- 根目录:
- drivers
- staging
- gdm724x
- gdm_lte.c
/*
* Copyright (c) 2012 GCT Semiconductor, Inc. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/etherdevice.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/udp.h>
#include <linux/in.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/in6.h>
#include <linux/tcp.h>
#include <linux/icmp.h>
#include <linux/icmpv6.h>
#include <linux/uaccess.h>
#include <net/ndisc.h>
#include "gdm_lte.h"
#include "netlink_k.h"
#include "hci.h"
#include "hci_packet.h"
#include "gdm_endian.h"
/*
* Netlink protocol number
*/
#define NETLINK_LTE 30
/*
* Default MTU Size
*/
#define DEFAULT_MTU_SIZE 1500
#define IP_VERSION_4 4
#define IP_VERSION_6 6
static struct {
int ref_cnt;
struct sock *sock;
} lte_event;
static struct device_type wwan_type = {
.name = "wwan",
};
static int gdm_lte_open(struct net_device *dev)
{
netif_start_queue(dev);
return 0;
}
static int gdm_lte_close(struct net_device *dev)
{
netif_stop_queue(dev);
return 0;
}
static int gdm_lte_set_config(struct net_device *dev, struct ifmap *map)
{
if (dev->flags & IFF_UP)
return -EBUSY;
return 0;
}
static void tx_complete(void *arg)
{
struct nic *nic = arg;
if (netif_queue_stopped(nic->netdev))
netif_wake_queue(nic->netdev);
}
static int gdm_lte_rx(struct sk_buff *skb, struct nic *nic, int nic_type)
{
int ret;
ret = netif_rx_ni(skb);
if (ret == NET_RX_DROP) {
nic->stats.rx_dropped++;
} else {
nic->stats.rx_packets++;
nic->stats.rx_bytes += skb->len + ETH_HLEN;
}
return 0;
}
static int gdm_lte_emulate_arp(struct sk_buff *skb_in, u32 nic_type)
{
struct nic *nic = netdev_priv(skb_in->dev);
struct sk_buff *skb_out;
struct ethhdr eth;
struct vlan_ethhdr vlan_eth;
struct arphdr *arp_in;
struct arphdr *arp_out;
struct arpdata {
u8 ar_sha[ETH_ALEN];
u8 ar_sip[4];
u8 ar_tha[ETH_ALEN];
u8 ar_tip[4];
};
struct arpdata *arp_data_in;
struct arpdata *arp_data_out;
u8 arp_temp[60];
void *mac_header_data;
u32 mac_header_len;
/* Format the mac header so that it can be put to skb */
if (ntohs(((struct ethhdr *)skb_in->data)->h_proto) == ETH_P_8021Q) {
memcpy(&vlan_eth, skb_in->data, sizeof(struct vlan_ethhdr));
mac_header_data = &vlan_eth;
mac_header_len = VLAN_ETH_HLEN;
} else {
memcpy(ð, skb_in->data, sizeof(struct ethhdr));
mac_header_data = ð
mac_header_len = ETH_HLEN;
}
/* Get the pointer of the original request */
arp_in = (struct arphdr *)(skb_in->data + mac_header_len);
arp_data_in = (struct arpdata *)(skb_in->data + mac_header_len + sizeof(struct arphdr));
/* Get the pointer of the outgoing response */
arp_out = (struct arphdr *)arp_temp;
arp_data_out = (struct arpdata *)(arp_temp + sizeof(struct arphdr));
/* Copy the arp header */
memcpy(arp_out, arp_in, sizeof(struct arphdr));
arp_out->ar_op = htons(ARPOP_REPLY);
/* Copy the arp payload: based on 2 bytes of mac and fill the IP */
arp_data_out->ar_sha[0] = arp_data_in->ar_sha[0];
arp_data_out->ar_sha[1] = arp_data_in->ar_sha[1];
memcpy(&arp_data_out->ar_sha[2], &arp_data_in->ar_tip[0], 4);
memcpy(&arp_data_out->ar_sip[0], &arp_data_in->ar_tip[0], 4);
memcpy(&arp_data_out->ar_tha[0], &arp_data_in->ar_sha[0], 6);
memcpy(&arp_data_out->ar_tip[0], &arp_data_in->ar_sip[0], 4);
