Kernel  |  3.14

下载     查看原文件
C++程序  |  3245行  |  82.38 KB
/*
 * Copyright (C) STMicroelectronics 2009
 * Copyright (C) ST-Ericsson SA 2010
 *
 * License Terms: GNU General Public License v2
 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
 *
 * U8500 PRCM Unit interface driver
 *
 */
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/spinlock.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/completion.h>
#include <linux/irq.h>
#include <linux/jiffies.h>
#include <linux/bitops.h>
#include <linux/fs.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/uaccess.h>
#include <linux/mfd/core.h>
#include <linux/mfd/dbx500-prcmu.h>
#include <linux/mfd/abx500/ab8500.h>
#include <linux/regulator/db8500-prcmu.h>
#include <linux/regulator/machine.h>
#include <linux/cpufreq.h>
#include <linux/platform_data/ux500_wdt.h>
#include <linux/platform_data/db8500_thermal.h>
#include "dbx500-prcmu-regs.h"

/* Index of different voltages to be used when accessing AVSData */
#define PRCM_AVS_BASE		0x2FC
#define PRCM_AVS_VBB_RET	(PRCM_AVS_BASE + 0x0)
#define PRCM_AVS_VBB_MAX_OPP	(PRCM_AVS_BASE + 0x1)
#define PRCM_AVS_VBB_100_OPP	(PRCM_AVS_BASE + 0x2)
#define PRCM_AVS_VBB_50_OPP	(PRCM_AVS_BASE + 0x3)
#define PRCM_AVS_VARM_MAX_OPP	(PRCM_AVS_BASE + 0x4)
#define PRCM_AVS_VARM_100_OPP	(PRCM_AVS_BASE + 0x5)
#define PRCM_AVS_VARM_50_OPP	(PRCM_AVS_BASE + 0x6)
#define PRCM_AVS_VARM_RET	(PRCM_AVS_BASE + 0x7)
#define PRCM_AVS_VAPE_100_OPP	(PRCM_AVS_BASE + 0x8)
#define PRCM_AVS_VAPE_50_OPP	(PRCM_AVS_BASE + 0x9)
#define PRCM_AVS_VMOD_100_OPP	(PRCM_AVS_BASE + 0xA)
#define PRCM_AVS_VMOD_50_OPP	(PRCM_AVS_BASE + 0xB)
#define PRCM_AVS_VSAFE		(PRCM_AVS_BASE + 0xC)

#define PRCM_AVS_VOLTAGE		0
#define PRCM_AVS_VOLTAGE_MASK		0x3f
#define PRCM_AVS_ISSLOWSTARTUP		6
#define PRCM_AVS_ISSLOWSTARTUP_MASK	(1 << PRCM_AVS_ISSLOWSTARTUP)
#define PRCM_AVS_ISMODEENABLE		7
#define PRCM_AVS_ISMODEENABLE_MASK	(1 << PRCM_AVS_ISMODEENABLE)

#define PRCM_BOOT_STATUS	0xFFF
#define PRCM_ROMCODE_A2P	0xFFE
#define PRCM_ROMCODE_P2A	0xFFD
#define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */

#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */

#define _PRCM_MBOX_HEADER		0xFE8 /* 16 bytes */
#define PRCM_MBOX_HEADER_REQ_MB0	(_PRCM_MBOX_HEADER + 0x0)
#define PRCM_MBOX_HEADER_REQ_MB1	(_PRCM_MBOX_HEADER + 0x1)
#define PRCM_MBOX_HEADER_REQ_MB2	(_PRCM_MBOX_HEADER + 0x2)
#define PRCM_MBOX_HEADER_REQ_MB3	(_PRCM_MBOX_HEADER + 0x3)
#define PRCM_MBOX_HEADER_REQ_MB4	(_PRCM_MBOX_HEADER + 0x4)
#define PRCM_MBOX_HEADER_REQ_MB5	(_PRCM_MBOX_HEADER + 0x5)
#define PRCM_MBOX_HEADER_ACK_MB0	(_PRCM_MBOX_HEADER + 0x8)

/* Req Mailboxes */
#define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
#define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
#define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
#define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
#define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
#define PRCM_REQ_MB5 0xE44 /* 4 bytes  */

/* Ack Mailboxes */
#define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */

/* Mailbox 0 headers */
#define MB0H_POWER_STATE_TRANS		0
#define MB0H_CONFIG_WAKEUPS_EXE		1
#define MB0H_READ_WAKEUP_ACK		3
#define MB0H_CONFIG_WAKEUPS_SLEEP	4

#define MB0H_WAKEUP_EXE 2
#define MB0H_WAKEUP_SLEEP 5

/* Mailbox 0 REQs */
#define PRCM_REQ_MB0_AP_POWER_STATE	(PRCM_REQ_MB0 + 0x0)
#define PRCM_REQ_MB0_AP_PLL_STATE	(PRCM_REQ_MB0 + 0x1)
#define PRCM_REQ_MB0_ULP_CLOCK_STATE	(PRCM_REQ_MB0 + 0x2)
#define PRCM_REQ_MB0_DO_NOT_WFI		(PRCM_REQ_MB0 + 0x3)
#define PRCM_REQ_MB0_WAKEUP_8500	(PRCM_REQ_MB0 + 0x4)
#define PRCM_REQ_MB0_WAKEUP_4500	(PRCM_REQ_MB0 + 0x8)

/* Mailbox 0 ACKs */
#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS	(PRCM_ACK_MB0 + 0x0)
#define PRCM_ACK_MB0_READ_POINTER	(PRCM_ACK_MB0 + 0x1)
#define PRCM_ACK_MB0_WAKEUP_0_8500	(PRCM_ACK_MB0 + 0x4)
#define PRCM_ACK_MB0_WAKEUP_0_4500	(PRCM_ACK_MB0 + 0x8)
#define PRCM_ACK_MB0_WAKEUP_1_8500	(PRCM_ACK_MB0 + 0x1C)
#define PRCM_ACK_MB0_WAKEUP_1_4500	(PRCM_ACK_MB0 + 0x20)
#define PRCM_ACK_MB0_EVENT_4500_NUMBERS	20

/* Mailbox 1 headers */
#define MB1H_ARM_APE_OPP 0x0
#define MB1H_RESET_MODEM 0x2
#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
#define MB1H_RELEASE_USB_WAKEUP 0x5
#define MB1H_PLL_ON_OFF 0x6

/* Mailbox 1 Requests */
#define PRCM_REQ_MB1_ARM_OPP			(PRCM_REQ_MB1 + 0x0)
#define PRCM_REQ_MB1_APE_OPP			(PRCM_REQ_MB1 + 0x1)
#define PRCM_REQ_MB1_PLL_ON_OFF			(PRCM_REQ_MB1 + 0x4)
#define PLL_SOC0_OFF	0x1
#define PLL_SOC0_ON	0x2
#define PLL_SOC1_OFF	0x4
#define PLL_SOC1_ON	0x8

/* Mailbox 1 ACKs */
#define PRCM_ACK_MB1_CURRENT_ARM_OPP	(PRCM_ACK_MB1 + 0x0)
#define PRCM_ACK_MB1_CURRENT_APE_OPP	(PRCM_ACK_MB1 + 0x1)
#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS	(PRCM_ACK_MB1 + 0x2)
#define PRCM_ACK_MB1_DVFS_STATUS	(PRCM_ACK_MB1 + 0x3)

/* Mailbox 2 headers */
#define MB2H_DPS	0x0
#define MB2H_AUTO_PWR	0x1

/* Mailbox 2 REQs */
#define PRCM_REQ_MB2_SVA_MMDSP		(PRCM_REQ_MB2 + 0x0)
#define PRCM_REQ_MB2_SVA_PIPE		(PRCM_REQ_MB2 + 0x1)
#define PRCM_REQ_MB2_SIA_MMDSP		(PRCM_REQ_MB2 + 0x2)
#define PRCM_REQ_MB2_SIA_PIPE		(PRCM_REQ_MB2 + 0x3)
#define PRCM_REQ_MB2_SGA		(PRCM_REQ_MB2 + 0x4)
#define PRCM_REQ_MB2_B2R2_MCDE		(PRCM_REQ_MB2 + 0x5)
#define PRCM_REQ_MB2_ESRAM12		(PRCM_REQ_MB2 + 0x6)
#define PRCM_REQ_MB2_ESRAM34		(PRCM_REQ_MB2 + 0x7)
#define PRCM_REQ_MB2_AUTO_PM_SLEEP	(PRCM_REQ_MB2 + 0x8)
#define PRCM_REQ_MB2_AUTO_PM_IDLE	(PRCM_REQ_MB2 + 0xC)

/* Mailbox 2 ACKs */
#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
#define HWACC_PWR_ST_OK 0xFE

/* Mailbox 3 headers */
#define MB3H_ANC	0x0
#define MB3H_SIDETONE	0x1
#define MB3H_SYSCLK	0xE

/* Mailbox 3 Requests */
#define PRCM_REQ_MB3_ANC_FIR_COEFF	(PRCM_REQ_MB3 + 0x0)
#define PRCM_REQ_MB3_ANC_IIR_COEFF	(PRCM_REQ_MB3 + 0x20)
#define PRCM_REQ_MB3_ANC_SHIFTER	(PRCM_REQ_MB3 + 0x60)
#define PRCM_REQ_MB3_ANC_WARP		(PRCM_REQ_MB3 + 0x64)
#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN	(PRCM_REQ_MB3 + 0x68)
#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF	(PRCM_REQ_MB3 + 0x6C)
#define PRCM_REQ_MB3_SYSCLK_MGT		(PRCM_REQ_MB3 + 0x16C)

/* Mailbox 4 headers */
#define MB4H_DDR_INIT	0x0
#define MB4H_MEM_ST	0x1
#define MB4H_HOTDOG	0x12
#define MB4H_HOTMON	0x13
#define MB4H_HOT_PERIOD	0x14
#define MB4H_A9WDOG_CONF 0x16
#define MB4H_A9WDOG_EN   0x17
#define MB4H_A9WDOG_DIS  0x18
#define MB4H_A9WDOG_LOAD 0x19
#define MB4H_A9WDOG_KICK 0x20

