdi_dirty, bdi_thresh); /* * Typically, for strictlimit case, bdi_setpoint << setpoint * and pos_ratio >> bdi_pos_ratio. In the other words global * state ("dirty") is not limiting factor and we have to * make decision based on bdi counters. But there is an * important case when global pos_ratio should get precedence: * global limits are exceeded (e.g. due to activities on other * BDIs) while given strictlimit BDI is below limit. * * "pos_ratio * bdi_pos_ratio" would work for the case above, * but it would look too non-natural for the case of all * activity in the system coming from a single strictlimit BDI * with bdi->max_ratio == 100%. * * Note that min() below somewhat changes the dynamics of the * control system. Normally, pos_ratio value can be well over 3 * (when globally we are at freerun and bdi is well below bdi * setpoint). Now the maximum pos_ratio in the same situation * is 2. We might want to tweak this if we observe the control * system is too slow to adapt. */ return min(pos_ratio, bdi_pos_ratio); } /* * We have computed basic pos_ratio above based on global situation. If * the bdi is over/under its share of dirty pages, we want to scale * pos_ratio further down/up. That is done by the following mechanism. */ /* * bdi setpoint * * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint) * * x_intercept - bdi_dirty * := -------------------------- * x_intercept - bdi_setpoint * * The main bdi control line is a linear function that subjects to * * (1) f(bdi_setpoint) = 1.0 * (2) k = - 1 / (8 * write_bw) (in single bdi case) * or equally: x_intercept = bdi_setpoint + 8 * write_bw * * For single bdi case, the dirty pages are observed to fluctuate * regularly within range * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2] * for various filesystems, where (2) can yield in a reasonable 12.5% * fluctuation range for pos_ratio. * * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its * own size, so move the slope over accordingly and choose a slope that * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh. */ if (unlikely(bdi_thresh > thresh)) bdi_thresh = thresh; /* * It's very possible that bdi_thresh is close to 0 not because the * device is slow, but that it has remained inactive for long time. * Honour such devices a reasonable good (hopefully IO efficient) * threshold, so that the occasional writes won't be blocked and active * writes can rampup the threshold quickly. */ bdi_thresh = max(bdi_thresh, (limit - dirty) / 8); /* * scale global setpoint to bdi's: * bdi_setpoint = setpoint * bdi_thresh / thresh */ x = div_u64((u64)bdi_thresh << 16, thresh + 1); bdi_setpoint = setpoint * (u64)x >> 16; /* * Use span=(8*write_bw) in single bdi case as indicated by * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case. * * bdi_thresh thresh - bdi_thresh * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh * thresh thresh */ span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16; x_intercept = bdi_setpoint + span; if (bdi_dirty < x_intercept - span / 4) { pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty), x_intercept - bdi_setpoint + 1); } else pos_ratio /= 4; /* * bdi reserve area, safeguard against dirty pool underrun and disk idle * It may push the desired control point of global dirty pages higher * than setpoint. */ x_intercept = bdi_thresh / 2; if (bdi_dirty < x_intercept) { if (bdi_dirty > x_intercept / 8) pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty); else pos_ratio *= 8; } return pos_ratio; } static void bdi_update_write_bandwidth(struct backing_dev_info *bdi, unsigned long elapsed, unsigned long written) { const unsigned long period = roundup_pow_of_two(3 * HZ); unsigned long avg = bdi->avg_write_bandwidth; unsigned long old = bdi->write_bandwidth; u64 bw; /* * bw = written * HZ / elapsed * * bw * elapsed + write_bandwidth * (period - elapsed) * write_bandwidth = --------------------------------------------------- * period */ bw = written - bdi->written_stamp; bw *= HZ; if (unlikely(elapsed > period)) { do_div(bw, elapsed); avg = bw; goto out; } bw += (u64)bdi->write_bandwidth * (period - elapsed); bw >>= ilog2(period); /* * one more level of smoothing, for filtering out sudden spikes */ if (avg > old && old >= (unsigned long)bw) avg -= (avg - old) >> 3; if (avg < old && old <= (unsigned long)bw) avg += (old - avg) >> 3; out: bdi->write_bandwidth = bw; bdi->avg_write_bandwidth = avg; } /* * The global dirtyable memory and dirty threshold could be suddenly knocked * down by a large amount (eg. on the startup of KVM in a swapless system). * This may throw the system into deep dirty exceeded state and throttle * heavy/light dirtiers alike. To retain good responsiveness, maintain * global_dirty_limit for tracking slowly down to the knocked down dirty * threshold. */ static void update_dirty_limit(unsigned long thresh, unsigned long dirty) { unsigned long limit = global_dirty_limit; /* * Follow up in one step. */ if (limit < thresh) { limit = thresh; goto update; } /* * Follow down slowly. Use the higher one as the target, because thresh * may drop below dirty. This is exactly the reason to introduce * global_dirty_limit which is guaranteed to lie above the dirty pages. */ thresh = max(thresh, dirty); if (limit > thresh) { limit -= (limit - thresh) >> 5; goto update; } return; update: global_dirty_limit = limit; } static void global_update_bandwidth(unsigned long thresh, unsigned long dirty, unsigned long now) { static DEFINE_SPINLOCK(dirty_lock); static unsigned long update_time; /* * check locklessly first to optimize away locking for the most time */ if (time_before(now, update_time + BANDWIDTH_INTERVAL)) return; spin_lock(&dirty_lock); if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) { update_dirty_limit(thresh, dirty); update_time = now; } spin_unlock(&dirty_lock); } /* * Maintain bdi->dirty_ratelimit, the base dirty throttle rate. * * Normal bdi tasks will be curbed at or below it in long term. * Obviously it should be around (write_bw / N) when there are N dd tasks. */ static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi, unsigned long thresh, unsigned long bg_thresh, unsigned long dirty, unsigned long