- 根目录:
- drivers
- staging
- bcm
- Qos.c
/**
@file Qos.C
This file contains the routines related to Quality of Service.
*/
#include "headers.h"
static void EThCSGetPktInfo(struct bcm_mini_adapter *Adapter, PVOID pvEthPayload, struct bcm_eth_packet_info *pstEthCsPktInfo);
static bool EThCSClassifyPkt(struct bcm_mini_adapter *Adapter, struct sk_buff* skb, struct bcm_eth_packet_info *pstEthCsPktInfo, struct bcm_classifier_rule *pstClassifierRule, B_UINT8 EthCSCupport);
static USHORT IpVersion4(struct bcm_mini_adapter *Adapter, struct iphdr *iphd,
struct bcm_classifier_rule *pstClassifierRule);
static VOID PruneQueue(struct bcm_mini_adapter *Adapter, INT iIndex);
/*******************************************************************
* Function - MatchSrcIpAddress()
*
* Description - Checks whether the Source IP address from the packet
* matches with that of Queue.
*
* Parameters - pstClassifierRule: Pointer to the packet info structure.
* - ulSrcIP : Source IP address from the packet.
*
* Returns - TRUE(If address matches) else FAIL .
*********************************************************************/
static bool MatchSrcIpAddress(struct bcm_classifier_rule *pstClassifierRule, ULONG ulSrcIP)
{
UCHAR ucLoopIndex = 0;
struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);
ulSrcIP = ntohl(ulSrcIP);
if (0 == pstClassifierRule->ucIPSourceAddressLength)
return TRUE;
for (ucLoopIndex = 0; ucLoopIndex < (pstClassifierRule->ucIPSourceAddressLength); ucLoopIndex++)
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Src Ip Address Mask:0x%x PacketIp:0x%x and Classification:0x%x", (UINT)pstClassifierRule->stSrcIpAddress.ulIpv4Mask[ucLoopIndex], (UINT)ulSrcIP, (UINT)pstClassifierRule->stSrcIpAddress.ulIpv6Addr[ucLoopIndex]);
if ((pstClassifierRule->stSrcIpAddress.ulIpv4Mask[ucLoopIndex] & ulSrcIP) ==
(pstClassifierRule->stSrcIpAddress.ulIpv4Addr[ucLoopIndex] & pstClassifierRule->stSrcIpAddress.ulIpv4Mask[ucLoopIndex]))
{
return TRUE;
}
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Src Ip Address Not Matched");
return false;
}
/*******************************************************************
* Function - MatchDestIpAddress()
*
* Description - Checks whether the Destination IP address from the packet
* matches with that of Queue.
*
* Parameters - pstClassifierRule: Pointer to the packet info structure.
* - ulDestIP : Destination IP address from the packet.
*
* Returns - TRUE(If address matches) else FAIL .
*********************************************************************/
static bool MatchDestIpAddress(struct bcm_classifier_rule *pstClassifierRule, ULONG ulDestIP)
{
UCHAR ucLoopIndex = 0;
struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);
ulDestIP = ntohl(ulDestIP);
if (0 == pstClassifierRule->ucIPDestinationAddressLength)
return TRUE;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Destination Ip Address 0x%x 0x%x 0x%x ", (UINT)ulDestIP, (UINT)pstClassifierRule->stDestIpAddress.ulIpv4Mask[ucLoopIndex], (UINT)pstClassifierRule->stDestIpAddress.ulIpv4Addr[ucLoopIndex]);
for (ucLoopIndex = 0; ucLoopIndex < (pstClassifierRule->ucIPDestinationAddressLength); ucLoopIndex++)
{
if ((pstClassifierRule->stDestIpAddress.ulIpv4Mask[ucLoopIndex] & ulDestIP) ==
(pstClassifierRule->stDestIpAddress.ulIpv4Addr[ucLoopIndex] & pstClassifierRule->stDestIpAddress.ulIpv4Mask[ucLoopIndex]))
{
return TRUE;
}
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Destination Ip Address Not Matched");
return false;
}
/************************************************************************
* Function - MatchTos()
*
* Description - Checks the TOS from the packet matches with that of queue.
*
* Parameters - pstClassifierRule : Pointer to the packet info structure.
* - ucTypeOfService: TOS from the packet.
*
* Returns - TRUE(If address matches) else FAIL.