/* Mailbox 4 Requests */
#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE	(PRCM_REQ_MB4 + 0x0)
#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE	(PRCM_REQ_MB4 + 0x1)
#define PRCM_REQ_MB4_ESRAM0_ST			(PRCM_REQ_MB4 + 0x3)
#define PRCM_REQ_MB4_HOTDOG_THRESHOLD		(PRCM_REQ_MB4 + 0x0)
#define PRCM_REQ_MB4_HOTMON_LOW			(PRCM_REQ_MB4 + 0x0)
#define PRCM_REQ_MB4_HOTMON_HIGH		(PRCM_REQ_MB4 + 0x1)
#define PRCM_REQ_MB4_HOTMON_CONFIG		(PRCM_REQ_MB4 + 0x2)
#define PRCM_REQ_MB4_HOT_PERIOD			(PRCM_REQ_MB4 + 0x0)
#define HOTMON_CONFIG_LOW			BIT(0)
#define HOTMON_CONFIG_HIGH			BIT(1)
#define PRCM_REQ_MB4_A9WDOG_0			(PRCM_REQ_MB4 + 0x0)
#define PRCM_REQ_MB4_A9WDOG_1			(PRCM_REQ_MB4 + 0x1)
#define PRCM_REQ_MB4_A9WDOG_2			(PRCM_REQ_MB4 + 0x2)
#define PRCM_REQ_MB4_A9WDOG_3			(PRCM_REQ_MB4 + 0x3)
#define A9WDOG_AUTO_OFF_EN			BIT(7)
#define A9WDOG_AUTO_OFF_DIS			0
#define A9WDOG_ID_MASK				0xf

/* Mailbox 5 Requests */
#define PRCM_REQ_MB5_I2C_SLAVE_OP	(PRCM_REQ_MB5 + 0x0)
#define PRCM_REQ_MB5_I2C_HW_BITS	(PRCM_REQ_MB5 + 0x1)
#define PRCM_REQ_MB5_I2C_REG		(PRCM_REQ_MB5 + 0x2)
#define PRCM_REQ_MB5_I2C_VAL		(PRCM_REQ_MB5 + 0x3)
#define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
#define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
#define PRCMU_I2C_STOP_EN		BIT(3)

/* Mailbox 5 ACKs */
#define PRCM_ACK_MB5_I2C_STATUS	(PRCM_ACK_MB5 + 0x1)
#define PRCM_ACK_MB5_I2C_VAL	(PRCM_ACK_MB5 + 0x3)
#define I2C_WR_OK 0x1
#define I2C_RD_OK 0x2

#define NUM_MB 8
#define MBOX_BIT BIT
#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)

/*
 * Wakeups/IRQs
 */

#define WAKEUP_BIT_RTC BIT(0)
#define WAKEUP_BIT_RTT0 BIT(1)
#define WAKEUP_BIT_RTT1 BIT(2)
#define WAKEUP_BIT_HSI0 BIT(3)
#define WAKEUP_BIT_HSI1 BIT(4)
#define WAKEUP_BIT_CA_WAKE BIT(5)
#define WAKEUP_BIT_USB BIT(6)
#define WAKEUP_BIT_ABB BIT(7)
#define WAKEUP_BIT_ABB_FIFO BIT(8)
#define WAKEUP_BIT_SYSCLK_OK BIT(9)
#define WAKEUP_BIT_CA_SLEEP BIT(10)
#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
#define WAKEUP_BIT_ANC_OK BIT(13)
#define WAKEUP_BIT_SW_ERROR BIT(14)
#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
#define WAKEUP_BIT_ARM BIT(17)
#define WAKEUP_BIT_HOTMON_LOW BIT(18)
#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
#define WAKEUP_BIT_GPIO0 BIT(23)
#define WAKEUP_BIT_GPIO1 BIT(24)
#define WAKEUP_BIT_GPIO2 BIT(25)
#define WAKEUP_BIT_GPIO3 BIT(26)
#define WAKEUP_BIT_GPIO4 BIT(27)
#define WAKEUP_BIT_GPIO5 BIT(28)
#define WAKEUP_BIT_GPIO6 BIT(29)
#define WAKEUP_BIT_GPIO7 BIT(30)
#define WAKEUP_BIT_GPIO8 BIT(31)

static struct {
	bool valid;
	struct prcmu_fw_version version;
} fw_info;

static struct irq_domain *db8500_irq_domain;

/*
 * This vector maps irq numbers to the bits in the bit field used in
 * communication with the PRCMU firmware.
 *
 * The reason for having this is to keep the irq numbers contiguous even though
 * the bits in the bit field are not. (The bits also have a tendency to move
 * around, to further complicate matters.)
 */
#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)

#define IRQ_PRCMU_RTC 0
#define IRQ_PRCMU_RTT0 1
#define IRQ_PRCMU_RTT1 2
#define IRQ_PRCMU_HSI0 3
#define IRQ_PRCMU_HSI1 4
#define IRQ_PRCMU_CA_WAKE 5
#define IRQ_PRCMU_USB 6
#define IRQ_PRCMU_ABB 7
#define IRQ_PRCMU_ABB_FIFO 8
#define IRQ_PRCMU_ARM 9
#define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
#define IRQ_PRCMU_GPIO0 11
#define IRQ_PRCMU_GPIO1 12
#define IRQ_PRCMU_GPIO2 13
#define IRQ_PRCMU_GPIO3 14
#define IRQ_PRCMU_GPIO4 15
#define IRQ_PRCMU_GPIO5 16
#define IRQ_PRCMU_GPIO6 17
#define IRQ_PRCMU_GPIO7 18
#define IRQ_PRCMU_GPIO8 19
#define IRQ_PRCMU_CA_SLEEP 20
#define IRQ_PRCMU_HOTMON_LOW 21
#define IRQ_PRCMU_HOTMON_HIGH 22
#define NUM_PRCMU_WAKEUPS 23

static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
	IRQ_ENTRY(RTC),
	IRQ_ENTRY(RTT0),
	IRQ_ENTRY(RTT1),
	IRQ_ENTRY(HSI0),
	IRQ_ENTRY(HSI1),
	IRQ_ENTRY(CA_WAKE),
	IRQ_ENTRY(USB),
	IRQ_ENTRY(ABB),
	IRQ_ENTRY(ABB_FIFO),
	IRQ_ENTRY(CA_SLEEP),
	IRQ_ENTRY(ARM),
	IRQ_ENTRY(HOTMON_LOW),
	IRQ_ENTRY(HOTMON_HIGH),
	IRQ_ENTRY(MODEM_SW_RESET_REQ),
	IRQ_ENTRY(GPIO0),
	IRQ_ENTRY(GPIO1),
	IRQ_ENTRY(GPIO2),
	IRQ_ENTRY(GPIO3),
	IRQ_ENTRY(GPIO4),
	IRQ_ENTRY(GPIO5),
	IRQ_ENTRY(GPIO6),
	IRQ_ENTRY(GPIO7),
	IRQ_ENTRY(GPIO8)
};

#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
	WAKEUP_ENTRY(RTC),
	WAKEUP_ENTRY(RTT0),
	WAKEUP_ENTRY(RTT1),
	WAKEUP_ENTRY(HSI0),
	WAKEUP_ENTRY(HSI1),
	WAKEUP_ENTRY(USB),
	WAKEUP_ENTRY(ABB),
	WAKEUP_ENTRY(ABB_FIFO),
	WAKEUP_ENTRY(ARM)
};

/*
 * mb0_transfer - state needed for mailbox 0 communication.
 * @lock:		The transaction lock.
 * @dbb_events_lock:	A lock used to handle concurrent access to (parts of)
 *			the request data.
 * @mask_work:		Work structure used for (un)masking wakeup interrupts.
 * @req:		Request data that need to persist between requests.
 */
static struct {
	spinlock_t lock;
	spinlock_t dbb_irqs_lock;
	struct work_struct mask_work;
	struct mutex ac_wake_lock;
	struct completion ac_wake_work;
	struct {
		u32 dbb_irqs;
		u32 dbb_wakeups;
		u32 abb_events;
	} req;
} mb0_transfer;

/*
 * mb1_transfer - state needed for mailbox 1 communication.
 * @lock:	The transaction lock.
 * @work:	The transaction completion structure.
 * @ape_opp:	The current APE OPP.
 * @ack:	Reply ("acknowledge") data.
 */
static struct {
	struct mutex lock;
	struct completion work;
	u8 ape_opp;
	struct {
		u8 header;
		u8 arm_opp;
		u8 ape_opp;
		u8 ape_voltage_status;
	} ack;
} mb1_transfer;

/*
 * mb2_transfer - state needed for mailbox 2 communication.
 * @lock:            The transaction lock.
 * @work:            The transaction completion structure.
 * @auto_pm_lock:    The autonomous power management configuration lock.
 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
 * @req:             Request data that need to persist between requests.
 * @ack:             Reply ("acknowledge") data.
 */
static struct {
	struct mutex lock;
	struct completion work;
	spinlock_t auto_pm_lock;
	bool auto_pm_enabled;
	struct {
		u8 status;
	} ack;
} mb2_transfer;

/*
 * mb3_transfer - state needed for mailbox 3 communication.
 * @lock:		The request lock.
 * @sysclk_lock:	A lock used to handle concurrent sysclk requests.
 * @sysclk_work:	Work structure used for sysclk requests.
 */
static struct {
	spinlock_t lock;
	struct mutex sysclk_lock;
	struct completion sysclk_work;
} mb3_transfer;

/*
 * mb4_transfer - state needed for mailbox 4 communication.
 * @lock:	The transaction lock.
 * @work:	The transaction completion structure.
 */
static struct {
	struct mutex lock;
	struct completion work;
} mb4_transfer;

/*
 * mb5_transfer - state needed for mailbox 5 communication.
 * @lock:	The transaction lock.
 * @work:	The transaction completion structure.
 * @ack:	Reply ("acknowledge") data.
 */
static struct {
	struct mutex lock;
	struct completion work;
	struct {
		u8 status;
		u8 value;
	} ack;
} mb5_transfer;

static atomic_t ac_wake_req_state = ATOMIC_INIT(0);

/* Spinlocks */
static DEFINE_SPINLOCK(prcmu_lock);
static DEFINE_SPINLOCK(clkout_lock);

/* Global var to runtime determine TCDM base for v2 or v1 */
static __iomem void *tcdm_base;
static __iomem void *prcmu_base;

struct clk_mgt {
	u32 offset;
	u32 pllsw;
	int branch;
	bool clk38div;
};

enum {
	PLL_RAW,
	PLL_FIX,
	PLL_DIV
};

static DEFINE_SPINLOCK(clk_mgt_lock);