/* Fill the destination mac with source mac of the received packet */
memcpy(mac_header_data, mac_header_data + ETH_ALEN, ETH_ALEN);
/* Fill the source mac with nic's source mac */
memcpy(mac_header_data + ETH_ALEN, nic->src_mac_addr, ETH_ALEN);
/* Alloc skb and reserve align */
skb_out = dev_alloc_skb(skb_in->len);
if (!skb_out)
return -ENOMEM;
skb_reserve(skb_out, NET_IP_ALIGN);
memcpy(skb_put(skb_out, mac_header_len), mac_header_data, mac_header_len);
memcpy(skb_put(skb_out, sizeof(struct arphdr)), arp_out, sizeof(struct arphdr));
memcpy(skb_put(skb_out, sizeof(struct arpdata)), arp_data_out, sizeof(struct arpdata));
skb_out->protocol = ((struct ethhdr *)mac_header_data)->h_proto;
skb_out->dev = skb_in->dev;
skb_reset_mac_header(skb_out);
skb_pull(skb_out, ETH_HLEN);
gdm_lte_rx(skb_out, nic, nic_type);
return 0;
}
static int icmp6_checksum(struct ipv6hdr *ipv6, u16 *ptr, int len)
{
unsigned short *w = ptr;
int sum = 0;
int i;
union {
struct {
u8 ph_src[16];
u8 ph_dst[16];
u32 ph_len;
u8 ph_zero[3];
u8 ph_nxt;
} ph __packed;
u16 pa[20];
} pseudo_header;
memset(&pseudo_header, 0, sizeof(pseudo_header));
memcpy(&pseudo_header.ph.ph_src, &ipv6->saddr.in6_u.u6_addr8, 16);
memcpy(&pseudo_header.ph.ph_dst, &ipv6->daddr.in6_u.u6_addr8, 16);
pseudo_header.ph.ph_len = ipv6->payload_len;
pseudo_header.ph.ph_nxt = ipv6->nexthdr;
w = (u16 *)&pseudo_header;
for (i = 0; i < sizeof(pseudo_header.pa) / sizeof(pseudo_header.pa[0]); i++)
sum += pseudo_header.pa[i];
w = ptr;
while (len > 1) {
sum += *w++;
len -= 2;
}
sum = (sum >> 16) + (sum & 0xFFFF);
sum += (sum >> 16);
sum = ~sum & 0xffff;
return sum;
}
static int gdm_lte_emulate_ndp(struct sk_buff *skb_in, u32 nic_type)
{
struct nic *nic = netdev_priv(skb_in->dev);
struct sk_buff *skb_out;
struct ethhdr eth;
struct vlan_ethhdr vlan_eth;
struct neighbour_advertisement {
u8 target_address[16];
u8 type;
u8 length;
u8 link_layer_address[6];
};
struct neighbour_advertisement na;
struct neighbour_solicitation {
u8 target_address[16];
};
struct neighbour_solicitation *ns;
struct ipv6hdr *ipv6_in;
struct ipv6hdr ipv6_out;
struct icmp6hdr *icmp6_in;
struct icmp6hdr icmp6_out;
void *mac_header_data;
u32 mac_header_len;
/* Format the mac header so that it can be put to skb */
if (ntohs(((struct ethhdr *)skb_in->data)->h_proto) == ETH_P_8021Q) {
memcpy(&vlan_eth, skb_in->data, sizeof(struct vlan_ethhdr));
if (ntohs(vlan_eth.h_vlan_encapsulated_proto) != ETH_P_IPV6)
return -1;
mac_header_data = &vlan_eth;
mac_header_len = VLAN_ETH_HLEN;
} else {
memcpy(ð, skb_in->data, sizeof(struct ethhdr));
if (ntohs(eth.h_proto) != ETH_P_IPV6)
return -1;
mac_header_data = ð
mac_header_len = ETH_HLEN;
}
/* Check if this is IPv6 ICMP packet */
ipv6_in = (struct ipv6hdr *)(skb_in->data + mac_header_len);
if (ipv6_in->version != 6 || ipv6_in->nexthdr != IPPROTO_ICMPV6)
return -1;
/* Check if this is NDP packet */
icmp6_in = (struct icmp6hdr *)(skb_in->data + mac_header_len + sizeof(struct ipv6hdr));
if (icmp6_in->icmp6_type == NDISC_ROUTER_SOLICITATION) { /* Check RS */
return -1;
} else if (icmp6_in->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION) { /* Check NS */
u8 icmp_na[sizeof(struct icmp6hdr) + sizeof(struct neighbour_advertisement)];