**************************************************************************/
static bool MatchTos(struct bcm_classifier_rule *pstClassifierRule, UCHAR ucTypeOfService)
{
struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);
if (3 != pstClassifierRule->ucIPTypeOfServiceLength)
return TRUE;
if (((pstClassifierRule->ucTosMask & ucTypeOfService) <= pstClassifierRule->ucTosHigh) && ((pstClassifierRule->ucTosMask & ucTypeOfService) >= pstClassifierRule->ucTosLow))
{
return TRUE;
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Type Of Service Not Matched");
return false;
}
/***************************************************************************
* Function - MatchProtocol()
*
* Description - Checks the protocol from the packet matches with that of queue.
*
* Parameters - pstClassifierRule: Pointer to the packet info structure.
* - ucProtocol : Protocol from the packet.
*
* Returns - TRUE(If address matches) else FAIL.
****************************************************************************/
bool MatchProtocol(struct bcm_classifier_rule *pstClassifierRule, UCHAR ucProtocol)
{
UCHAR ucLoopIndex = 0;
struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);
if (0 == pstClassifierRule->ucProtocolLength)
return TRUE;
for (ucLoopIndex = 0; ucLoopIndex < pstClassifierRule->ucProtocolLength; ucLoopIndex++)
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Protocol:0x%X Classification Protocol:0x%X", ucProtocol, pstClassifierRule->ucProtocol[ucLoopIndex]);
if (pstClassifierRule->ucProtocol[ucLoopIndex] == ucProtocol)
{
return TRUE;
}
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Protocol Not Matched");
return false;
}
/***********************************************************************
* Function - MatchSrcPort()
*
* Description - Checks, Source port from the packet matches with that of queue.
*
* Parameters - pstClassifierRule: Pointer to the packet info structure.
* - ushSrcPort : Source port from the packet.
*
* Returns - TRUE(If address matches) else FAIL.
***************************************************************************/
bool MatchSrcPort(struct bcm_classifier_rule *pstClassifierRule, USHORT ushSrcPort)
{
UCHAR ucLoopIndex = 0;
struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);
if (0 == pstClassifierRule->ucSrcPortRangeLength)
return TRUE;
for (ucLoopIndex = 0; ucLoopIndex < pstClassifierRule->ucSrcPortRangeLength; ucLoopIndex++)
{
if (ushSrcPort <= pstClassifierRule->usSrcPortRangeHi[ucLoopIndex] &&
ushSrcPort >= pstClassifierRule->usSrcPortRangeLo[ucLoopIndex])
{
return TRUE;
}
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Src Port: %x Not Matched ", ushSrcPort);
return false;
}
/***********************************************************************
* Function - MatchDestPort()
*
* Description - Checks, Destination port from packet matches with that of queue.
*
* Parameters - pstClassifierRule: Pointer to the packet info structure.
* - ushDestPort : Destination port from the packet.
*
* Returns - TRUE(If address matches) else FAIL.
***************************************************************************/
bool MatchDestPort(struct bcm_classifier_rule *pstClassifierRule, USHORT ushDestPort)
{
UCHAR ucLoopIndex = 0;
struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);
if (0 == pstClassifierRule->ucDestPortRangeLength)
return TRUE;
for (ucLoopIndex = 0; ucLoopIndex < pstClassifierRule->ucDestPortRangeLength; ucLoopIndex++)
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Matching Port:0x%X 0x%X 0x%X", ushDestPort, pstClassifierRule->usDestPortRangeLo[ucLoopIndex], pstClassifierRule->usDestPortRangeHi[ucLoopIndex]);
if (ushDestPort <= pstClassifierRule->usDestPortRangeHi[ucLoopIndex] &&
ushDestPort >= pstClassifierRule->usDestPortRangeLo[ucLoopIndex])
{
return TRUE;
}
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Dest Port: %x Not Matched", ushDestPort);
return false;
}
/**
@ingroup tx_functions
Compares IPV4 Ip address and port number
@return Queue Index.