#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
	{ (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
	CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
	CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
	CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
	CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
	CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
	CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
	CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
	CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
	CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
	CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
	CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
	CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
	CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
	CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
	CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
	CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
	CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
	CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
	CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
	CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
	CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
	CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
	CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
	CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
	CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
	CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
	CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
	CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
	CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
};

struct dsiclk {
	u32 divsel_mask;
	u32 divsel_shift;
	u32 divsel;
};

static struct dsiclk dsiclk[2] = {
	{
		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
	},
	{
		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
	}
};

struct dsiescclk {
	u32 en;
	u32 div_mask;
	u32 div_shift;
};

static struct dsiescclk dsiescclk[3] = {
	{
		.en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
		.div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
		.div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
	},
	{
		.en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
		.div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
		.div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
	},
	{
		.en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
		.div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
		.div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
	}
};


/*
* Used by MCDE to setup all necessary PRCMU registers
*/
#define PRCMU_RESET_DSIPLL		0x00004000
#define PRCMU_UNCLAMP_DSIPLL		0x00400800

#define PRCMU_CLK_PLL_DIV_SHIFT		0
#define PRCMU_CLK_PLL_SW_SHIFT		5
#define PRCMU_CLK_38			(1 << 9)
#define PRCMU_CLK_38_SRC		(1 << 10)
#define PRCMU_CLK_38_DIV		(1 << 11)

/* PLLDIV=12, PLLSW=4 (PLLDDR) */
#define PRCMU_DSI_CLOCK_SETTING		0x0000008C

/* DPI 50000000 Hz */
#define PRCMU_DPI_CLOCK_SETTING		((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
					  (16 << PRCMU_CLK_PLL_DIV_SHIFT))
#define PRCMU_DSI_LP_CLOCK_SETTING	0x00000E00

/* D=101, N=1, R=4, SELDIV2=0 */
#define PRCMU_PLLDSI_FREQ_SETTING	0x00040165

#define PRCMU_ENABLE_PLLDSI		0x00000001
#define PRCMU_DISABLE_PLLDSI		0x00000000
#define PRCMU_RELEASE_RESET_DSS		0x0000400C
#define PRCMU_DSI_PLLOUT_SEL_SETTING	0x00000202
/* ESC clk, div0=1, div1=1, div2=3 */
#define PRCMU_ENABLE_ESCAPE_CLOCK_DIV	0x07030101
#define PRCMU_DISABLE_ESCAPE_CLOCK_DIV	0x00030101
#define PRCMU_DSI_RESET_SW		0x00000007

#define PRCMU_PLLDSI_LOCKP_LOCKED	0x3

int db8500_prcmu_enable_dsipll(void)
{
	int i;

	/* Clear DSIPLL_RESETN */
	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
	/* Unclamp DSIPLL in/out */
	writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);

	/* Set DSI PLL FREQ */
	writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
	writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
	/* Enable Escape clocks */
	writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);

	/* Start DSI PLL */
	writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
	/* Reset DSI PLL */
	writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
	for (i = 0; i < 10; i++) {
		if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
					== PRCMU_PLLDSI_LOCKP_LOCKED)
			break;
		udelay(100);
	}
	/* Set DSIPLL_RESETN */
	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
	return 0;
}

int db8500_prcmu_disable_dsipll(void)
{
	/* Disable dsi pll */
	writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
	/* Disable  escapeclock */
	writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
	return 0;
}

int db8500_prcmu_set_display_clocks(void)
{
	unsigned long flags;

	spin_lock_irqsave(&clk_mgt_lock, flags);

	/* Grab the HW semaphore. */
	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
		cpu_relax();

	writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
	writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
	writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);

	/* Release the HW semaphore. */
	writel(0, PRCM_SEM);

	spin_unlock_irqrestore(&clk_mgt_lock, flags);

	return 0;
}

u32 db8500_prcmu_read(unsigned int reg)
{
	return readl(prcmu_base + reg);
}

void db8500_prcmu_write(unsigned int reg, u32 value)
{
	unsigned long flags;

	spin_lock_irqsave(&prcmu_lock, flags);
	writel(value, (prcmu_base + reg));
	spin_unlock_irqrestore(&prcmu_lock, flags);
}

void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
{
	u32 val;
	unsigned long flags;

	spin_lock_irqsave(&prcmu_lock, flags);
	val = readl(prcmu_base + reg);
	val = ((val & ~mask) | (value & mask));
	writel(val, (prcmu_base + reg));
	spin_unlock_irqrestore(&prcmu_lock, flags);
}

struct prcmu_fw_version *prcmu_get_fw_version(void)
{
	return fw_info.valid ? &fw_info.version : NULL;
}

bool prcmu_has_arm_maxopp(void)
{
	return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
		PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
}

/**
 * prcmu_get_boot_status - PRCMU boot status checking
 * Returns: the current PRCMU boot status
 */
int prcmu_get_boot_status(void)
{
	return readb(tcdm_base + PRCM_BOOT_STATUS);
}

/**
 * prcmu_set_rc_a2p - This function is used to run few power state sequences
 * @val: Value to be set, i.e. transition requested
 * Returns: 0 on success, -EINVAL on invalid argument
 *
 * This function is used to run the following power state sequences -
 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
 */
int prcmu_set_rc_a2p(enum romcode_write val)
{
	if (val < RDY_2_DS || val > RDY_2_XP70_RST)
		return -EINVAL;
	writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
	return 0;
}

/**
 * prcmu_get_rc_p2a - This function is used to get power state sequences
 * Returns: the power transition that has last happened
 *
 * This function can return the following transitions-
 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
 */
enum romcode_read prcmu_get_rc_p2a(void)
{
	return readb(tcdm_base + PRCM_ROMCODE_P2A);
}

/**
 * prcmu_get_current_mode - Return the current XP70 power mode
 * Returns: Returns the current AP(ARM) power mode: init,
 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
 */
enum ap_pwrst prcmu_get_xp70_current_state(void)
{
	return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
}

/**
 * prcmu_config_clkout - Configure one of the programmable clock outputs.
 * @clkout:	The CLKOUT number (0 or 1).
 * @source:	The clock to be used (one of the PRCMU_CLKSRC_*).
 * @div:	The divider to be applied.
 *
 * Configures one of the programmable clock outputs (CLKOUTs).
 * @div should be in the range [1,63] to request a configuration, or 0 to
 * inform that the configuration is no longer requested.
 */
int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
{
	static int requests[2];
	int r = 0;
	unsigned long flags;
	u32 val;
	u32 bits;
	u32 mask;
	u32 div_mask;

	BUG_ON(clkout > 1);
	BUG_ON(div > 63);
	BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));

	if (!div && !requests[clkout])
		return -EINVAL;

	switch (clkout) {
	case 0:
		div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
		mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
		bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
			(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
		break;
	case 1:
		div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
		mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
			PRCM_CLKOCR_CLK1TYPE);
		bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
			(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
		break;
	}
	bits &= mask;

	spin_lock_irqsave(&clkout_lock, flags);

	val = readl(PRCM_CLKOCR);
	if (val & div_mask) {
		if (div) {
			if ((val & mask) != bits) {
				r = -EBUSY;
				goto unlock_and_return;
			}
		} else {
			if ((val & mask & ~div_mask) != bits) {
				r = -EINVAL;
				goto unlock_and_return;
			}
		}
	}
	writel((bits | (val & ~mask)), PRCM_CLKOCR);
	requests[clkout] += (div ? 1 : -1);

unlock_and_return:
	spin_unlock_irqrestore(&clkout_lock, flags);

	return r;
}

int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
{
	unsigned long flags;

	BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));

	spin_lock_irqsave(&mb0_transfer.lock, flags);

	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
		cpu_relax();

	writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
	writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
	writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
	writeb((keep_ulp_clk ? 1 : 0),
		(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
	writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);

	spin_unlock_irqrestore(&mb0_transfer.lock, flags);

	return 0;
}

u8 db8500_prcmu_get_power_state_result(void)
{
	return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
}

/* This function should only be called while mb0_transfer.lock is held. */
static void config_wakeups(void)
{
	const u8 header[2] = {
		MB0H_CONFIG_WAKEUPS_EXE,
		MB0H_CONFIG_WAKEUPS_SLEEP
	};
	static u32 last_dbb_events;
	static u32 last_abb_events;
	u32 dbb_events;
	u32 abb_events;
	unsigned int i;

	dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
	dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);

	abb_events = mb0_transfer.req.abb_events;

	if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
		return;

	for (i = 0; i < 2; i++) {
		while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
			cpu_relax();
		writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
		writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
		writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
		writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
	}
	last_dbb_events = dbb_events;
	last_abb_events = abb_events;
}

void db8500_prcmu_enable_wakeups(u32 wakeups)
{
	unsigned long flags;
	u32 bits;
	int i;

	BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));

	for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
		if (wakeups & BIT(i))
			bits |= prcmu_wakeup_bit[i];
	}

	spin_lock_irqsave(&mb0_transfer.lock, flags);

	mb0_transfer.req.dbb_wakeups = bits;
	config_wakeups();

	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
}

void db8500_prcmu_config_abb_event_readout(u32 abb_events)
{
	unsigned long flags;

	spin_lock_irqsave(&mb0_transfer.lock, flags);

	mb0_transfer.req.abb_events = abb_events;
	config_wakeups();

	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
}

void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
{
	if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
	else
		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
}

/**
 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
 * @opp: The new ARM operating point to which transition is to be made
 * Returns: 0 on success, non-zero on failure
 *
 * This function sets the the operating point of the ARM.
 */
int db8500_prcmu_set_arm_opp(u8 opp)
{
	int r;

	if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
		return -EINVAL;

	r = 0;

	mutex_lock(&mb1_transfer.lock);

	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
		cpu_relax();

	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
	writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
	writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));

	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
	wait_for_completion(&mb1_transfer.work);

	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
		(mb1_transfer.ack.arm_opp != opp))
		r = -EIO;

	mutex_unlock(&mb1_transfer.lock);

	return r;
}

/**
 * db8500_prcmu_get_arm_opp - get the current ARM OPP
 *
 * Returns: the current ARM OPP
 */
int db8500_prcmu_get_arm_opp(void)
{
	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
}

/**
 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
 *
 * Returns: the current DDR OPP
 */
int db8500_prcmu_get_ddr_opp(void)
{
	return readb(PRCM_DDR_SUBSYS_APE_MINBW);
}