u8 zero_addr8[16] = {0,};
if (memcmp(ipv6_in->saddr.in6_u.u6_addr8, zero_addr8, 16) == 0)
/* Duplicate Address Detection: Source IP is all zero */
return 0;
icmp6_out.icmp6_type = NDISC_NEIGHBOUR_ADVERTISEMENT;
icmp6_out.icmp6_code = 0;
icmp6_out.icmp6_cksum = 0;
icmp6_out.icmp6_dataun.un_data32[0] = htonl(0x60000000); /* R=0, S=1, O=1 */
ns = (struct neighbour_solicitation *)(skb_in->data + mac_header_len + sizeof(struct ipv6hdr) + sizeof(struct icmp6hdr));
memcpy(&na.target_address, ns->target_address, 16);
na.type = 0x02;
na.length = 1;
na.link_layer_address[0] = 0x00;
na.link_layer_address[1] = 0x0a;
na.link_layer_address[2] = 0x3b;
na.link_layer_address[3] = 0xaf;
na.link_layer_address[4] = 0x63;
na.link_layer_address[5] = 0xc7;
memcpy(&ipv6_out, ipv6_in, sizeof(struct ipv6hdr));
memcpy(ipv6_out.saddr.in6_u.u6_addr8, &na.target_address, 16);
memcpy(ipv6_out.daddr.in6_u.u6_addr8, ipv6_in->saddr.in6_u.u6_addr8, 16);
ipv6_out.payload_len = htons(sizeof(struct icmp6hdr) + sizeof(struct neighbour_advertisement));
memcpy(icmp_na, &icmp6_out, sizeof(struct icmp6hdr));
memcpy(icmp_na + sizeof(struct icmp6hdr), &na, sizeof(struct neighbour_advertisement));
icmp6_out.icmp6_cksum = icmp6_checksum(&ipv6_out, (u16 *)icmp_na, sizeof(icmp_na));
} else {
return -1;
}
/* Fill the destination mac with source mac of the received packet */
memcpy(mac_header_data, mac_header_data + ETH_ALEN, ETH_ALEN);
/* Fill the source mac with nic's source mac */
memcpy(mac_header_data + ETH_ALEN, nic->src_mac_addr, ETH_ALEN);
/* Alloc skb and reserve align */
skb_out = dev_alloc_skb(skb_in->len);
if (!skb_out)
return -ENOMEM;
skb_reserve(skb_out, NET_IP_ALIGN);
memcpy(skb_put(skb_out, mac_header_len), mac_header_data, mac_header_len);
memcpy(skb_put(skb_out, sizeof(struct ipv6hdr)), &ipv6_out, sizeof(struct ipv6hdr));
memcpy(skb_put(skb_out, sizeof(struct icmp6hdr)), &icmp6_out, sizeof(struct icmp6hdr));
memcpy(skb_put(skb_out, sizeof(struct neighbour_advertisement)), &na, sizeof(struct neighbour_advertisement));
skb_out->protocol = ((struct ethhdr *)mac_header_data)->h_proto;
skb_out->dev = skb_in->dev;
skb_reset_mac_header(skb_out);
skb_pull(skb_out, ETH_HLEN);
gdm_lte_rx(skb_out, nic, nic_type);
return 0;
}
static s32 gdm_lte_tx_nic_type(struct net_device *dev, struct sk_buff *skb)
{
struct nic *nic = netdev_priv(dev);
struct ethhdr *eth;
struct vlan_ethhdr *vlan_eth;
struct iphdr *ip;
struct ipv6hdr *ipv6;
int mac_proto;
void *network_data;
u32 nic_type = 0;
/* NIC TYPE is based on the nic_id of this net_device */
nic_type = 0x00000010 | nic->nic_id;
/* Get ethernet protocol */
eth = (struct ethhdr *)skb->data;
if (ntohs(eth->h_proto) == ETH_P_8021Q) {
vlan_eth = (struct vlan_ethhdr *)skb->data;
mac_proto = ntohs(vlan_eth->h_vlan_encapsulated_proto);
network_data = skb->data + VLAN_ETH_HLEN;
nic_type |= NIC_TYPE_F_VLAN;
} else {
mac_proto = ntohs(eth->h_proto);
network_data = skb->data + ETH_HLEN;
}
/* Process packet for nic type */
switch (mac_proto) {
case ETH_P_ARP:
nic_type |= NIC_TYPE_ARP;
break;
case ETH_P_IP:
nic_type |= NIC_TYPE_F_IPV4;
ip = (struct iphdr *)network_data;
/* Check DHCPv4 */
if (ip->protocol == IPPROTO_UDP) {