*/
static USHORT IpVersion4(struct bcm_mini_adapter *Adapter,
struct iphdr *iphd,
struct bcm_classifier_rule *pstClassifierRule)
{
struct bcm_transport_header *xprt_hdr = NULL;
bool bClassificationSucceed = false;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "========>");
xprt_hdr = (struct bcm_transport_header *)((PUCHAR)iphd + sizeof(struct iphdr));
do {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Trying to see Direction = %d %d",
pstClassifierRule->ucDirection,
pstClassifierRule->usVCID_Value);
//Checking classifier validity
if (!pstClassifierRule->bUsed || pstClassifierRule->ucDirection == DOWNLINK_DIR)
{
bClassificationSucceed = false;
break;
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "is IPv6 check!");
if (pstClassifierRule->bIpv6Protocol)
break;
//**************Checking IP header parameter**************************//
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Trying to match Source IP Address");
if (false == (bClassificationSucceed =
MatchSrcIpAddress(pstClassifierRule, iphd->saddr)))
break;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Source IP Address Matched");
if (false == (bClassificationSucceed =
MatchDestIpAddress(pstClassifierRule, iphd->daddr)))
break;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Destination IP Address Matched");
if (false == (bClassificationSucceed =
MatchTos(pstClassifierRule, iphd->tos)))
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "TOS Match failed\n");
break;
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "TOS Matched");
if (false == (bClassificationSucceed =
MatchProtocol(pstClassifierRule, iphd->protocol)))
break;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Protocol Matched");
//if protocol is not TCP or UDP then no need of comparing source port and destination port
if (iphd->protocol != TCP && iphd->protocol != UDP)
break;
//******************Checking Transport Layer Header field if present *****************//
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Source Port %04x",
(iphd->protocol == UDP) ? xprt_hdr->uhdr.source : xprt_hdr->thdr.source);
if (false == (bClassificationSucceed =
MatchSrcPort(pstClassifierRule,
ntohs((iphd->protocol == UDP) ?
xprt_hdr->uhdr.source : xprt_hdr->thdr.source))))
break;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Src Port Matched");
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Destination Port %04x",
(iphd->protocol == UDP) ? xprt_hdr->uhdr.dest :
xprt_hdr->thdr.dest);
if (false == (bClassificationSucceed =
MatchDestPort(pstClassifierRule,
ntohs((iphd->protocol == UDP) ?
xprt_hdr->uhdr.dest : xprt_hdr->thdr.dest))))
break;
} while (0);
if (TRUE == bClassificationSucceed)
{
INT iMatchedSFQueueIndex = 0;
iMatchedSFQueueIndex = SearchSfid(Adapter, pstClassifierRule->ulSFID);
if (iMatchedSFQueueIndex >= NO_OF_QUEUES)
{
bClassificationSucceed = false;
}
else
{
if (false == Adapter->PackInfo[iMatchedSFQueueIndex].bActive)
{
bClassificationSucceed = false;
}
}
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "IpVersion4 <==========");
return bClassificationSucceed;
}
VOID PruneQueueAllSF(struct bcm_mini_adapter *Adapter)
{
UINT iIndex = 0;
for (iIndex = 0; iIndex < HiPriority; iIndex++)
{
if (!Adapter->PackInfo[iIndex].bValid)
continue;
PruneQueue(Adapter, iIndex);
}
}
/**
@ingroup tx_functions
This function checks if the max queue size for a queue
is less than number of bytes in the queue. If so -
drops packets from the Head till the number of bytes is
less than or equal to max queue size for the queue.