/**
 * db8500_set_ddr_opp - set the appropriate DDR OPP
 * @opp: The new DDR operating point to which transition is to be made
 * Returns: 0 on success, non-zero on failure
 *
 * This function sets the operating point of the DDR.
 */
static bool enable_set_ddr_opp;
int db8500_prcmu_set_ddr_opp(u8 opp)
{
	if (opp < DDR_100_OPP || opp > DDR_25_OPP)
		return -EINVAL;
	/* Changing the DDR OPP can hang the hardware pre-v21 */
	if (enable_set_ddr_opp)
		writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);

	return 0;
}

/* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
static void request_even_slower_clocks(bool enable)
{
	u32 clock_reg[] = {
		PRCM_ACLK_MGT,
		PRCM_DMACLK_MGT
	};
	unsigned long flags;
	unsigned int i;

	spin_lock_irqsave(&clk_mgt_lock, flags);

	/* Grab the HW semaphore. */
	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
		cpu_relax();

	for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
		u32 val;
		u32 div;

		val = readl(prcmu_base + clock_reg[i]);
		div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
		if (enable) {
			if ((div <= 1) || (div > 15)) {
				pr_err("prcmu: Bad clock divider %d in %s\n",
					div, __func__);
				goto unlock_and_return;
			}
			div <<= 1;
		} else {
			if (div <= 2)
				goto unlock_and_return;
			div >>= 1;
		}
		val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
			(div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
		writel(val, prcmu_base + clock_reg[i]);
	}

unlock_and_return:
	/* Release the HW semaphore. */
	writel(0, PRCM_SEM);

	spin_unlock_irqrestore(&clk_mgt_lock, flags);
}

/**
 * db8500_set_ape_opp - set the appropriate APE OPP
 * @opp: The new APE operating point to which transition is to be made
 * Returns: 0 on success, non-zero on failure
 *
 * This function sets the operating point of the APE.
 */
int db8500_prcmu_set_ape_opp(u8 opp)
{
	int r = 0;

	if (opp == mb1_transfer.ape_opp)
		return 0;

	mutex_lock(&mb1_transfer.lock);

	if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
		request_even_slower_clocks(false);

	if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
		goto skip_message;

	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
		cpu_relax();

	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
	writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
	writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
		(tcdm_base + PRCM_REQ_MB1_APE_OPP));

	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
	wait_for_completion(&mb1_transfer.work);

	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
		(mb1_transfer.ack.ape_opp != opp))
		r = -EIO;

skip_message:
	if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
		(r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
		request_even_slower_clocks(true);
	if (!r)
		mb1_transfer.ape_opp = opp;

	mutex_unlock(&mb1_transfer.lock);

	return r;
}

/**
 * db8500_prcmu_get_ape_opp - get the current APE OPP
 *
 * Returns: the current APE OPP
 */
int db8500_prcmu_get_ape_opp(void)
{
	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
}

/**
 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
 * @enable: true to request the higher voltage, false to drop a request.
 *
 * Calls to this function to enable and disable requests must be balanced.
 */
int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
{
	int r = 0;
	u8 header;
	static unsigned int requests;

	mutex_lock(&mb1_transfer.lock);

	if (enable) {
		if (0 != requests++)
			goto unlock_and_return;
		header = MB1H_REQUEST_APE_OPP_100_VOLT;
	} else {
		if (requests == 0) {
			r = -EIO;
			goto unlock_and_return;
		} else if (1 != requests--) {
			goto unlock_and_return;
		}
		header = MB1H_RELEASE_APE_OPP_100_VOLT;
	}

	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
		cpu_relax();

	writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));

	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
	wait_for_completion(&mb1_transfer.work);

	if ((mb1_transfer.ack.header != header) ||
		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
		r = -EIO;

unlock_and_return:
	mutex_unlock(&mb1_transfer.lock);

	return r;
}

/**
 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
 *
 * This function releases the power state requirements of a USB wakeup.
 */
int prcmu_release_usb_wakeup_state(void)
{
	int r = 0;

	mutex_lock(&mb1_transfer.lock);

	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
		cpu_relax();

	writeb(MB1H_RELEASE_USB_WAKEUP,
		(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));

	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
	wait_for_completion(&mb1_transfer.work);

	if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
		r = -EIO;

	mutex_unlock(&mb1_transfer.lock);

	return r;
}

static int request_pll(u8 clock, bool enable)
{
	int r = 0;

	if (clock == PRCMU_PLLSOC0)
		clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
	else if (clock == PRCMU_PLLSOC1)
		clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
	else
		return -EINVAL;

	mutex_lock(&mb1_transfer.lock);

	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
		cpu_relax();

	writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
	writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));

	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
	wait_for_completion(&mb1_transfer.work);

	if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
		r = -EIO;

	mutex_unlock(&mb1_transfer.lock);

	return r;
}

/**
 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
 * @epod_id: The EPOD to set
 * @epod_state: The new EPOD state
 *
 * This function sets the state of a EPOD (power domain). It may not be called
 * from interrupt context.
 */
int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
{
	int r = 0;
	bool ram_retention = false;
	int i;

	/* check argument */
	BUG_ON(epod_id >= NUM_EPOD_ID);

	/* set flag if retention is possible */
	switch (epod_id) {
	case EPOD_ID_SVAMMDSP:
	case EPOD_ID_SIAMMDSP:
	case EPOD_ID_ESRAM12:
	case EPOD_ID_ESRAM34:
		ram_retention = true;
		break;
	}

	/* check argument */
	BUG_ON(epod_state > EPOD_STATE_ON);
	BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);

	/* get lock */
	mutex_lock(&mb2_transfer.lock);

	/* wait for mailbox */
	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
		cpu_relax();

	/* fill in mailbox */
	for (i = 0; i < NUM_EPOD_ID; i++)
		writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
	writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));

	writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));

	writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);

	/*
	 * The current firmware version does not handle errors correctly,
	 * and we cannot recover if there is an error.
	 * This is expected to change when the firmware is updated.
	 */
	if (!wait_for_completion_timeout(&mb2_transfer.work,
			msecs_to_jiffies(20000))) {
		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
			__func__);
		r = -EIO;
		goto unlock_and_return;
	}

	if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
		r = -EIO;

unlock_and_return:
	mutex_unlock(&mb2_transfer.lock);
	return r;
}

/**
 * prcmu_configure_auto_pm - Configure autonomous power management.
 * @sleep: Configuration for ApSleep.
 * @idle:  Configuration for ApIdle.
 */
void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
	struct prcmu_auto_pm_config *idle)
{
	u32 sleep_cfg;
	u32 idle_cfg;
	unsigned long flags;

	BUG_ON((sleep == NULL) || (idle == NULL));

	sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
	sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
	sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
	sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));

	idle_cfg = (idle->sva_auto_pm_enable & 0xF);
	idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
	idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
	idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
	idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
	idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));

	spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);

	/*
	 * The autonomous power management configuration is done through
	 * fields in mailbox 2, but these fields are only used as shared
	 * variables - i.e. there is no need to send a message.
	 */
	writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
	writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));

	mb2_transfer.auto_pm_enabled =
		((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
		 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
		 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
		 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));

	spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
}
EXPORT_SYMBOL(prcmu_configure_auto_pm);

bool prcmu_is_auto_pm_enabled(void)
{
	return mb2_transfer.auto_pm_enabled;
}

static int request_sysclk(bool enable)
{
	int r;
	unsigned long flags;

	r = 0;

	mutex_lock(&mb3_transfer.sysclk_lock);

	spin_lock_irqsave(&mb3_transfer.lock, flags);

	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
		cpu_relax();

	writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));

	writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
	writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);

	spin_unlock_irqrestore(&mb3_transfer.lock, flags);

	/*
	 * The firmware only sends an ACK if we want to enable the
	 * SysClk, and it succeeds.
	 */
	if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
			msecs_to_jiffies(20000))) {
		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
			__func__);
		r = -EIO;
	}

	mutex_unlock(&mb3_transfer.sysclk_lock);

	return r;
}

static int request_timclk(bool enable)
{
	u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);

	if (!enable)
		val |= PRCM_TCR_STOP_TIMERS;
	writel(val, PRCM_TCR);

	return 0;
}

static int request_clock(u8 clock, bool enable)
{
	u32 val;
	unsigned long flags;

	spin_lock_irqsave(&clk_mgt_lock, flags);

	/* Grab the HW semaphore. */
	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
		cpu_relax();

	val = readl(prcmu_base + clk_mgt[clock].offset);
	if (enable) {
		val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
	} else {
		clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
		val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
	}
	writel(val, prcmu_base + clk_mgt[clock].offset);

	/* Release the HW semaphore. */
	writel(0, PRCM_SEM);

	spin_unlock_irqrestore(&clk_mgt_lock, flags);

	return 0;
}

static int request_sga_clock(u8 clock, bool enable)
{
	u32 val;
	int ret;

	if (enable) {
		val = readl(PRCM_CGATING_BYPASS);
		writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
	}

	ret = request_clock(clock, enable);

	if (!ret && !enable) {
		val = readl(PRCM_CGATING_BYPASS);
		writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
	}

	return ret;
}

static inline bool plldsi_locked(void)
{
	return (readl(PRCM_PLLDSI_LOCKP) &
		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
}

static int request_plldsi(bool enable)
{
	int r = 0;
	u32 val;

	writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
		PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
		PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));

	val = readl(PRCM_PLLDSI_ENABLE);
	if (enable)
		val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
	else
		val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
	writel(val, PRCM_PLLDSI_ENABLE);

	if (enable) {
		unsigned int i;
		bool locked = plldsi_locked();

		for (i = 10; !locked && (i > 0); --i) {
			udelay(100);
			locked = plldsi_locked();
		}
		if (locked) {
			writel(PRCM_APE_RESETN_DSIPLL_RESETN,
				PRCM_APE_RESETN_SET);
		} else {
			writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
				PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
				PRCM_MMIP_LS_CLAMP_SET);
			val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
			writel(val, PRCM_PLLDSI_ENABLE);
			r = -EAGAIN;
		}
	} else {
		writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
	}
	return r;
}

static int request_dsiclk(u8 n, bool enable)
{
	u32 val;

	val = readl(PRCM_DSI_PLLOUT_SEL);
	val &= ~dsiclk[n].divsel_mask;
	val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
		dsiclk[n].divsel_shift);
	writel(val, PRCM_DSI_PLLOUT_SEL);
	return 0;
}

static int request_dsiescclk(u8 n, bool enable)
{
	u32 val;

	val = readl(PRCM_DSITVCLK_DIV);
	enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
	writel(val, PRCM_DSITVCLK_DIV);
	return 0;
}