bdi_thresh, unsigned long bdi_dirty, unsigned long dirtied, unsigned long elapsed) { unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh); unsigned long limit = hard_dirty_limit(thresh); unsigned long setpoint = (freerun + limit) / 2; unsigned long write_bw = bdi->avg_write_bandwidth; unsigned long dirty_ratelimit = bdi->dirty_ratelimit; unsigned long dirty_rate; unsigned long task_ratelimit; unsigned long balanced_dirty_ratelimit; unsigned long pos_ratio; unsigned long step; unsigned long x; /* * The dirty rate will match the writeout rate in long term, except * when dirty pages are truncated by userspace or re-dirtied by FS. */ dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed; pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty, bdi_thresh, bdi_dirty); /* * task_ratelimit reflects each dd's dirty rate for the past 200ms. */ task_ratelimit = (u64)dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT; task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ /* * A linear estimation of the "balanced" throttle rate. The theory is, * if there are N dd tasks, each throttled at task_ratelimit, the bdi's * dirty_rate will be measured to be (N * task_ratelimit). So the below * formula will yield the balanced rate limit (write_bw / N). * * Note that the expanded form is not a pure rate feedback: * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) * but also takes pos_ratio into account: * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) * * (1) is not realistic because pos_ratio also takes part in balancing * the dirty rate. Consider the state * pos_ratio = 0.5 (3) * rate = 2 * (write_bw / N) (4) * If (1) is used, it will stuck in that state! Because each dd will * be throttled at * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) * yielding * dirty_rate = N * task_ratelimit = write_bw (6) * put (6) into (1) we get * rate_(i+1) = rate_(i) (7) * * So we end up using (2) to always keep * rate_(i+1) ~= (write_bw / N) (8) * regardless of the value of pos_ratio. As long as (8) is satisfied, * pos_ratio is able to drive itself to 1.0, which is not only where * the dirty count meet the setpoint, but also where the slope of * pos_ratio is most flat and hence task_ratelimit is least fluctuated. */ balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, dirty_rate | 1); /* * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw */ if (unlikely(balanced_dirty_ratelimit > write_bw)) balanced_dirty_ratelimit = write_bw; /* * We could safely do this and return immediately: * * bdi->dirty_ratelimit = balanced_dirty_ratelimit; * * However to get a more stable dirty_ratelimit, the below elaborated * code makes use of task_ratelimit to filter out singular points and * limit the step size. * * The below code essentially only uses the relative value of * * task_ratelimit - dirty_ratelimit * = (pos_ratio - 1) * dirty_ratelimit * * which reflects the direction and size of dirty position error. */ /* * dirty_ratelimit will follow balanced_dirty_ratelimit iff * task_ratelimit is on the same side of dirty_ratelimit, too. * For example, when * - dirty_ratelimit > balanced_dirty_ratelimit * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) * lowering dirty_ratelimit will help meet both the position and rate * control targets. Otherwise, don't update dirty_ratelimit if it will * only help meet the rate target. After all, what the users ultimately * feel and care are stable dirty rate and small position error. * * |task_ratelimit - dirty_ratelimit| is used to limit the step size * and filter out the singular points of balanced_dirty_ratelimit. Which * keeps jumping around randomly and can even leap far away at times * due to the small 200ms estimation period of dirty_rate (we want to * keep that period small to reduce time lags). */ step = 0; /* * For strictlimit case, calculations above were based on bdi counters * and limits (starting from pos_ratio = bdi_position_ratio() and up to * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). * Hence, to calculate "step" properly, we have to use bdi_dirty as * "dirty" and bdi_setpoint as "setpoint". * * We rampup dirty_ratelimit forcibly if bdi_dirty is low because * it's possible that bdi_thresh is close to zero due to inactivity * of backing device (see the implementation of bdi_dirty_limit()). */ if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) { dirty = bdi_dirty; if (bdi_dirty < 8) setpoint = bdi_dirty + 1; else setpoint = (bdi_thresh + bdi_dirty_limit(bdi, bg_thresh)) / 2; } if (dirty < setpoint) { x = min(bdi->balanced_dirty_ratelimit, min(balanced_dirty_ratelimit, task_ratelimit)); if (dirty_ratelimit < x) step = x - dirty_ratelimit; } else { x = max(bdi->balanced_dirty_ratelimit, max(balanced_dirty_ratelimit, task_ratelimit)); if (dirty_ratelimit > x) step = dirty_ratelimit - x; } /* * Don't pursue 100% rate matching. It's impossible since the balanced * rate itself is constantly fluctuating. So decrease the track speed * when it gets close to the target. Helps eliminate pointless tremors. */ step >>= dirty_ratelimit / (2 * step + 1); /* * Limit the tracking speed to avoid overshooting. */ step = (step + 7) / 8; if (dirty_ratelimit < balanced_dirty_ratelimit) dirty_ratelimit += step; else dirty_ratelimit -= step; bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL); bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit; trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit); } void __bdi_update_bandwidth(struct backing_dev_info *bdi, unsigned long thresh, unsigned long bg_thresh, unsigned long dirty, unsigned long bdi_thresh, unsigned long bdi_dirty, unsigned long start_time) { unsigned long now = jiffies; unsigned long elapsed = now - bdi->bw_time_stamp; unsigned long dirtied; unsigned long written; /* * rate-limit, only update once every 200ms. */ if (elapsed < BANDWIDTH_INTERVAL) return; dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]); written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]); /* * Skip quiet periods when disk bandwidth is under-utilized. * (at least 1s idle time between two flusher runs) */ if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time)) goto snapshot; if (thresh) { global_update_bandwidth(thresh, dirty, now); bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty, bdi_thresh, bdi_dirty, dirtied, elapsed); } bdi_update_write_bandwidth(bdi, elapsed, written); snapshot: bdi->dirtied_stamp = dirtied; bdi->written_stamp = written; bdi->bw_time_stamp = now; } static void bdi_update_bandwidth(struct backing_dev_info *bdi, unsigned long thresh, unsigned long bg_thresh, unsigned long dirty, unsigned long bdi_thresh, unsigned long bdi_dirty, unsigned long start_time) { if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL)) return; spin_lock(&bdi->wb.list_lock); __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty, bdi_thresh, bdi_dirty, start_time); spin_unlock(&bdi->wb.list_lock); } /* * After a task dirtied this many pages, balance_dirty_pages_ratelimited() * will look to see if it needs to start dirty throttling. * * If dirty_poll_interval is too low, big NUMA machines will call the expensive * global_page_state() too often. So scale it near-sqrt to the safety margin * (the number of pages we may dirty without exceeding the dirty limits). */ static unsigned long dirty_poll_interval(unsigned long dirty, unsigned long thresh) { if (thresh > dirty) return 1UL << (ilog2(thresh - dirty) >> 1); return 1; } static unsigned long bdi_max_pause(struct backing_dev_info *bdi, unsigned long bdi_dirty) { unsigned long bw = bdi->avg_write_bandwidth; unsigned long t; /* * Limit pause time for small memory systems. If sleeping for too long * time, a small pool of dirty/writeback pages may go empty and disk go * idle. * * 8 serves as the safety ratio. */ t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); t++; return min_t(unsigned long, t, MAX_PAUSE); } static long bdi_min_pause(struct backing_dev_info *bdi, long max_pause, unsigned long task_ratelimit, unsigned long dirty_ratelimit, int *nr_dirtied_pause) { long hi = ilog2(bdi->avg_write_bandwidth); long lo = ilog2(bdi->dirty_ratelimit); long t; /* target pause */ long pause; /* estimated next pause */ int pages; /* target nr_dirtied_pause */ /* target for 10ms pause on 1-dd case */ t = max(1, HZ / 100); /* * Scale up pause time for concurrent dirtiers in order to reduce CPU * overheads. * * (N * 10ms) on 2^N concurrent tasks. */ if (hi > lo) t += (hi - lo) * (10 * HZ) / 1024; /* * This is a bit convoluted. We try to base the next nr_dirtied_pause * on the much more stable dirty_ratelimit. However the next pause time * will be computed based on task_ratelimit and the two rate limits may * depart considerably at some time. Especially if task_ratelimit goes * below dirty_ratelimit/2 and the target pause is max_pause, the next * pause time will be max_pause*2 _trimmed down_ to max_pause. As a * result task_ratelimit won't be executed faithfully, which could * eventually bring down dirty_ratelimit. * * We apply two rules to fix it up: * 1) try to estimate the next pause time and if necessary, use a lower * nr_dirtied_pause so as not to exceed max_pause. When this happens, * nr_dirtied_pause will be "dancing" with task_ratelimit. * 2) limit the target pause time to max_pause/2, so that the normal * small fluctuations of task_ratelimit won't trigger rule (1) and * nr_dirtied_pause will remain as stable as dirty_ratelimit. */ t = min(t, 1 + max_pause / 2); pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); /* * Tiny nr_dirtied_pause is found to hurt I/O performance in the test * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. * When the 16 consecutive reads are often interrupted by some dirty * throttling pause during the async writes, cfq will go into idles * (deadline is fine). So push nr_dirtied_pause as high as possible * until reaches DIRTY_POLL_THRESH=32 pages. */ if (pages < DIRTY_POLL_THRESH) { t = max_pause; pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); if (pages > DIRTY_POLL_THRESH) { pages = DIRTY_POLL_THRESH; t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; } } pause = HZ * pages / (task_ratelimit + 1); if (pause > max_pause) { t = max_pause; pages = task_ratelimit * t / roundup_pow_of_two(HZ); } *nr_dirtied_pause = pages; /* * The minimal pause time will normally be half the target pause time. */ return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; } static inline void bdi_dirty_limits(struct backing_dev_info *bdi, unsigned long dirty_thresh, unsigned long background_thresh, unsigned long *bdi_dirty, unsigned long *bdi_thresh, unsigned long *bdi_bg_thresh) { unsigned long bdi_reclaimable; /* * bdi_thresh is not treated as some limiting factor as * dirty_thresh, due to reasons * - in JBOD setup, bdi_thresh can fluctuate a lot * - in a system with HDD and USB key, the USB key may somehow * go into state (bdi_dirty >> bdi_thresh) either because * bdi_dirty starts high, or because bdi_thresh drops low. * In this case we don't want to hard throttle the USB key * dirtiers for 100 seconds until bdi_dirty drops under * bdi_thresh. Instead the auxiliary bdi control line in * bdi_position_ratio() will let the dirtier task progress * at some rate <= (write_bw / 2) for bringing down bdi_dirty. */ *bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh); if (bdi_bg_thresh) *bdi_bg_thresh = div_u64((u64)*bdi_thresh * background_thresh, dirty_thresh); /* * In order to avoid the stacked BDI deadlock we need * to ensure we accurately count the 'dirty' pages when * the threshold is low. * * Otherwise it would be possible to get thresh+n pages * reported dirty, even though there are thresh-m pages * actually dirty; with m+n sitting in the percpu * deltas. */ if (*bdi_thresh < 2 * bdi_stat_error(bdi)) { bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); *bdi_dirty = bdi_reclaimable + bdi_stat_sum(bdi, BDI_WRITEBACK); } else { bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); *bdi_dirty = bdi_reclaimable + bdi_stat(bdi, BDI_WRITEBACK); } } /* * balance_dirty_pages() must be called by processes which are generating dirty * data. It looks at the number of dirty pages in the machine and will force * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. * If we're over `background_thresh' then the writeback threads are woken to * perform some