*/
static VOID PruneQueue(struct bcm_mini_adapter *Adapter, INT iIndex)
{
struct sk_buff* PacketToDrop = NULL;
struct net_device_stats *netstats;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, PRUNE_QUEUE, DBG_LVL_ALL, "=====> Index %d", iIndex);
if (iIndex == HiPriority)
return;
if (!Adapter || (iIndex < 0) || (iIndex > HiPriority))
return;
/* To Store the netdevice statistic */
netstats = &Adapter->dev->stats;
spin_lock_bh(&Adapter->PackInfo[iIndex].SFQueueLock);
while (1)
// while((UINT)Adapter->PackInfo[iIndex].uiCurrentPacketsOnHost >
// SF_MAX_ALLOWED_PACKETS_TO_BACKUP)
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, PRUNE_QUEUE, DBG_LVL_ALL, "uiCurrentBytesOnHost:%x uiMaxBucketSize :%x",
Adapter->PackInfo[iIndex].uiCurrentBytesOnHost,
Adapter->PackInfo[iIndex].uiMaxBucketSize);
PacketToDrop = Adapter->PackInfo[iIndex].FirstTxQueue;
if (PacketToDrop == NULL)
break;
if ((Adapter->PackInfo[iIndex].uiCurrentPacketsOnHost < SF_MAX_ALLOWED_PACKETS_TO_BACKUP) &&
((1000*(jiffies - *((B_UINT32 *)(PacketToDrop->cb)+SKB_CB_LATENCY_OFFSET))/HZ) <= Adapter->PackInfo[iIndex].uiMaxLatency))
break;
if (PacketToDrop)
{
if (netif_msg_tx_err(Adapter))
pr_info(PFX "%s: tx queue %d overlimit\n",
Adapter->dev->name, iIndex);
netstats->tx_dropped++;
DEQUEUEPACKET(Adapter->PackInfo[iIndex].FirstTxQueue,
Adapter->PackInfo[iIndex].LastTxQueue);
/// update current bytes and packets count
Adapter->PackInfo[iIndex].uiCurrentBytesOnHost -=
PacketToDrop->len;
Adapter->PackInfo[iIndex].uiCurrentPacketsOnHost--;
/// update dropped bytes and packets counts
Adapter->PackInfo[iIndex].uiDroppedCountBytes += PacketToDrop->len;
Adapter->PackInfo[iIndex].uiDroppedCountPackets++;
dev_kfree_skb(PacketToDrop);
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, PRUNE_QUEUE, DBG_LVL_ALL, "Dropped Bytes:%x Dropped Packets:%x",
Adapter->PackInfo[iIndex].uiDroppedCountBytes,
Adapter->PackInfo[iIndex].uiDroppedCountPackets);
atomic_dec(&Adapter->TotalPacketCount);
}
spin_unlock_bh(&Adapter->PackInfo[iIndex].SFQueueLock);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, PRUNE_QUEUE, DBG_LVL_ALL, "TotalPacketCount:%x",
atomic_read(&Adapter->TotalPacketCount));
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, PRUNE_QUEUE, DBG_LVL_ALL, "<=====");
}
VOID flush_all_queues(struct bcm_mini_adapter *Adapter)
{
INT iQIndex;
UINT uiTotalPacketLength;
struct sk_buff* PacketToDrop = NULL;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "=====>");
// down(&Adapter->data_packet_queue_lock);
for (iQIndex = LowPriority; iQIndex < HiPriority; iQIndex++)
{
struct net_device_stats *netstats = &Adapter->dev->stats;
spin_lock_bh(&Adapter->PackInfo[iQIndex].SFQueueLock);
while (Adapter->PackInfo[iQIndex].FirstTxQueue)
{
PacketToDrop = Adapter->PackInfo[iQIndex].FirstTxQueue;
if (PacketToDrop)
{
uiTotalPacketLength = PacketToDrop->len;
netstats->tx_dropped++;
}
else
uiTotalPacketLength = 0;
DEQUEUEPACKET(Adapter->PackInfo[iQIndex].FirstTxQueue,
Adapter->PackInfo[iQIndex].LastTxQueue);
/* Free the skb */
dev_kfree_skb(PacketToDrop);
/// update current bytes and packets count
Adapter->PackInfo[iQIndex].uiCurrentBytesOnHost -= uiTotalPacketLength;
Adapter->PackInfo[iQIndex].uiCurrentPacketsOnHost--;
/// update dropped bytes and packets counts
Adapter->PackInfo[iQIndex].uiDroppedCountBytes += uiTotalPacketLength;