/**
 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
 * @clock:      The clock for which the request is made.
 * @enable:     Whether the clock should be enabled (true) or disabled (false).
 *
 * This function should only be used by the clock implementation.
 * Do not use it from any other place!
 */
int db8500_prcmu_request_clock(u8 clock, bool enable)
{
	if (clock == PRCMU_SGACLK)
		return request_sga_clock(clock, enable);
	else if (clock < PRCMU_NUM_REG_CLOCKS)
		return request_clock(clock, enable);
	else if (clock == PRCMU_TIMCLK)
		return request_timclk(enable);
	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
		return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
		return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
	else if (clock == PRCMU_PLLDSI)
		return request_plldsi(enable);
	else if (clock == PRCMU_SYSCLK)
		return request_sysclk(enable);
	else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
		return request_pll(clock, enable);
	else
		return -EINVAL;
}

static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
	int branch)
{
	u64 rate;
	u32 val;
	u32 d;
	u32 div = 1;

	val = readl(reg);

	rate = src_rate;
	rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);

	d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
	if (d > 1)
		div *= d;

	d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
	if (d > 1)
		div *= d;

	if (val & PRCM_PLL_FREQ_SELDIV2)
		div *= 2;

	if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
		(val & PRCM_PLL_FREQ_DIV2EN) &&
		((reg == PRCM_PLLSOC0_FREQ) ||
		 (reg == PRCM_PLLARM_FREQ) ||
		 (reg == PRCM_PLLDDR_FREQ))))
		div *= 2;

	(void)do_div(rate, div);

	return (unsigned long)rate;
}

#define ROOT_CLOCK_RATE 38400000

static unsigned long clock_rate(u8 clock)
{
	u32 val;
	u32 pllsw;
	unsigned long rate = ROOT_CLOCK_RATE;

	val = readl(prcmu_base + clk_mgt[clock].offset);

	if (val & PRCM_CLK_MGT_CLK38) {
		if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
			rate /= 2;
		return rate;
	}

	val |= clk_mgt[clock].pllsw;
	pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);

	if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
		rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
		rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
		rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
	else
		return 0;

	if ((clock == PRCMU_SGACLK) &&
		(val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
		u64 r = (rate * 10);

		(void)do_div(r, 25);
		return (unsigned long)r;
	}
	val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
	if (val)
		return rate / val;
	else
		return 0;
}

static unsigned long armss_rate(void)
{
	u32 r;
	unsigned long rate;

	r = readl(PRCM_ARM_CHGCLKREQ);

	if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
		/* External ARMCLKFIX clock */

		rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);

		/* Check PRCM_ARM_CHGCLKREQ divider */
		if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
			rate /= 2;

		/* Check PRCM_ARMCLKFIX_MGT divider */
		r = readl(PRCM_ARMCLKFIX_MGT);
		r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
		rate /= r;

	} else {/* ARM PLL */
		rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
	}

	return rate;
}

static unsigned long dsiclk_rate(u8 n)
{
	u32 divsel;
	u32 div = 1;

	divsel = readl(PRCM_DSI_PLLOUT_SEL);
	divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);

	if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
		divsel = dsiclk[n].divsel;
	else
		dsiclk[n].divsel = divsel;

	switch (divsel) {
	case PRCM_DSI_PLLOUT_SEL_PHI_4:
		div *= 2;
	case PRCM_DSI_PLLOUT_SEL_PHI_2:
		div *= 2;
	case PRCM_DSI_PLLOUT_SEL_PHI:
		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
			PLL_RAW) / div;
	default:
		return 0;
	}
}

static unsigned long dsiescclk_rate(u8 n)
{
	u32 div;

	div = readl(PRCM_DSITVCLK_DIV);
	div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
	return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
}

unsigned long prcmu_clock_rate(u8 clock)
{
	if (clock < PRCMU_NUM_REG_CLOCKS)
		return clock_rate(clock);
	else if (clock == PRCMU_TIMCLK)
		return ROOT_CLOCK_RATE / 16;
	else if (clock == PRCMU_SYSCLK)
		return ROOT_CLOCK_RATE;
	else if (clock == PRCMU_PLLSOC0)
		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
	else if (clock == PRCMU_PLLSOC1)
		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
	else if (clock == PRCMU_ARMSS)
		return armss_rate();
	else if (clock == PRCMU_PLLDDR)
		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
	else if (clock == PRCMU_PLLDSI)
		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
			PLL_RAW);
	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
		return dsiclk_rate(clock - PRCMU_DSI0CLK);
	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
		return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
	else
		return 0;
}

static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
{
	if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
		return ROOT_CLOCK_RATE;
	clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
	if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
	else
		return 0;
}

static u32 clock_divider(unsigned long src_rate, unsigned long rate)
{
	u32 div;

	div = (src_rate / rate);
	if (div == 0)
		return 1;
	if (rate < (src_rate / div))
		div++;
	return div;
}

static long round_clock_rate(u8 clock, unsigned long rate)
{
	u32 val;
	u32 div;
	unsigned long src_rate;
	long rounded_rate;

	val = readl(prcmu_base + clk_mgt[clock].offset);
	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
		clk_mgt[clock].branch);
	div = clock_divider(src_rate, rate);
	if (val & PRCM_CLK_MGT_CLK38) {
		if (clk_mgt[clock].clk38div) {
			if (div > 2)
				div = 2;
		} else {
			div = 1;
		}
	} else if ((clock == PRCMU_SGACLK) && (div == 3)) {
		u64 r = (src_rate * 10);

		(void)do_div(r, 25);
		if (r <= rate)
			return (unsigned long)r;
	}
	rounded_rate = (src_rate / min(div, (u32)31));

	return rounded_rate;
}

/* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
	{ .frequency = 200000, .driver_data = ARM_EXTCLK,},
	{ .frequency = 400000, .driver_data = ARM_50_OPP,},
	{ .frequency = 800000, .driver_data = ARM_100_OPP,},
	{ .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
	{ .frequency = CPUFREQ_TABLE_END,},
};

static long round_armss_rate(unsigned long rate)
{
	long freq = 0;
	int i = 0;

	/* cpufreq table frequencies is in KHz. */
	rate = rate / 1000;

	/* Find the corresponding arm opp from the cpufreq table. */
	while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
		freq = db8500_cpufreq_table[i].frequency;
		if (freq == rate)
			break;
		i++;
	}

	/* Return the last valid value, even if a match was not found. */
	return freq * 1000;
}

#define MIN_PLL_VCO_RATE 600000000ULL
#define MAX_PLL_VCO_RATE 1680640000ULL

static long round_plldsi_rate(unsigned long rate)
{
	long rounded_rate = 0;
	unsigned long src_rate;
	unsigned long rem;
	u32 r;

	src_rate = clock_rate(PRCMU_HDMICLK);
	rem = rate;

	for (r = 7; (rem > 0) && (r > 0); r--) {
		u64 d;

		d = (r * rate);
		(void)do_div(d, src_rate);
		if (d < 6)
			d = 6;
		else if (d > 255)
			d = 255;
		d *= src_rate;
		if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
			((r * MAX_PLL_VCO_RATE) < (2 * d)))
			continue;
		(void)do_div(d, r);
		if (rate < d) {
			if (rounded_rate == 0)
				rounded_rate = (long)d;
			break;
		}
		if ((rate - d) < rem) {
			rem = (rate - d);
			rounded_rate = (long)d;
		}
	}
	return rounded_rate;
}

static long round_dsiclk_rate(unsigned long rate)
{
	u32 div;
	unsigned long src_rate;
	long rounded_rate;

	src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
		PLL_RAW);
	div = clock_divider(src_rate, rate);
	rounded_rate = (src_rate / ((div > 2) ? 4 : div));

	return rounded_rate;
}

static long round_dsiescclk_rate(unsigned long rate)
{
	u32 div;
	unsigned long src_rate;
	long rounded_rate;

	src_rate = clock_rate(PRCMU_TVCLK);
	div = clock_divider(src_rate, rate);
	rounded_rate = (src_rate / min(div, (u32)255));

	return rounded_rate;
}

long prcmu_round_clock_rate(u8 clock, unsigned long rate)
{
	if (clock < PRCMU_NUM_REG_CLOCKS)
		return round_clock_rate(clock, rate);
	else if (clock == PRCMU_ARMSS)
		return round_armss_rate(rate);
	else if (clock == PRCMU_PLLDSI)
		return round_plldsi_rate(rate);
	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
		return round_dsiclk_rate(rate);
	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
		return round_dsiescclk_rate(rate);
	else
		return (long)prcmu_clock_rate(clock);
}

static void set_clock_rate(u8 clock, unsigned long rate)
{
	u32 val;
	u32 div;
	unsigned long src_rate;
	unsigned long flags;

	spin_lock_irqsave(&clk_mgt_lock, flags);

	/* Grab the HW semaphore. */
	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
		cpu_relax();

	val = readl(prcmu_base + clk_mgt[clock].offset);
	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
		clk_mgt[clock].branch);
	div = clock_divider(src_rate, rate);
	if (val & PRCM_CLK_MGT_CLK38) {
		if (clk_mgt[clock].clk38div) {
			if (div > 1)
				val |= PRCM_CLK_MGT_CLK38DIV;
			else
				val &= ~PRCM_CLK_MGT_CLK38DIV;
		}
	} else if (clock == PRCMU_SGACLK) {
		val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
			PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
		if (div == 3) {
			u64 r = (src_rate * 10);

			(void)do_div(r, 25);
			if (r <= rate) {
				val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
				div = 0;
			}
		}
		val |= min(div, (u32)31);
	} else {
		val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
		val |= min(div, (u32)31);
	}
	writel(val, prcmu_base + clk_mgt[clock].offset);

	/* Release the HW semaphore. */
	writel(0, PRCM_SEM);

	spin_unlock_irqrestore(&clk_mgt_lock, flags);
}

static int set_armss_rate(unsigned long rate)
{
	int i = 0;

	/* cpufreq table frequencies is in KHz. */
	rate = rate / 1000;

	/* Find the corresponding arm opp from the cpufreq table. */
	while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
		if (db8500_cpufreq_table[i].frequency == rate)
			break;
		i++;
	}

	if (db8500_cpufreq_table[i].frequency != rate)
		return -EINVAL;