writeout. */ static void balance_dirty_pages(struct address_space *mapping, unsigned long pages_dirtied) { unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */ unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */ unsigned long background_thresh; unsigned long dirty_thresh; long period; long pause; long max_pause; long min_pause; int nr_dirtied_pause; bool dirty_exceeded = false; unsigned long task_ratelimit; unsigned long dirty_ratelimit; unsigned long pos_ratio; struct backing_dev_info *bdi = mapping->backing_dev_info; bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; unsigned long start_time = jiffies; for (;;) { unsigned long now = jiffies; unsigned long uninitialized_var(bdi_thresh); unsigned long thresh; unsigned long uninitialized_var(bdi_dirty); unsigned long dirty; unsigned long bg_thresh; /* * Unstable writes are a feature of certain networked * filesystems (i.e. NFS) in which data may have been * written to the server's write cache, but has not yet * been flushed to permanent storage. */ nr_reclaimable = global_page_state(NR_FILE_DIRTY) + global_page_state(NR_UNSTABLE_NFS); nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK); global_dirty_limits(&background_thresh, &dirty_thresh); if (unlikely(strictlimit)) { bdi_dirty_limits(bdi, dirty_thresh, background_thresh, &bdi_dirty, &bdi_thresh, &bg_thresh); dirty = bdi_dirty; thresh = bdi_thresh; } else { dirty = nr_dirty; thresh = dirty_thresh; bg_thresh = background_thresh; } /* * Throttle it only when the background writeback cannot * catch-up. This avoids (excessively) small writeouts * when the bdi limits are ramping up in case of !strictlimit. * * In strictlimit case make decision based on the bdi counters * and limits. Small writeouts when the bdi limits are ramping * up are the price we consciously pay for strictlimit-ing. */ if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) { current->dirty_paused_when = now; current->nr_dirtied = 0; current->nr_dirtied_pause = dirty_poll_interval(dirty, thresh); break; } if (unlikely(!writeback_in_progress(bdi))) bdi_start_background_writeback(bdi); if (!strictlimit) bdi_dirty_limits(bdi, dirty_thresh, background_thresh, &bdi_dirty, &bdi_thresh, NULL); dirty_exceeded = (bdi_dirty > bdi_thresh) && ((nr_dirty > dirty_thresh) || strictlimit); if (dirty_exceeded && !bdi->dirty_exceeded) bdi->dirty_exceeded = 1; bdi_update_bandwidth(bdi, dirty_thresh, background_thresh, nr_dirty, bdi_thresh, bdi_dirty, start_time); dirty_ratelimit = bdi->dirty_ratelimit; pos_ratio = bdi_position_ratio(bdi, dirty_thresh, background_thresh, nr_dirty, bdi_thresh, bdi_dirty); task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >> RATELIMIT_CALC_SHIFT; max_pause = bdi_max_pause(bdi, bdi_dirty); min_pause = bdi_min_pause(bdi, max_pause, task_ratelimit, dirty_ratelimit, &nr_dirtied_pause); if (unlikely(task_ratelimit == 0)) { period = max_pause; pause = max_pause; goto pause; } period = HZ * pages_dirtied / task_ratelimit; pause = period; if (current->dirty_paused_when) pause -= now - current->dirty_paused_when; /* * For less than 1s think time (ext3/4 may block the dirtier * for up to 800ms from time to time on 1-HDD; so does xfs, * however at much less frequency), try to compensate it in * future periods by updating the virtual time; otherwise just * do a reset, as it may be a light dirtier. */ if (pause < min_pause) { trace_balance_dirty_pages(bdi, dirty_thresh, background_thresh, nr_dirty, bdi_thresh, bdi_dirty, dirty_ratelimit, task_ratelimit, pages_dirtied, period, min(pause, 0L), start_time); if (pause < -HZ) { current->dirty_paused_when = now; current->nr_dirtied = 0; } else if (period) { current->dirty_paused_when += period; current->nr_dirtied = 0; } else if (current->nr_dirtied_pause <= pages_dirtied) current->nr_dirtied_pause += pages_dirtied; break; } if (unlikely(pause > max_pause)) { /* for occasional dropped task_ratelimit */ now += min(pause - max_pause, max_pause); pause = max_pause; } pause: trace_balance_dirty_pages(bdi, dirty_thresh, background_thresh, nr_dirty, bdi_thresh, bdi_dirty, dirty_ratelimit, task_ratelimit, pages_dirtied, period, pause, start_time); __set_current_state(TASK_KILLABLE); io_schedule_timeout(pause); current->dirty_paused_when = now + pause; current->nr_dirtied = 0; current->nr_dirtied_pause = nr_dirtied_pause; /* * This is typically equal to (nr_dirty < dirty_thresh) and can * also keep "1000+ dd on a slow USB stick" under control. */ if (task_ratelimit) break; /* * In the case of an unresponding NFS server and the NFS dirty * pages exceeds dirty_thresh, give the other good bdi's a pipe * to go through, so that tasks on them still remain responsive. * * In theory 1 page is enough to keep the comsumer-producer * pipe going: the flusher cleans 1 page => the task dirties 1 * more page. However bdi_dirty has accounting errors. So use * the larger and more IO friendly bdi_stat_error. */ if (bdi_dirty <= bdi_stat_error(bdi)) break; if (fatal_signal_pending(current)) break; } if (!dirty_exceeded && bdi->dirty_exceeded) bdi->dirty_exceeded = 0; if (writeback_in_progress(bdi)) return; /* * In laptop mode, we wait until hitting the higher threshold before * starting background writeout, and then write out all the way down * to the lower threshold. So slow writers cause minimal disk activity. * * In normal mode, we start background writeout at the lower * background_thresh, to keep the amount of dirty memory low. */ if (laptop_mode) return; if (nr_reclaimable > background_thresh) bdi_start_background_writeback(bdi); } void set_page_dirty_balance(struct page *page, int page_mkwrite) { if (set_page_dirty(page) || page_mkwrite) { struct address_space *mapping = page_mapping(page); if (mapping) balance_dirty_pages_ratelimited(mapping); } } static DEFINE_PER_CPU(int, bdp_ratelimits); /* * Normal tasks are throttled by * loop { * dirty tsk->nr_dirtied_pause pages; * take a snap in balance_dirty_pages(); * } * However there is a worst case. If every task exit immediately when dirtied * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be * called to throttle the page dirties. The solution is to save the not yet * throttled page dirties in dirty_throttle_leaks