Adapter->PackInfo[iQIndex].uiDroppedCountPackets++;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "Dropped Bytes:%x Dropped Packets:%x",
Adapter->PackInfo[iQIndex].uiDroppedCountBytes,
Adapter->PackInfo[iQIndex].uiDroppedCountPackets);
atomic_dec(&Adapter->TotalPacketCount);
}
spin_unlock_bh(&Adapter->PackInfo[iQIndex].SFQueueLock);
}
// up(&Adapter->data_packet_queue_lock);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "<=====");
}
USHORT ClassifyPacket(struct bcm_mini_adapter *Adapter, struct sk_buff* skb)
{
INT uiLoopIndex = 0;
struct bcm_classifier_rule *pstClassifierRule = NULL;
struct bcm_eth_packet_info stEthCsPktInfo;
PVOID pvEThPayload = NULL;
struct iphdr *pIpHeader = NULL;
INT uiSfIndex = 0;
USHORT usIndex = Adapter->usBestEffortQueueIndex;
bool bFragmentedPkt = false, bClassificationSucceed = false;
USHORT usCurrFragment = 0;
struct bcm_tcp_header *pTcpHeader;
UCHAR IpHeaderLength;
UCHAR TcpHeaderLength;
pvEThPayload = skb->data;
*((UINT32*) (skb->cb) +SKB_CB_TCPACK_OFFSET) = 0;
EThCSGetPktInfo(Adapter, pvEThPayload, &stEthCsPktInfo);
switch (stEthCsPktInfo.eNwpktEthFrameType)
{
case eEth802LLCFrame:
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ClassifyPacket : 802LLCFrame\n");
pIpHeader = pvEThPayload + sizeof(struct bcm_eth_llc_frame);
break;
}
case eEth802LLCSNAPFrame:
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ClassifyPacket : 802LLC SNAP Frame\n");
pIpHeader = pvEThPayload + sizeof(struct bcm_eth_llc_snap_frame);
break;
}
case eEth802QVLANFrame:
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ClassifyPacket : 802.1Q VLANFrame\n");
pIpHeader = pvEThPayload + sizeof(struct bcm_eth_q_frame);
break;
}
case eEthOtherFrame:
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ClassifyPacket : ETH Other Frame\n");
pIpHeader = pvEThPayload + sizeof(struct bcm_ethernet2_frame);
break;
}
default:
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ClassifyPacket : Unrecognized ETH Frame\n");
pIpHeader = pvEThPayload + sizeof(struct bcm_ethernet2_frame);
break;
}
}
if (stEthCsPktInfo.eNwpktIPFrameType == eIPv4Packet)
{
usCurrFragment = (ntohs(pIpHeader->frag_off) & IP_OFFSET);
if ((ntohs(pIpHeader->frag_off) & IP_MF) || usCurrFragment)
bFragmentedPkt = TRUE;
if (bFragmentedPkt)
{
//Fragmented Packet. Get Frag Classifier Entry.
pstClassifierRule = GetFragIPClsEntry(Adapter, pIpHeader->id, pIpHeader->saddr);
if (pstClassifierRule)
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "It is next Fragmented pkt");
bClassificationSucceed = TRUE;
}
if (!(ntohs(pIpHeader->frag_off) & IP_MF))
{
//Fragmented Last packet . Remove Frag Classifier Entry
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "This is the last fragmented Pkt");
DelFragIPClsEntry(Adapter, pIpHeader->id, pIpHeader->saddr);
}
}
}
for (uiLoopIndex = MAX_CLASSIFIERS - 1; uiLoopIndex >= 0; uiLoopIndex--)
{
if (bClassificationSucceed)
break;
//Iterate through all classifiers which are already in order of priority
//to classify the packet until match found
do
{
if (false == Adapter->astClassifierTable[uiLoopIndex].bUsed)
{
bClassificationSucceed = false;
break;
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Adapter->PackInfo[%d].bvalid=True\n", uiLoopIndex);
if (0 == Adapter->astClassifierTable[uiLoopIndex].ucDirection)
{
bClassificationSucceed = false;//cannot be processed for classification.