	/* Set the new arm opp. */
	return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].driver_data);
}

static int set_plldsi_rate(unsigned long rate)
{
	unsigned long src_rate;
	unsigned long rem;
	u32 pll_freq = 0;
	u32 r;

	src_rate = clock_rate(PRCMU_HDMICLK);
	rem = rate;

	for (r = 7; (rem > 0) && (r > 0); r--) {
		u64 d;
		u64 hwrate;

		d = (r * rate);
		(void)do_div(d, src_rate);
		if (d < 6)
			d = 6;
		else if (d > 255)
			d = 255;
		hwrate = (d * src_rate);
		if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
			((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
			continue;
		(void)do_div(hwrate, r);
		if (rate < hwrate) {
			if (pll_freq == 0)
				pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
					(r << PRCM_PLL_FREQ_R_SHIFT));
			break;
		}
		if ((rate - hwrate) < rem) {
			rem = (rate - hwrate);
			pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
				(r << PRCM_PLL_FREQ_R_SHIFT));
		}
	}
	if (pll_freq == 0)
		return -EINVAL;

	pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
	writel(pll_freq, PRCM_PLLDSI_FREQ);

	return 0;
}

static void set_dsiclk_rate(u8 n, unsigned long rate)
{
	u32 val;
	u32 div;

	div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
			clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);

	dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
			   (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
			   /* else */	PRCM_DSI_PLLOUT_SEL_PHI_4;

	val = readl(PRCM_DSI_PLLOUT_SEL);
	val &= ~dsiclk[n].divsel_mask;
	val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
	writel(val, PRCM_DSI_PLLOUT_SEL);
}

static void set_dsiescclk_rate(u8 n, unsigned long rate)
{
	u32 val;
	u32 div;

	div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
	val = readl(PRCM_DSITVCLK_DIV);
	val &= ~dsiescclk[n].div_mask;
	val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
	writel(val, PRCM_DSITVCLK_DIV);
}

int prcmu_set_clock_rate(u8 clock, unsigned long rate)
{
	if (clock < PRCMU_NUM_REG_CLOCKS)
		set_clock_rate(clock, rate);
	else if (clock == PRCMU_ARMSS)
		return set_armss_rate(rate);
	else if (clock == PRCMU_PLLDSI)
		return set_plldsi_rate(rate);
	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
		set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
		set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
	return 0;
}

int db8500_prcmu_config_esram0_deep_sleep(u8 state)
{
	if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
	    (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
		return -EINVAL;

	mutex_lock(&mb4_transfer.lock);

	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
		cpu_relax();

	writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
	writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
	writeb(DDR_PWR_STATE_ON,
	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
	writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));

	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
	wait_for_completion(&mb4_transfer.work);

	mutex_unlock(&mb4_transfer.lock);

	return 0;
}

int db8500_prcmu_config_hotdog(u8 threshold)
{
	mutex_lock(&mb4_transfer.lock);

	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
		cpu_relax();

	writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
	writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));

	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
	wait_for_completion(&mb4_transfer.work);

	mutex_unlock(&mb4_transfer.lock);

	return 0;
}

int db8500_prcmu_config_hotmon(u8 low, u8 high)
{
	mutex_lock(&mb4_transfer.lock);

	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
		cpu_relax();

	writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
	writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
	writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
		(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
	writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));

	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
	wait_for_completion(&mb4_transfer.work);

	mutex_unlock(&mb4_transfer.lock);

	return 0;
}

static int config_hot_period(u16 val)
{
	mutex_lock(&mb4_transfer.lock);

	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
		cpu_relax();

	writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
	writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));

	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
	wait_for_completion(&mb4_transfer.work);

	mutex_unlock(&mb4_transfer.lock);

	return 0;
}

int db8500_prcmu_start_temp_sense(u16 cycles32k)
{
	if (cycles32k == 0xFFFF)
		return -EINVAL;

	return config_hot_period(cycles32k);
}

int db8500_prcmu_stop_temp_sense(void)
{
	return config_hot_period(0xFFFF);
}

static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
{

	mutex_lock(&mb4_transfer.lock);

	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
		cpu_relax();

	writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
	writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
	writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
	writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));

	writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));

	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
	wait_for_completion(&mb4_transfer.work);

	mutex_unlock(&mb4_transfer.lock);

	return 0;

}

int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
{
	BUG_ON(num == 0 || num > 0xf);
	return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
			    sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
			    A9WDOG_AUTO_OFF_DIS);
}
EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);

int db8500_prcmu_enable_a9wdog(u8 id)
{
	return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
}
EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);

int db8500_prcmu_disable_a9wdog(u8 id)
{
	return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
}
EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);

int db8500_prcmu_kick_a9wdog(u8 id)
{
	return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
}
EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);

/*
 * timeout is 28 bit, in ms.
 */
int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
{
	return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
			    (id & A9WDOG_ID_MASK) |
			    /*
			     * Put the lowest 28 bits of timeout at
			     * offset 4. Four first bits are used for id.
			     */
			    (u8)((timeout << 4) & 0xf0),
			    (u8)((timeout >> 4) & 0xff),
			    (u8)((timeout >> 12) & 0xff),
			    (u8)((timeout >> 20) & 0xff));
}
EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);

/**
 * prcmu_abb_read() - Read register value(s) from the ABB.
 * @slave:	The I2C slave address.
 * @reg:	The (start) register address.
 * @value:	The read out value(s).
 * @size:	The number of registers to read.
 *
 * Reads register value(s) from the ABB.
 * @size has to be 1 for the current firmware version.
 */
int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
{
	int r;

	if (size != 1)
		return -EINVAL;

	mutex_lock(&mb5_transfer.lock);

	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
		cpu_relax();

	writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
	writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
	writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));

	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);

	if (!wait_for_completion_timeout(&mb5_transfer.work,
				msecs_to_jiffies(20000))) {
		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
			__func__);
		r = -EIO;
	} else {
		r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
	}

	if (!r)
		*value = mb5_transfer.ack.value;

	mutex_unlock(&mb5_transfer.lock);

	return r;
}

/**
 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
 * @slave:	The I2C slave address.
 * @reg:	The (start) register address.
 * @value:	The value(s) to write.
 * @mask:	The mask(s) to use.
 * @size:	The number of registers to write.
 *
 * Writes masked register value(s) to the ABB.
 * For each @value, only the bits set to 1 in the corresponding @mask
 * will be written. The other bits are not changed.
 * @size has to be 1 for the current firmware version.
 */
int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
{
	int r;

	if (size != 1)
		return -EINVAL;

	mutex_lock(&mb5_transfer.lock);

	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
		cpu_relax();

	writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
	writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
	writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));

	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);

	if (!wait_for_completion_timeout(&mb5_transfer.work,
				msecs_to_jiffies(20000))) {
		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
			__func__);
		r = -EIO;
	} else {
		r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
	}

	mutex_unlock(&mb5_transfer.lock);

	return r;
}

/**
 * prcmu_abb_write() - Write register value(s) to the ABB.
 * @slave:	The I2C slave address.
 * @reg:	The (start) register address.
 * @value:	The value(s) to write.
 * @size:	The number of registers to write.
 *
 * Writes register value(s) to the ABB.
 * @size has to be 1 for the current firmware version.
 */
int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
{
	u8 mask = ~0;

	return prcmu_abb_write_masked(slave, reg, value, &mask, size);
}

/**
 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
 */
int prcmu_ac_wake_req(void)
{
	u32 val;
	int ret = 0;

	mutex_lock(&mb0_transfer.ac_wake_lock);

	val = readl(PRCM_HOSTACCESS_REQ);
	if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
		goto unlock_and_return;

	atomic_set(&ac_wake_req_state, 1);

	/*
	 * Force Modem Wake-up before hostaccess_req ping-pong.
	 * It prevents Modem to enter in Sleep while acking the hostaccess
	 * request. The 31us delay has been calculated by HWI.
	 */
	val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
	writel(val, PRCM_HOSTACCESS_REQ);

	udelay(31);

	val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
	writel(val, PRCM_HOSTACCESS_REQ);

	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
			msecs_to_jiffies(5000))) {
#if defined(CONFIG_DBX500_PRCMU_DEBUG)
		db8500_prcmu_debug_dump(__func__, true, true);
#endif
		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
			__func__);
		ret = -EFAULT;
	}

unlock_and_return:
	mutex_unlock(&mb0_transfer.ac_wake_lock);
	return ret;
}

/**
 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
 */
void prcmu_ac_sleep_req(void)
{
	u32 val;

	mutex_lock(&mb0_transfer.ac_wake_lock);

	val = readl(PRCM_HOSTACCESS_REQ);
	if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
		goto unlock_and_return;

	writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
		PRCM_HOSTACCESS_REQ);

	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
			msecs_to_jiffies(5000))) {
		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
			__func__);
	}

	atomic_set(&ac_wake_req_state, 0);

unlock_and_return:
	mutex_unlock(&mb0_transfer.ac_wake_lock);
}

bool db8500_prcmu_is_ac_wake_requested(void)
{
	return (atomic_read(&ac_wake_req_state) != 0);
}

/**
 * db8500_prcmu_system_reset - System reset
 *
 * Saves the reset reason code and then sets the APE_SOFTRST register which
 * fires interrupt to fw
 */
void db8500_prcmu_system_reset(u16 reset_code)
{
	writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
	writel(1, PRCM_APE_SOFTRST);
}

/**
 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
 *
 * Retrieves the reset reason code stored by prcmu_system_reset() before
 * last restart.
 */
u16 db8500_prcmu_get_reset_code(void)
{
	return readw(tcdm_base + PRCM_SW_RST_REASON);
}

/**
 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
 */
void db8500_prcmu_modem_reset(void)
{
	mutex_lock(&mb1_transfer.lock);

	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
		cpu_relax();

	writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
	wait_for_completion(&mb1_transfer.work);

	/*
	 * No need to check return from PRCMU as modem should go in reset state
	 * This state is already managed by upper layer
	 */

	mutex_unlock(&mb1_transfer.lock);
}

static void ack_dbb_wakeup(void)
{
	unsigned long flags;

	spin_lock_irqsave(&mb0_transfer.lock, flags);

	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
		cpu_relax();

	writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);