on task exit and charge them * randomly into the running tasks. This works well for the above worst case, * as the new task will pick up and accumulate the old task's leaked dirty * count and eventually get throttled. */ DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; /** * balance_dirty_pages_ratelimited - balance dirty memory state * @mapping: address_space which was dirtied * * Processes which are dirtying memory should call in here once for each page * which was newly dirtied. The function will periodically check the system's * dirty state and will initiate writeback if needed. * * On really big machines, get_writeback_state is expensive, so try to avoid * calling it too often (ratelimiting). But once we're over the dirty memory * limit we decrease the ratelimiting by a lot, to prevent individual processes * from overshooting the limit by (ratelimit_pages) each. */ void balance_dirty_pages_ratelimited(struct address_space *mapping) { struct backing_dev_info *bdi = mapping->backing_dev_info; int ratelimit; int *p; if (!bdi_cap_account_dirty(bdi)) return; ratelimit = current->nr_dirtied_pause; if (bdi->dirty_exceeded) ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); preempt_disable(); /* * This prevents one CPU to accumulate too many dirtied pages without * calling into balance_dirty_pages(), which can happen when there are * 1000+ tasks, all of them start dirtying pages at exactly the same * time, hence all honoured too large initial task->nr_dirtied_pause. */ p = &__get_cpu_var(bdp_ratelimits); if (unlikely(current->nr_dirtied >= ratelimit)) *p = 0; else if (unlikely(*p >= ratelimit_pages)) { *p = 0; ratelimit = 0; } /* * Pick up the dirtied pages by the exited tasks. This avoids lots of * short-lived tasks (eg. gcc invocations in a kernel build) escaping * the dirty throttling and livelock other long-run dirtiers. */ p = &__get_cpu_var(dirty_throttle_leaks); if (*p > 0 && current->nr_dirtied < ratelimit) { unsigned long nr_pages_dirtied; nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); *p -= nr_pages_dirtied; current->nr_dirtied += nr_pages_dirtied; } preempt_enable(); if (unlikely(current->nr_dirtied >= ratelimit)) balance_dirty_pages(mapping, current->nr_dirtied); } EXPORT_SYMBOL(balance_dirty_pages_ratelimited); void throttle_vm_writeout(gfp_t gfp_mask) { unsigned long background_thresh; unsigned long dirty_thresh; for ( ; ; ) { global_dirty_limits(&background_thresh, &dirty_thresh); dirty_thresh = hard_dirty_limit(dirty_thresh); /* * Boost the allowable dirty threshold a bit for page * allocators so they don't get DoS'ed by heavy writers */ dirty_thresh += dirty_thresh / 10; /* wheeee... */ if (global_page_state(NR_UNSTABLE_NFS) + global_page_state(NR_WRITEBACK) <= dirty_thresh) break; congestion_wait(BLK_RW_ASYNC, HZ/10); /* * The caller might hold locks which can prevent IO completion * or progress in the filesystem. So we cannot just sit here * waiting for IO to complete. */ if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) break; } } /* * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs */ int dirty_writeback_centisecs_handler(ctl_table *table, int write, void __user *buffer, size_t *length, loff_t *ppos) { proc_dointvec(table, write, buffer, length, ppos); return 0; } #ifdef CONFIG_BLOCK void laptop_mode_timer_fn(unsigned long data) { struct request_queue *q = (struct request_queue *)data; int nr_pages = global_page_state(NR_FILE_DIRTY) + global_page_state(NR_UNSTABLE_NFS); /* * We want to write everything out, not just down to the dirty * threshold */ if (bdi_has_dirty_io(&q->backing_dev_info)) bdi_start_writeback(&q->backing_dev_info, nr_pages, WB_REASON_LAPTOP_TIMER); } /* * We've spun up the disk and we're in laptop mode: schedule writeback * of all dirty data a few seconds from now. If the flush is already scheduled * then push it back - the user is still using the disk. */ void laptop_io_completion(struct backing_dev_info *info) { mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); } /* * We're in laptop mode and we've just synced. The sync's writes will have * caused another writeback to be scheduled by laptop_io_completion. * Nothing needs to be written back anymore, so we unschedule the writeback. */ void laptop_sync_completion(void) { struct backing_dev_info *bdi; rcu_read_lock(); list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) del_timer(&bdi->laptop_mode_wb_timer); rcu_read_unlock(); } #endif /* * If ratelimit_pages is too high then we can get into dirty-data overload * if a large number of processes all perform writes at the same time. * If it is too low then SMP machines will call the (expensive) * get_writeback_state too often. * * Here we set ratelimit_pages to a level which ensures that when all CPUs are * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory * thresholds. */ void writeback_set_ratelimit(void) { unsigned long background_thresh; unsigned long dirty_thresh; global_dirty_limits(&background_thresh, &dirty_thresh); global_dirty_limit = dirty_thresh; ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); if (ratelimit_pages < 16) ratelimit_pages = 16; } static int ratelimit_handler(struct notifier_block *self, unsigned long action, void *hcpu) { switch (action & ~CPU_TASKS_FROZEN) { case CPU_ONLINE: case CPU_DEAD: writeback_set_ratelimit(); return NOTIFY_OK; default: return NOTIFY_DONE; } } static struct notifier_block ratelimit_nb = { .notifier_call = ratelimit_handler, .next = NULL, }; /* * Called early on to tune the page writeback dirty limits. * * We used to scale dirty pages according to how total memory * related to pages that could be allocated for buffers (by * comparing nr_free_buffer_pages() to vm_total_pages. * * However, that was when we used "dirty_ratio" to scale with * all memory, and we don't do that any more. "dirty_ratio" * is now applied to total non-HIGHPAGE memory (by subtracting * totalhigh_pages from vm_total_pages), and as such we can't * get into the old insane situation any more where we had * large amounts of dirty pages compared to a small amount of * non-HIGHMEM memory. * * But we might still want to scale the dirty_ratio by how * much memory the