break; // it is a down link connection
}
pstClassifierRule = &Adapter->astClassifierTable[uiLoopIndex];
uiSfIndex = SearchSfid(Adapter, pstClassifierRule->ulSFID);
if (uiSfIndex >= NO_OF_QUEUES) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Queue Not Valid. SearchSfid for this classifier Failed\n");
break;
}
if (Adapter->PackInfo[uiSfIndex].bEthCSSupport)
{
if (eEthUnsupportedFrame == stEthCsPktInfo.eNwpktEthFrameType)
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, " ClassifyPacket : Packet Not a Valid Supported Ethernet Frame\n");
bClassificationSucceed = false;
break;
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Performing ETH CS Classification on Classifier Rule ID : %x Service Flow ID : %lx\n", pstClassifierRule->uiClassifierRuleIndex, Adapter->PackInfo[uiSfIndex].ulSFID);
bClassificationSucceed = EThCSClassifyPkt(Adapter, skb, &stEthCsPktInfo, pstClassifierRule, Adapter->PackInfo[uiSfIndex].bEthCSSupport);
if (!bClassificationSucceed)
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ClassifyPacket : Ethernet CS Classification Failed\n");
break;
}
}
else // No ETH Supported on this SF
{
if (eEthOtherFrame != stEthCsPktInfo.eNwpktEthFrameType)
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, " ClassifyPacket : Packet Not a 802.3 Ethernet Frame... hence not allowed over non-ETH CS SF\n");
bClassificationSucceed = false;
break;
}
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Proceeding to IP CS Clasification");
if (Adapter->PackInfo[uiSfIndex].bIPCSSupport)
{
if (stEthCsPktInfo.eNwpktIPFrameType == eNonIPPacket)
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, " ClassifyPacket : Packet is Not an IP Packet\n");
bClassificationSucceed = false;
break;
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Dump IP Header :\n");
DumpFullPacket((PUCHAR)pIpHeader, 20);
if (stEthCsPktInfo.eNwpktIPFrameType == eIPv4Packet)
bClassificationSucceed = IpVersion4(Adapter, pIpHeader, pstClassifierRule);
else if (stEthCsPktInfo.eNwpktIPFrameType == eIPv6Packet)
bClassificationSucceed = IpVersion6(Adapter, pIpHeader, pstClassifierRule);
}
} while (0);
}
if (bClassificationSucceed == TRUE)
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "CF id : %d, SF ID is =%lu", pstClassifierRule->uiClassifierRuleIndex, pstClassifierRule->ulSFID);
//Store The matched Classifier in SKB
*((UINT32*)(skb->cb)+SKB_CB_CLASSIFICATION_OFFSET) = pstClassifierRule->uiClassifierRuleIndex;
if ((TCP == pIpHeader->protocol) && !bFragmentedPkt && (ETH_AND_IP_HEADER_LEN + TCP_HEADER_LEN <= skb->len))
{
IpHeaderLength = pIpHeader->ihl;
pTcpHeader = (struct bcm_tcp_header *)(((PUCHAR)pIpHeader)+(IpHeaderLength*4));
TcpHeaderLength = GET_TCP_HEADER_LEN(pTcpHeader->HeaderLength);
if ((pTcpHeader->ucFlags & TCP_ACK) &&
(ntohs(pIpHeader->tot_len) == (IpHeaderLength*4)+(TcpHeaderLength*4)))
{
*((UINT32*) (skb->cb) + SKB_CB_TCPACK_OFFSET) = TCP_ACK;
}
}
usIndex = SearchSfid(Adapter, pstClassifierRule->ulSFID);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "index is =%d", usIndex);
//If this is the first fragment of a Fragmented pkt, add this CF. Only This CF should be used for all other fragment of this Pkt.
if (bFragmentedPkt && (usCurrFragment == 0))
{
//First Fragment of Fragmented Packet. Create Frag CLS Entry
struct bcm_fragmented_packet_info stFragPktInfo;
stFragPktInfo.bUsed = TRUE;
stFragPktInfo.ulSrcIpAddress = pIpHeader->saddr;
stFragPktInfo.usIpIdentification = pIpHeader->id;
stFragPktInfo.pstMatchedClassifierEntry = pstClassifierRule;
stFragPktInfo.bOutOfOrderFragment = false;
AddFragIPClsEntry(Adapter, &stFragPktInfo);
}
}
if (bClassificationSucceed)
return usIndex;
else
return INVALID_QUEUE_INDEX;
}
static bool EthCSMatchSrcMACAddress(struct bcm_classifier_rule *pstClassifierRule, PUCHAR Mac)
{