	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
}

static inline void print_unknown_header_warning(u8 n, u8 header)
{
	pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
		header, n);
}

static bool read_mailbox_0(void)
{
	bool r;
	u32 ev;
	unsigned int n;
	u8 header;

	header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
	switch (header) {
	case MB0H_WAKEUP_EXE:
	case MB0H_WAKEUP_SLEEP:
		if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
		else
			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);

		if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
			complete(&mb0_transfer.ac_wake_work);
		if (ev & WAKEUP_BIT_SYSCLK_OK)
			complete(&mb3_transfer.sysclk_work);

		ev &= mb0_transfer.req.dbb_irqs;

		for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
			if (ev & prcmu_irq_bit[n])
				generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
		}
		r = true;
		break;
	default:
		print_unknown_header_warning(0, header);
		r = false;
		break;
	}
	writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
	return r;
}

static bool read_mailbox_1(void)
{
	mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
	mb1_transfer.ack.arm_opp = readb(tcdm_base +
		PRCM_ACK_MB1_CURRENT_ARM_OPP);
	mb1_transfer.ack.ape_opp = readb(tcdm_base +
		PRCM_ACK_MB1_CURRENT_APE_OPP);
	mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
		PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
	writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
	complete(&mb1_transfer.work);
	return false;
}

static bool read_mailbox_2(void)
{
	mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
	writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
	complete(&mb2_transfer.work);
	return false;
}

static bool read_mailbox_3(void)
{
	writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
	return false;
}

static bool read_mailbox_4(void)
{
	u8 header;
	bool do_complete = true;

	header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
	switch (header) {
	case MB4H_MEM_ST:
	case MB4H_HOTDOG:
	case MB4H_HOTMON:
	case MB4H_HOT_PERIOD:
	case MB4H_A9WDOG_CONF:
	case MB4H_A9WDOG_EN:
	case MB4H_A9WDOG_DIS:
	case MB4H_A9WDOG_LOAD:
	case MB4H_A9WDOG_KICK:
		break;
	default:
		print_unknown_header_warning(4, header);
		do_complete = false;
		break;
	}

	writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);

	if (do_complete)
		complete(&mb4_transfer.work);

	return false;
}

static bool read_mailbox_5(void)
{
	mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
	mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
	writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
	complete(&mb5_transfer.work);
	return false;
}

static bool read_mailbox_6(void)
{
	writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
	return false;
}

static bool read_mailbox_7(void)
{
	writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
	return false;
}

static bool (* const read_mailbox[NUM_MB])(void) = {
	read_mailbox_0,
	read_mailbox_1,
	read_mailbox_2,
	read_mailbox_3,
	read_mailbox_4,
	read_mailbox_5,
	read_mailbox_6,
	read_mailbox_7
};

static irqreturn_t prcmu_irq_handler(int irq, void *data)
{
	u32 bits;
	u8 n;
	irqreturn_t r;

	bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
	if (unlikely(!bits))
		return IRQ_NONE;

	r = IRQ_HANDLED;
	for (n = 0; bits; n++) {
		if (bits & MBOX_BIT(n)) {
			bits -= MBOX_BIT(n);
			if (read_mailbox[n]())
				r = IRQ_WAKE_THREAD;
		}
	}
	return r;
}

static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
{
	ack_dbb_wakeup();
	return IRQ_HANDLED;
}

static void prcmu_mask_work(struct work_struct *work)
{
	unsigned long flags;

	spin_lock_irqsave(&mb0_transfer.lock, flags);

	config_wakeups();

	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
}

static void prcmu_irq_mask(struct irq_data *d)
{
	unsigned long flags;

	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);

	mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];

	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);

	if (d->irq != IRQ_PRCMU_CA_SLEEP)
		schedule_work(&mb0_transfer.mask_work);
}

static void prcmu_irq_unmask(struct irq_data *d)
{
	unsigned long flags;

	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);

	mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];

	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);

	if (d->irq != IRQ_PRCMU_CA_SLEEP)
		schedule_work(&mb0_transfer.mask_work);
}

static void noop(struct irq_data *d)
{
}

static struct irq_chip prcmu_irq_chip = {
	.name		= "prcmu",
	.irq_disable	= prcmu_irq_mask,
	.irq_ack	= noop,
	.irq_mask	= prcmu_irq_mask,
	.irq_unmask	= prcmu_irq_unmask,
};

static __init char *fw_project_name(u32 project)
{
	switch (project) {
	case PRCMU_FW_PROJECT_U8500:
		return "U8500";
	case PRCMU_FW_PROJECT_U8400:
		return "U8400";
	case PRCMU_FW_PROJECT_U9500:
		return "U9500";
	case PRCMU_FW_PROJECT_U8500_MBB:
		return "U8500 MBB";
	case PRCMU_FW_PROJECT_U8500_C1:
		return "U8500 C1";
	case PRCMU_FW_PROJECT_U8500_C2:
		return "U8500 C2";
	case PRCMU_FW_PROJECT_U8500_C3:
		return "U8500 C3";
	case PRCMU_FW_PROJECT_U8500_C4:
		return "U8500 C4";
	case PRCMU_FW_PROJECT_U9500_MBL:
		return "U9500 MBL";
	case PRCMU_FW_PROJECT_U8500_MBL:
		return "U8500 MBL";
	case PRCMU_FW_PROJECT_U8500_MBL2:
		return "U8500 MBL2";
	case PRCMU_FW_PROJECT_U8520:
		return "U8520 MBL";
	case PRCMU_FW_PROJECT_U8420:
		return "U8420";
	case PRCMU_FW_PROJECT_U9540:
		return "U9540";
	case PRCMU_FW_PROJECT_A9420:
		return "A9420";
	case PRCMU_FW_PROJECT_L8540:
		return "L8540";
	case PRCMU_FW_PROJECT_L8580:
		return "L8580";
	default:
		return "Unknown";
	}
}

static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
				irq_hw_number_t hwirq)
{
	irq_set_chip_and_handler(virq, &prcmu_irq_chip,
				handle_simple_irq);
	set_irq_flags(virq, IRQF_VALID);

	return 0;
}

static struct irq_domain_ops db8500_irq_ops = {
	.map    = db8500_irq_map,
	.xlate  = irq_domain_xlate_twocell,
};

static int db8500_irq_init(struct device_node *np, int irq_base)
{
	int i;

	/* In the device tree case, just take some IRQs */
	if (np)
		irq_base = 0;

	db8500_irq_domain = irq_domain_add_simple(
		np, NUM_PRCMU_WAKEUPS, irq_base,
		&db8500_irq_ops, NULL);

	if (!db8500_irq_domain) {
		pr_err("Failed to create irqdomain\n");
		return -ENOSYS;
	}

	/* All wakeups will be used, so create mappings for all */
	for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
		irq_create_mapping(db8500_irq_domain, i);

	return 0;
}

static void dbx500_fw_version_init(struct platform_device *pdev,
			    u32 version_offset)
{
	struct resource *res;
	void __iomem *tcpm_base;
	u32 version;

	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
					   "prcmu-tcpm");
	if (!res) {
		dev_err(&pdev->dev,
			"Error: no prcmu tcpm memory region provided\n");
		return;
	}
	tcpm_base = ioremap(res->start, resource_size(res));
	if (!tcpm_base) {
		dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
		return;
	}

	version = readl(tcpm_base + version_offset);
	fw_info.version.project = (version & 0xFF);
	fw_info.version.api_version = (version >> 8) & 0xFF;
	fw_info.version.func_version = (version >> 16) & 0xFF;
	fw_info.version.errata = (version >> 24) & 0xFF;
	strncpy(fw_info.version.project_name,
		fw_project_name(fw_info.version.project),
		PRCMU_FW_PROJECT_NAME_LEN);
	fw_info.valid = true;
	pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
		fw_info.version.project_name,
		fw_info.version.project,
		fw_info.version.api_version,
		fw_info.version.func_version,
		fw_info.version.errata);
	iounmap(tcpm_base);
}

void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
{
	/*
	 * This is a temporary remap to bring up the clocks. It is
	 * subsequently replaces with a real remap. After the merge of
	 * the mailbox subsystem all of this early code goes away, and the
	 * clock driver can probe independently. An early initcall will
	 * still be needed, but it can be diverted into drivers/clk/ux500.
	 */
	prcmu_base = ioremap(phy_base, size);
	if (!prcmu_base)
		pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);

	spin_lock_init(&mb0_transfer.lock);
	spin_lock_init(&mb0_transfer.dbb_irqs_lock);
	mutex_init(&mb0_transfer.ac_wake_lock);
	init_completion(&mb0_transfer.ac_wake_work);
	mutex_init(&mb1_transfer.lock);
	init_completion(&mb1_transfer.work);
	mb1_transfer.ape_opp = APE_NO_CHANGE;
	mutex_init(&mb2_transfer.lock);
	init_completion(&mb2_transfer.work);
	spin_lock_init(&mb2_transfer.auto_pm_lock);
	spin_lock_init(&mb3_transfer.lock);
	mutex_init(&mb3_transfer.sysclk_lock);
	init_completion(&mb3_transfer.sysclk_work);
	mutex_init(&mb4_transfer.lock);
	init_completion(&mb4_transfer.work);
	mutex_init(&mb5_transfer.lock);
	init_completion(&mb5_transfer.work);

	INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
}

static void __init init_prcm_registers(void)
{
	u32 val;

	val = readl(PRCM_A9PL_FORCE_CLKEN);
	val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
		PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
	writel(val, (PRCM_A9PL_FORCE_CLKEN));
}

/*
 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
 */
static struct regulator_consumer_supply db8500_vape_consumers[] = {
	REGULATOR_SUPPLY("v-ape", NULL),
	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
	/* "v-mmc" changed to "vcore" in the mainline kernel */
	REGULATOR_SUPPLY("vcore", "sdi0"),
	REGULATOR_SUPPLY("vcore", "sdi1"),
	REGULATOR_SUPPLY("vcore", "sdi2"),
	REGULATOR_SUPPLY("vcore", "sdi3"),
	REGULATOR_SUPPLY("vcore", "sdi4"),
	REGULATOR_SUPPLY("v-dma", "dma40.0"),
	REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
	/* "v-uart" changed to "vcore" in the mainline kernel */
	REGULATOR_SUPPLY("vcore", "uart0"),
	REGULATOR_SUPPLY("vcore", "uart1"),
	REGULATOR_SUPPLY("vcore", "uart2"),
	REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
	REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
	REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
};

static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
	REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
	/* AV8100 regulator */
	REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
};

static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
	REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
	REGULATOR_SUPPLY("vsupply", "mcde"),
};

/* SVA MMDSP regulator switch */
static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
	REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
};

/* SVA pipe regulator switch */
static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
	REGULATOR_SUPPLY("sva-pipe", "cm_control"),
};

/* SIA MMDSP regulator switch */
static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
	REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
};