box has.. */ void __init page_writeback_init(void) { writeback_set_ratelimit(); register_cpu_notifier(&ratelimit_nb); fprop_global_init(&writeout_completions); } /** * tag_pages_for_writeback - tag pages to be written by write_cache_pages * @mapping: address space structure to write * @start: starting page index * @end: ending page index (inclusive) * * This function scans the page range from @start to @end (inclusive) and tags * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is * that write_cache_pages (or whoever calls this function) will then use * TOWRITE tag to identify pages eligible for writeback. This mechanism is * used to avoid livelocking of writeback by a process steadily creating new * dirty pages in the file (thus it is important for this function to be quick * so that it can tag pages faster than a dirtying process can create them). */ /* * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency. */ void tag_pages_for_writeback(struct address_space *mapping, pgoff_t start, pgoff_t end) { #define WRITEBACK_TAG_BATCH 4096 unsigned long tagged; do { spin_lock_irq(&mapping->tree_lock); tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree, &start, end, WRITEBACK_TAG_BATCH, PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE); spin_unlock_irq(&mapping->tree_lock); WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH); cond_resched(); /* We check 'start' to handle wrapping when end == ~0UL */ } while (tagged >= WRITEBACK_TAG_BATCH && start); } EXPORT_SYMBOL(tag_pages_for_writeback); /** * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. * @mapping: address space structure to write * @wbc: subtract the number of written pages from *@wbc->nr_to_write * @writepage: function called for each page * @data: data passed to writepage function * * If a page is already under I/O, write_cache_pages() skips it, even * if it's dirty. This is desirable behaviour for memory-cleaning writeback, * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() * and msync() need to guarantee that all the data which was dirty at the time * the call was made get new I/O started against them. If wbc->sync_mode is * WB_SYNC_ALL then we were called for data integrity and we must wait for * existing IO to complete. * * To avoid livelocks (when other process dirties new pages), we first tag * pages which should be written back with TOWRITE tag and only then start * writing them. For data-integrity sync we have to be careful so that we do * not miss some pages (e.g., because some other process has cleared TOWRITE * tag we set). The rule we follow is that TOWRITE tag can be cleared only * by the process clearing the DIRTY tag (and submitting the page for IO). */ int write_cache_pages(struct address_space *mapping, struct writeback_control *wbc, writepage_t writepage, void *data) { int ret = 0; int done = 0; struct pagevec pvec; int nr_pages; pgoff_t uninitialized_var(writeback_index); pgoff_t index; pgoff_t end; /* Inclusive */ pgoff_t done_index; int cycled; int range_whole = 0; int tag; pagevec_init(&pvec, 0); if (wbc->range_cyclic) { writeback_index = mapping->writeback_index; /* prev offset */ index = writeback_index; if (index == 0) cycled = 1; else cycled = 0; end = -1; } else { index = wbc->range_start >> PAGE_CACHE_SHIFT; end = wbc->range_end >> PAGE_CACHE_SHIFT; if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) range_whole = 1; cycled = 1; /* ignore range_cyclic tests */ } if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) tag = PAGECACHE_TAG_TOWRITE; else tag = PAGECACHE_TAG_DIRTY; retry: if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) tag_pages_for_writeback(mapping, index, end); done_index = index; while (!done && (index <= end)) { int i; nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); if (nr_pages == 0) break; for (i = 0; i < nr_pages; i++) { struct page *page = pvec.pages[i]; /* * At this point, the page may be truncated or * invalidated (changing page->mapping to NULL), or * even swizzled back from swapper_space to tmpfs file * mapping. However, page->index will not change * because we have a reference on the page. */ if (page->index > end) { /* * can't be range_cyclic (1st pass) because * end == -1 in that case. */ done = 1; break; } done_index = page->index; lock_page(page); /* * Page truncated or invalidated. We can freely skip it * then, even for data integrity operations: the page * has disappeared concurrently, so there could be no * real expectation of this data interity operation * even if there is now a new, dirty page at the same * pagecache address. */ if (unlikely(page->mapping != mapping)) { continue_unlock: unlock_page(page); continue; } if (!PageDirty(page)) { /* someone wrote it for us */ goto continue_unlock; } if (PageWriteback(page)) { if (wbc->sync_mode != WB_SYNC_NONE) wait_on_page_writeback(page); else goto continue_unlock; } BUG_ON(PageWriteback(page)); if (!clear_page_dirty_for_io(page)) goto continue_unlock; trace_wbc_writepage(wbc, mapping->backing_dev_info); ret = (*writepage)(page, wbc, data); if (unlikely(ret)) { if (ret == AOP_WRITEPAGE_ACTIVATE) { unlock_page(page); ret = 0; } else { /* * done_index is set past this page, * so media errors will not choke * background writeout for the entire * file. This has consequences for * range_cyclic semantics (ie. it may * not be suitable for data integrity * writeout). */ done_index = page->index + 1; done = 1; break; } } /* * We stop writing back only if we are not doing * integrity sync. In case of integrity sync we have to * keep going until we have written all the pages * we tagged for writeback prior to entering this loop. */ if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) { done = 1; break; } } pagevec_release(&pvec); cond_resched(); } if (!cycled && !done) { /* * range_cyclic: * We hit the last page and there is more work to be done: wrap * back to the start of the file */ cycled = 1; index = 0; end = writeback_index - 1; goto retry; } if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) mapping->writeback_index = done_index; return ret; } EXPORT_SYMBOL(write_cache_pages); /* * Function used by generic_writepages to call the real writepage * function and set the mapping flags on error */ static int __writepage(struct page *page, struct writeback_control *wbc, void *data) { struct address_space *mapping = data; int ret = mapping->a_ops->writepage(page, wbc); mapping_set_error(mapping, ret); return ret; } /** * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. * @mapping: address space structure to write * @wbc: subtract the number of written pages from *@wbc->nr_to_write * * This is a library function, which implements the writepages() * address_space_operation. */ int generic_writepages(struct address_space *mapping, struct writeback_control *wbc) { struct blk_plug plug; int ret; /* deal with chardevs and other special file */ if (!mapping->a_ops->writepage) return 0; blk_start_plug(&plug); ret = write_cache_pages(mapping, wbc, __writepage, mapping); blk_finish_plug(&plug); return ret; } EXPORT_SYMBOL(generic_writepages); int do_writepages(struct address_space *mapping, struct writeback_control *wbc) { int ret; if (wbc->nr_to_write <= 0) return 0; if (mapping->a_ops->writepages) ret = mapping->a_ops->writepages(mapping, wbc); else ret = generic_writepages(mapping, wbc); return ret; } /** * write_one_page - write out a single page and optionally wait on I/O * @page: the page to write * @wait: if true, wait on writeout * * The page must be locked by the caller and will be unlocked upon return. * * write_one_page() returns a negative error code if I/O failed. */ int write_one_page(struct page *page, int wait) { struct address_space *mapping = page->mapping; int ret = 0; struct writeback_control wbc = { .sync_mode = WB_SYNC_ALL, .nr_to_write = 1, }; BUG_ON(!PageLocked(page)); if (wait) wait_on_page_writeback(page); if (clear_page_dirty_for_io(page)) { page_cache_get(page); ret = mapping->a_ops->writepage(page, &wbc); if (ret == 0 && wait) { wait_on_page_writeback(page); if (PageError(page)) ret = -EIO; } page_cache_release(page); } else { unlock_page(page); } return ret; } EXPORT_SYMBOL(write_one_page); /* * For address_spaces which do not use buffers nor write back. */ int __set_page_dirty_no_writeback(struct page *page) { if (!PageDirty(page)) return !TestSetPageDirty(page); return 0; } /* * Helper function for set_page_dirty family. * NOTE: This relies on being atomic wrt interrupts. */ void account_page_dirtied(struct page *page, struct address_space *mapping) { trace_writeback_dirty_page(page, mapping); if (mapping_cap_account_dirty(mapping)) { __inc_zone_page_state(page, NR_FILE_DIRTY); __inc_zone_page_state(page, NR_DIRTIED); __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED); task_io_account_write(PAGE_CACHE_SIZE); current->nr_dirtied++; this_cpu_inc(bdp_ratelimits); } } EXPORT_SYMBOL(account_page_dirtied); /* * Helper function for set_page_writeback family. * * The caller must hold mem_cgroup_begin/end_update_page_stat() lock * while calling this function. * See test_set_page_writeback for example. * * NOTE: Unlike account_page_dirtied this does not rely on being atomic * wrt interrupts. */ void account_page_writeback(struct page *page) { mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK); inc_zone_page_state(page, NR_WRITEBACK); } EXPORT_SYMBOL(account_page_writeback); /* * For address_spaces which do not use buffers. Just tag the page as dirty in * its radix tree. * * This is also used when a single buffer is being dirtied: we want to set the * page dirty in that case, but not all the buffers. This is a "bottom-up" * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. * * Most callers have locked the page, which pins the address_space in memory. * But zap_pte_range() does not lock the page, however in that case the * mapping is pinned by the vma's ->vm_file reference. * * We take care to handle the case where the page was truncated from the * mapping by re-checking page_mapping() inside tree_lock. */ int __set_page_dirty_nobuffers(struct page *page) { if (!TestSetPageDirty(page)) { struct address_space *mapping = page_mapping(page); struct address_space *mapping2; unsigned long flags; if (!mapping) return 1; spin_lock_irqsave(&mapping->tree_lock, flags); mapping2 = page_mapping(page); if (mapping2) { /* Race with truncate? */ BUG_ON(mapping2 != mapping); WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); account_page_dirtied(page, mapping); radix_tree_tag_set(&mapping->page_tree, page_index(page), PAGECACHE_TAG_DIRTY); } spin_unlock_irqrestore(&mapping->tree_lock, flags); if (mapping->host) { /* !PageAnon && !swapper_space */ __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); } return 1; } return 0; } EXPORT_SYMBOL(__set_page_dirty_nobuffers); /* * Call this whenever redirtying a page, to de-account the dirty counters * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to * systematic errors in balanced_dirty_ratelimit and the dirty pages position * control. */ void account_page_redirty(struct page *page) { struct address_space *mapping = page->mapping; if (mapping && mapping_cap_account_dirty(mapping)) { current->nr_dirtied--; dec_zone_page_state(page, NR_DIRTIED); dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED); } } EXPORT_SYMBOL(account_page_redirty); /* * When a writepage implementation decides that it doesn't want to write this * page for some reason, it should redirty the locked page via * redirty_page_for_writepage() and it should then unlock the page and return 0 */ int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) { wbc->pages_skipped++; account_page_redirty(page); return __set_page_dirty_nobuffers(page); } EXPORT_SYMBOL(redirty_page_for_writepage); /* * Dirty a page. * * For pages with a mapping this should be done under the page lock * for the benefit of asynchronous memory errors who prefer a consistent * dirty state. This rule can be broken in some special cases, * but should be better not to. * * If the mapping doesn't provide a set_page_dirty a_op, then * just fall through and assume that it wants buffer_heads. */ int set_page_dirty(struct page *page) { struct address_space *mapping = page_mapping(page); if (likely(mapping)) { int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; /* * readahead/lru_deactivate_page could remain * PG_readahead/PG_reclaim due to race with end_page_writeback * About readahead, if the page is written, the flags would be * reset. So no problem. * About lru_deactivate_page, if the page is redirty, the flag * will be reset. So no problem. but if the page is used by readahead * it will confuse readahead and make it restart the size rampup * process. But it's a trivial problem. */ ClearPageReclaim(page); #ifdef CONFIG_BLOCK if (!spd) spd = __set_page_dirty_buffers; #endif return (*spd)(page); } if (!PageDirty(page)) { if (!TestSetPageDirty(page)) return 1; } return 0; } EXPORT_SYMBOL(set_page_dirty); /* * set_page_dirty() is racy if the caller has no reference against * page->mapping->host, and if the page is unlocked. This is because another * CPU could truncate the page off the mapping and then free the mapping. * * Usually, the page _is_ locked, or the caller is a user-space process which * holds a reference on the inode by having an open file. * * In other cases, the page should be locked before running set_page_dirty(). */ int set_page_dirty_lock(struct page *page) { int ret; lock_page(page); ret = set_page_dirty(page); unlock_page(page); return ret; } EXPORT_SYMBOL(set_page_dirty_lock); /* * Clear a page's dirty flag, while caring for dirty memory accounting. * Returns true if the page was previously dirty. * * This is for preparing to put the page under writeout. We leave the page * tagged as dirty in the radix tree so that a concurrent write-for-sync * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage * implementation will run either set_page_writeback() or set_page_dirty(), * at which stage we bring the page's dirty flag and radix-tree dirty tag * back into sync. * * This incoherency between the page's dirty flag and radix-tree tag is * unfortunate, but it only exists while the page is locked. */ int clear_page_dirty_for_io(struct page *page) { struct address_space *mapping = page_mapping(page); BUG_ON(!PageLocked(page)); if (mapping && mapping_cap_account_dirty(mapping)) { /* * Yes, Virginia, this is indeed insane. * * We use this sequence to make sure that * (a) we account for dirty stats properly * (b) we tell the low-level filesystem to * mark the whole page dirty if it was * dirty in a pagetable. Only to then * (c) clean the page again and return 1 to * cause the writeback. * * This way we avoid all nasty races with the * dirty bit in multiple places and clearing * them concurrently from different threads. * * Note! Normally the "set_page_dirty(page)" * has no effect on the actual dirty bit - since * that will already usually be set. But we * need the side effects, and it can help us * avoid races. * * We basically use the page "master dirty bit" * as a serialization point for all the different * threads doing their things. */ if (page_mkclean(page)) set_page_dirty(page); /* * We carefully synchronise fault handlers against * installing a dirty pte and marking the page dirty * at this point. We do this by having them hold the * page lock at some point after installing their * pte, but before marking the page dirty. * Pages are always locked coming in here, so we get * the desired exclusion. See mm/memory.c:do_wp_page() * for more comments. */ if (TestClearPageDirty(page)) { dec_zone_page_state(page, NR_FILE_DIRTY); dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); return 1; } return 0; } return TestClearPageDirty(page); } EXPORT_SYMBOL(clear_page_dirty_for_io); int test_clear_page_writeback(struct page *page) { struct address_space *mapping = page_mapping(page); int ret; bool locked; unsigned long memcg_flags; mem_cgroup_begin_update_page_stat(page, &locked, &memcg_flags); if (mapping) { struct backing_dev_info *bdi = mapping->backing_dev_info; unsigned long flags; spin_lock_irqsave(&mapping->tree_lock, flags); ret = TestClearPageWriteback(page); if (ret) { radix_tree_tag_clear(&mapping->page_tree, page_index(page), PAGECACHE_TAG_WRITEBACK); if (bdi_cap_account_writeback(bdi)) { __dec_bdi_stat(bdi, BDI_WRITEBACK); __bdi_writeout_inc(bdi); } } spin_unlock_irqrestore(&mapping->tree_lock, flags); } else { ret = TestClearPageWriteback(page); } if (ret) { mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK); dec_zone_page_state(page, NR_WRITEBACK); inc_zone_page_state(page, NR_WRITTEN); } mem_cgroup_end_update_page_stat(page, &locked, &memcg_flags); return ret; } int test_set_page_writeback(struct page *page) { struct address_space *mapping = page_mapping(page); int ret; bool locked; unsigned long memcg_flags; mem_cgroup_begin_update_page_stat(page, &locked, &memcg_flags); if (mapping) { struct backing_dev_info *bdi = mapping->backing_dev_info; unsigned long flags; spin_lock_irqsave(&mapping->tree_lock, flags); ret = TestSetPageWriteback(page); if (!ret) { radix_tree_tag_set(&mapping->page_tree, page_index(page), PAGECACHE_TAG_WRITEBACK); if (bdi_cap_account_writeback(bdi)) __inc_bdi_stat(bdi, BDI_WRITEBACK); } if (!PageDirty(page)) radix_tree_tag_clear(&mapping->page_tree, page_index(page), PAGECACHE_TAG_DIRTY); radix_tree_tag_clear(&mapping->page_tree, page_index(page), PAGECACHE_TAG_TOWRITE); spin_unlock_irqrestore(&mapping->tree_lock, flags); } else { ret = TestSetPageWriteback(page); } if (!ret) account_page_writeback(page); mem_cgroup_end_update_page_stat(page, &locked, &memcg_flags); return ret; } EXPORT_SYMBOL(test_set_page_writeback); /* * Return true if any of the pages in the mapping are marked with the * passed tag. */ int mapping_tagged(struct address_space *mapping, int tag) { return radix_tree_tagged(&mapping->page_tree, tag); } EXPORT_SYMBOL(mapping_tagged); /** * wait_for_stable_page() - wait for writeback to finish, if necessary. * @page: The page to wait on. * * This function determines if the given page is related to a backing device * that requires page contents to be held stable during writeback. If so, then * it will wait for any pending writeback to complete. */ void wait_for_stable_page(struct page *page) { struct address_space *mapping = page_mapping(page); struct backing_dev_info *bdi = mapping->backing_dev_info; if (!bdi_cap_stable_pages_required(bdi)) return; wait_on_page_writeback(page); } EXPORT_SYMBOL_GPL(wait_for_stable_page);