UINT i = 0;
struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);
if (pstClassifierRule->ucEthCSSrcMACLen == 0)
return TRUE;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "%s\n", __FUNCTION__);
for (i = 0; i < MAC_ADDRESS_SIZE; i++)
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "SRC MAC[%x] = %x ClassifierRuleSrcMAC = %x Mask : %x\n", i, Mac[i], pstClassifierRule->au8EThCSSrcMAC[i], pstClassifierRule->au8EThCSSrcMACMask[i]);
if ((pstClassifierRule->au8EThCSSrcMAC[i] & pstClassifierRule->au8EThCSSrcMACMask[i]) !=
(Mac[i] & pstClassifierRule->au8EThCSSrcMACMask[i]))
return false;
}
return TRUE;
}
static bool EthCSMatchDestMACAddress(struct bcm_classifier_rule *pstClassifierRule, PUCHAR Mac)
{
UINT i = 0;
struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);
if (pstClassifierRule->ucEthCSDestMACLen == 0)
return TRUE;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "%s\n", __FUNCTION__);
for (i = 0; i < MAC_ADDRESS_SIZE; i++)
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "SRC MAC[%x] = %x ClassifierRuleSrcMAC = %x Mask : %x\n", i, Mac[i], pstClassifierRule->au8EThCSDestMAC[i], pstClassifierRule->au8EThCSDestMACMask[i]);
if ((pstClassifierRule->au8EThCSDestMAC[i] & pstClassifierRule->au8EThCSDestMACMask[i]) !=
(Mac[i] & pstClassifierRule->au8EThCSDestMACMask[i]))
return false;
}
return TRUE;
}
static bool EthCSMatchEThTypeSAP(struct bcm_classifier_rule *pstClassifierRule, struct sk_buff* skb, struct bcm_eth_packet_info *pstEthCsPktInfo)
{
struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);
if ((pstClassifierRule->ucEtherTypeLen == 0) ||
(pstClassifierRule->au8EthCSEtherType[0] == 0))
return TRUE;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "%s SrcEtherType:%x CLS EtherType[0]:%x\n", __FUNCTION__, pstEthCsPktInfo->usEtherType, pstClassifierRule->au8EthCSEtherType[0]);
if (pstClassifierRule->au8EthCSEtherType[0] == 1)
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "%s CLS EtherType[1]:%x EtherType[2]:%x\n", __FUNCTION__, pstClassifierRule->au8EthCSEtherType[1], pstClassifierRule->au8EthCSEtherType[2]);
if (memcmp(&pstEthCsPktInfo->usEtherType, &pstClassifierRule->au8EthCSEtherType[1], 2) == 0)
return TRUE;
else
return false;
}
if (pstClassifierRule->au8EthCSEtherType[0] == 2)
{
if (eEth802LLCFrame != pstEthCsPktInfo->eNwpktEthFrameType)
return false;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "%s EthCS DSAP:%x EtherType[2]:%x\n", __FUNCTION__, pstEthCsPktInfo->ucDSAP, pstClassifierRule->au8EthCSEtherType[2]);
if (pstEthCsPktInfo->ucDSAP == pstClassifierRule->au8EthCSEtherType[2])
return TRUE;
else
return false;
}
return false;
}
static bool EthCSMatchVLANRules(struct bcm_classifier_rule *pstClassifierRule, struct sk_buff* skb, struct bcm_eth_packet_info *pstEthCsPktInfo)
{
bool bClassificationSucceed = false;
USHORT usVLANID;
B_UINT8 uPriority = 0;
struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "%s CLS UserPrio:%x CLS VLANID:%x\n", __FUNCTION__, ntohs(*((USHORT *)pstClassifierRule->usUserPriority)), pstClassifierRule->usVLANID);
/* In case FW didn't receive the TLV, the priority field should be ignored */
if (pstClassifierRule->usValidityBitMap & (1<<PKT_CLASSIFICATION_USER_PRIORITY_VALID))
{
if (pstEthCsPktInfo->eNwpktEthFrameType != eEth802QVLANFrame)
return false;
uPriority = (ntohs(*(USHORT *)(skb->data + sizeof(struct bcm_eth_header))) & 0xF000) >> 13;
if ((uPriority >= pstClassifierRule->usUserPriority[0]) && (uPriority <= pstClassifierRule->usUserPriority[1]))
bClassificationSucceed = TRUE;
if (!bClassificationSucceed)
return false;
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ETH CS 802.1 D User Priority Rule Matched\n");
bClassificationSucceed = false;
if (pstClassifierRule->usValidityBitMap & (1<<PKT_CLASSIFICATION_VLANID_VALID))