/* SIA pipe regulator switch */
static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
	REGULATOR_SUPPLY("sia-pipe", "cm_control"),
};

static struct regulator_consumer_supply db8500_sga_consumers[] = {
	REGULATOR_SUPPLY("v-mali", NULL),
};

/* ESRAM1 and 2 regulator switch */
static struct regulator_consumer_supply db8500_esram12_consumers[] = {
	REGULATOR_SUPPLY("esram12", "cm_control"),
};

/* ESRAM3 and 4 regulator switch */
static struct regulator_consumer_supply db8500_esram34_consumers[] = {
	REGULATOR_SUPPLY("v-esram34", "mcde"),
	REGULATOR_SUPPLY("esram34", "cm_control"),
	REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
};

static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
	[DB8500_REGULATOR_VAPE] = {
		.constraints = {
			.name = "db8500-vape",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
			.always_on = true,
		},
		.consumer_supplies = db8500_vape_consumers,
		.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
	},
	[DB8500_REGULATOR_VARM] = {
		.constraints = {
			.name = "db8500-varm",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
	},
	[DB8500_REGULATOR_VMODEM] = {
		.constraints = {
			.name = "db8500-vmodem",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
	},
	[DB8500_REGULATOR_VPLL] = {
		.constraints = {
			.name = "db8500-vpll",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
	},
	[DB8500_REGULATOR_VSMPS1] = {
		.constraints = {
			.name = "db8500-vsmps1",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
	},
	[DB8500_REGULATOR_VSMPS2] = {
		.constraints = {
			.name = "db8500-vsmps2",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
		.consumer_supplies = db8500_vsmps2_consumers,
		.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
	},
	[DB8500_REGULATOR_VSMPS3] = {
		.constraints = {
			.name = "db8500-vsmps3",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
	},
	[DB8500_REGULATOR_VRF1] = {
		.constraints = {
			.name = "db8500-vrf1",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
	},
	[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
		/* dependency to u8500-vape is handled outside regulator framework */
		.constraints = {
			.name = "db8500-sva-mmdsp",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
		.consumer_supplies = db8500_svammdsp_consumers,
		.num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
	},
	[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
		.constraints = {
			/* "ret" means "retention" */
			.name = "db8500-sva-mmdsp-ret",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
	},
	[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
		/* dependency to u8500-vape is handled outside regulator framework */
		.constraints = {
			.name = "db8500-sva-pipe",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
		.consumer_supplies = db8500_svapipe_consumers,
		.num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
	},
	[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
		/* dependency to u8500-vape is handled outside regulator framework */
		.constraints = {
			.name = "db8500-sia-mmdsp",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
		.consumer_supplies = db8500_siammdsp_consumers,
		.num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
	},
	[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
		.constraints = {
			.name = "db8500-sia-mmdsp-ret",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
	},
	[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
		/* dependency to u8500-vape is handled outside regulator framework */
		.constraints = {
			.name = "db8500-sia-pipe",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
		.consumer_supplies = db8500_siapipe_consumers,
		.num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
	},
	[DB8500_REGULATOR_SWITCH_SGA] = {
		.supply_regulator = "db8500-vape",
		.constraints = {
			.name = "db8500-sga",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
		.consumer_supplies = db8500_sga_consumers,
		.num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),

	},
	[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
		.supply_regulator = "db8500-vape",
		.constraints = {
			.name = "db8500-b2r2-mcde",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
		.consumer_supplies = db8500_b2r2_mcde_consumers,
		.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
	},
	[DB8500_REGULATOR_SWITCH_ESRAM12] = {
		/*
		 * esram12 is set in retention and supplied by Vsafe when Vape is off,
		 * no need to hold Vape
		 */
		.constraints = {
			.name = "db8500-esram12",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
		.consumer_supplies = db8500_esram12_consumers,
		.num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
	},
	[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
		.constraints = {
			.name = "db8500-esram12-ret",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
	},
	[DB8500_REGULATOR_SWITCH_ESRAM34] = {
		/*
		 * esram34 is set in retention and supplied by Vsafe when Vape is off,
		 * no need to hold Vape
		 */
		.constraints = {
			.name = "db8500-esram34",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
		.consumer_supplies = db8500_esram34_consumers,
		.num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
	},
	[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
		.constraints = {
			.name = "db8500-esram34-ret",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
	},
};

static struct ux500_wdt_data db8500_wdt_pdata = {
	.timeout = 600, /* 10 minutes */
	.has_28_bits_resolution = true,
};
/*
 * Thermal Sensor
 */

static struct resource db8500_thsens_resources[] = {
	{
		.name = "IRQ_HOTMON_LOW",
		.start  = IRQ_PRCMU_HOTMON_LOW,
		.end    = IRQ_PRCMU_HOTMON_LOW,
		.flags  = IORESOURCE_IRQ,
	},
	{
		.name = "IRQ_HOTMON_HIGH",
		.start  = IRQ_PRCMU_HOTMON_HIGH,
		.end    = IRQ_PRCMU_HOTMON_HIGH,
		.flags  = IORESOURCE_IRQ,
	},
};

static struct db8500_thsens_platform_data db8500_thsens_data = {
	.trip_points[0] = {
		.temp = 70000,
		.type = THERMAL_TRIP_ACTIVE,
		.cdev_name = {
			[0] = "thermal-cpufreq-0",
		},
	},
	.trip_points[1] = {
		.temp = 75000,
		.type = THERMAL_TRIP_ACTIVE,
		.cdev_name = {
			[0] = "thermal-cpufreq-0",
		},
	},
	.trip_points[2] = {
		.temp = 80000,
		.type = THERMAL_TRIP_ACTIVE,
		.cdev_name = {
			[0] = "thermal-cpufreq-0",
		},
	},
	.trip_points[3] = {
		.temp = 85000,
		.type = THERMAL_TRIP_CRITICAL,
	},
	.num_trips = 4,
};

static const struct mfd_cell common_prcmu_devs[] = {
	{
		.name = "ux500_wdt",
		.platform_data = &db8500_wdt_pdata,
		.pdata_size = sizeof(db8500_wdt_pdata),
		.id = -1,
	},
};

static const struct mfd_cell db8500_prcmu_devs[] = {
	{
		.name = "db8500-prcmu-regulators",
		.of_compatible = "stericsson,db8500-prcmu-regulator",
		.platform_data = &db8500_regulators,
		.pdata_size = sizeof(db8500_regulators),
	},
	{
		.name = "cpufreq-ux500",
		.of_compatible = "stericsson,cpufreq-ux500",
		.platform_data = &db8500_cpufreq_table,
		.pdata_size = sizeof(db8500_cpufreq_table),
	},
	{
		.name = "cpuidle-dbx500",
		.of_compatible = "stericsson,cpuidle-dbx500",
	},
	{
		.name = "db8500-thermal",
		.num_resources = ARRAY_SIZE(db8500_thsens_resources),
		.resources = db8500_thsens_resources,
		.platform_data = &db8500_thsens_data,
		.pdata_size = sizeof(db8500_thsens_data),
	},
};

static void db8500_prcmu_update_cpufreq(void)
{
	if (prcmu_has_arm_maxopp()) {
		db8500_cpufreq_table[3].frequency = 1000000;
		db8500_cpufreq_table[3].driver_data = ARM_MAX_OPP;
	}
}

static int db8500_prcmu_register_ab8500(struct device *parent,
					struct ab8500_platform_data *pdata,
					int irq)
{
	struct resource ab8500_resource = DEFINE_RES_IRQ(irq);
	struct mfd_cell ab8500_cell = {
		.name = "ab8500-core",
		.of_compatible = "stericsson,ab8500",
		.id = AB8500_VERSION_AB8500,
		.platform_data = pdata,
		.pdata_size = sizeof(struct ab8500_platform_data),
		.resources = &ab8500_resource,
		.num_resources = 1,
	};

	return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
}

/**
 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
 *
 */
static int db8500_prcmu_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct prcmu_pdata *pdata = dev_get_platdata(&pdev->dev);
	int irq = 0, err = 0;
	struct resource *res;

	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
	if (!res) {
		dev_err(&pdev->dev, "no prcmu memory region provided\n");
		return -ENOENT;
	}
	prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
	if (!prcmu_base) {
		dev_err(&pdev->dev,
			"failed to ioremap prcmu register memory\n");
		return -ENOENT;
	}
	init_prcm_registers();
	dbx500_fw_version_init(pdev, pdata->version_offset);
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
	if (!res) {
		dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
		return -ENOENT;
	}
	tcdm_base = devm_ioremap(&pdev->dev, res->start,
			resource_size(res));

	/* Clean up the mailbox interrupts after pre-kernel code. */
	writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);

	irq = platform_get_irq(pdev, 0);
	if (irq <= 0) {
		dev_err(&pdev->dev, "no prcmu irq provided\n");
		return -ENOENT;
	}

	err = request_threaded_irq(irq, prcmu_irq_handler,
	        prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
	if (err < 0) {
		pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
		err = -EBUSY;
		goto no_irq_return;
	}

	db8500_irq_init(np, pdata->irq_base);

	prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);

	db8500_prcmu_update_cpufreq();

	err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
			      ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
	if (err) {
		pr_err("prcmu: Failed to add subdevices\n");
		return err;
	}

	/* TODO: Remove restriction when clk definitions are available. */
	if (!of_machine_is_compatible("st-ericsson,u8540")) {
		err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
				      ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
				      db8500_irq_domain);
		if (err) {
			mfd_remove_devices(&pdev->dev);
			pr_err("prcmu: Failed to add subdevices\n");
			goto no_irq_return;
		}
	}

	err = db8500_prcmu_register_ab8500(&pdev->dev, pdata->ab_platdata,
					   pdata->ab_irq);
	if (err) {
		mfd_remove_devices(&pdev->dev);
		pr_err("prcmu: Failed to add ab8500 subdevice\n");
		goto no_irq_return;
	}

	pr_info("DB8500 PRCMU initialized\n");

no_irq_return:
	return err;
}
static const struct of_device_id db8500_prcmu_match[] = {
	{ .compatible = "stericsson,db8500-prcmu"},
	{ },
};

static struct platform_driver db8500_prcmu_driver = {
	.driver = {
		.name = "db8500-prcmu",
		.owner = THIS_MODULE,
		.of_match_table = db8500_prcmu_match,
	},
	.probe = db8500_prcmu_probe,
};

static int __init db8500_prcmu_init(void)
{
	return platform_driver_register(&db8500_prcmu_driver);
}

core_initcall(db8500_prcmu_init);

MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
MODULE_LICENSE("GPL v2");