{
if (pstEthCsPktInfo->eNwpktEthFrameType != eEth802QVLANFrame)
return false;
usVLANID = ntohs(*(USHORT *)(skb->data + sizeof(struct bcm_eth_header))) & 0xFFF;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "%s Pkt VLANID %x Priority: %d\n", __FUNCTION__, usVLANID, uPriority);
if (usVLANID == ((pstClassifierRule->usVLANID & 0xFFF0) >> 4))
bClassificationSucceed = TRUE;
if (!bClassificationSucceed)
return false;
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ETH CS 802.1 Q VLAN ID Rule Matched\n");
return TRUE;
}
static bool EThCSClassifyPkt(struct bcm_mini_adapter *Adapter, struct sk_buff* skb,
struct bcm_eth_packet_info *pstEthCsPktInfo,
struct bcm_classifier_rule *pstClassifierRule,
B_UINT8 EthCSCupport)
{
bool bClassificationSucceed = false;
bClassificationSucceed = EthCSMatchSrcMACAddress(pstClassifierRule, ((struct bcm_eth_header *)(skb->data))->au8SourceAddress);
if (!bClassificationSucceed)
return false;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ETH CS SrcMAC Matched\n");
bClassificationSucceed = EthCSMatchDestMACAddress(pstClassifierRule, ((struct bcm_eth_header *)(skb->data))->au8DestinationAddress);
if (!bClassificationSucceed)
return false;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ETH CS DestMAC Matched\n");
//classify on ETHType/802.2SAP TLV
bClassificationSucceed = EthCSMatchEThTypeSAP(pstClassifierRule, skb, pstEthCsPktInfo);
if (!bClassificationSucceed)
return false;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ETH CS EthType/802.2SAP Matched\n");
//classify on 802.1VLAN Header Parameters
bClassificationSucceed = EthCSMatchVLANRules(pstClassifierRule, skb, pstEthCsPktInfo);
if (!bClassificationSucceed)
return false;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ETH CS 802.1 VLAN Rules Matched\n");
return bClassificationSucceed;
}
static void EThCSGetPktInfo(struct bcm_mini_adapter *Adapter, PVOID pvEthPayload,
struct bcm_eth_packet_info *pstEthCsPktInfo)
{
USHORT u16Etype = ntohs(((struct bcm_eth_header *)pvEthPayload)->u16Etype);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "EthCSGetPktInfo : Eth Hdr Type : %X\n", u16Etype);
if (u16Etype > 0x5dc)
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "EthCSGetPktInfo : ETH2 Frame\n");
//ETH2 Frame
if (u16Etype == ETHERNET_FRAMETYPE_802QVLAN)
{
//802.1Q VLAN Header
pstEthCsPktInfo->eNwpktEthFrameType = eEth802QVLANFrame;
u16Etype = ((struct bcm_eth_q_frame *)pvEthPayload)->EthType;
//((ETH_CS_802_Q_FRAME*)pvEthPayload)->UserPriority
}
else
{
pstEthCsPktInfo->eNwpktEthFrameType = eEthOtherFrame;
u16Etype = ntohs(u16Etype);
}
}
else
{
//802.2 LLC
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "802.2 LLC Frame\n");
pstEthCsPktInfo->eNwpktEthFrameType = eEth802LLCFrame;
pstEthCsPktInfo->ucDSAP = ((struct bcm_eth_llc_frame *)pvEthPayload)->DSAP;
if (pstEthCsPktInfo->ucDSAP == 0xAA && ((struct bcm_eth_llc_frame *)pvEthPayload)->SSAP == 0xAA)
{
//SNAP Frame
pstEthCsPktInfo->eNwpktEthFrameType = eEth802LLCSNAPFrame;
u16Etype = ((struct bcm_eth_llc_snap_frame *)pvEthPayload)->usEtherType;
}
}
if (u16Etype == ETHERNET_FRAMETYPE_IPV4)
pstEthCsPktInfo->eNwpktIPFrameType = eIPv4Packet;
else if (u16Etype == ETHERNET_FRAMETYPE_IPV6)
pstEthCsPktInfo->eNwpktIPFrameType = eIPv6Packet;
else
pstEthCsPktInfo->eNwpktIPFrameType = eNonIPPacket;
pstEthCsPktInfo->usEtherType = ((struct bcm_eth_header *)pvEthPayload)->u16Etype;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "EthCsPktInfo->eNwpktIPFrameType : %x\n", pstEthCsPktInfo->eNwpktIPFrameType);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "EthCsPktInfo->eNwpktEthFrameType : %x\n", pstEthCsPktInfo->eNwpktEthFrameType);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "EthCsPktInfo->usEtherType : %x\n", pstEthCsPktInfo->usEtherType);
}