struct udphdr *udp = (struct udphdr *)(network_data + sizeof(struct iphdr));
if (ntohs(udp->dest) == 67 || ntohs(udp->dest) == 68)
nic_type |= NIC_TYPE_F_DHCP;
}
break;
case ETH_P_IPV6:
nic_type |= NIC_TYPE_F_IPV6;
ipv6 = (struct ipv6hdr *)network_data;
if (ipv6->nexthdr == IPPROTO_ICMPV6) /* Check NDP request */ {
struct icmp6hdr *icmp6 = (struct icmp6hdr *)(network_data + sizeof(struct ipv6hdr));
if (/*icmp6->icmp6_type == NDISC_ROUTER_SOLICITATION || */
icmp6->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION)
nic_type |= NIC_TYPE_ICMPV6;
} else if (ipv6->nexthdr == IPPROTO_UDP) /* Check DHCPv6 */ {
struct udphdr *udp = (struct udphdr *)(network_data + sizeof(struct ipv6hdr));
if (ntohs(udp->dest) == 546 || ntohs(udp->dest) == 547)
nic_type |= NIC_TYPE_F_DHCP;
}
break;
default:
break;
}
return nic_type;
}
static int gdm_lte_tx(struct sk_buff *skb, struct net_device *dev)
{
struct nic *nic = netdev_priv(dev);
u32 nic_type;
void *data_buf;
int data_len;
int idx;
int ret = 0;
nic_type = gdm_lte_tx_nic_type(dev, skb);
if (nic_type == 0) {
netdev_err(dev, "tx - invalid nic_type\n");
return -1;
}
if (nic_type & NIC_TYPE_ARP) {
if (gdm_lte_emulate_arp(skb, nic_type) == 0) {
dev_kfree_skb(skb);
return 0;
}
}
if (nic_type & NIC_TYPE_ICMPV6) {
if (gdm_lte_emulate_ndp(skb, nic_type) == 0) {
dev_kfree_skb(skb);
return 0;
}
}
/*
Need byte shift (that is, remove VLAN tag) if there is one
For the case of ARP, this breaks the offset as vlan_ethhdr+4 is treated as ethhdr
However, it shouldn't be a problem as the response starts from arp_hdr and ethhdr
is created by this driver based on the NIC mac
*/
if (nic_type & NIC_TYPE_F_VLAN) {
struct vlan_ethhdr *vlan_eth = (struct vlan_ethhdr *)skb->data;
nic->vlan_id = ntohs(vlan_eth->h_vlan_TCI) & VLAN_VID_MASK;
data_buf = skb->data + (VLAN_ETH_HLEN - ETH_HLEN);
data_len = skb->len - (VLAN_ETH_HLEN - ETH_HLEN);
} else {
nic->vlan_id = 0;
data_buf = skb->data;
data_len = skb->len;
}
/* If it is a ICMPV6 packet, clear all the other bits : for backward compatibility with the firmware */
if (nic_type & NIC_TYPE_ICMPV6)
nic_type = NIC_TYPE_ICMPV6;
/* If it is not a dhcp packet, clear all the flag bits : original NIC, otherwise the special flag (IPVX | DHCP) */
if (!(nic_type & NIC_TYPE_F_DHCP))
nic_type &= NIC_TYPE_MASK;
sscanf(dev->name, "lte%d", &idx);
ret = nic->phy_dev->send_sdu_func(nic->phy_dev->priv_dev,
data_buf, data_len,
nic->pdn_table.dft_eps_id, 0,
tx_complete, nic, idx,
nic_type);
if (ret == TX_NO_BUFFER || ret == TX_NO_SPC) {
netif_stop_queue(dev);
if (ret == TX_NO_BUFFER)
ret = 0;
else
ret = -ENOSPC;
} else if (ret == TX_NO_DEV) {
ret = -ENODEV;
}
/* Updates tx stats */
if (ret) {
nic->stats.tx_dropped++;
} else {
nic->stats.tx_packets++;
nic->stats.tx_bytes += data_len;
}
dev_kfree_skb(skb);
return 0;
}
static struct net_device_stats *gdm_lte_stats(struct net_device *dev)
{
struct nic *nic = netdev_priv(dev);
return &nic->stats;
}
static int gdm_lte_event_send(struct net_device *dev, char *buf, int len)
{
struct nic *nic = netdev_priv(dev);
struct hci_packet *hci = (struct hci_packet *)buf;
int idx;
sscanf(dev->name, "lte%d", &idx);
return netlink_send(lte_event.sock, idx, 0, buf,
gdm_dev16_to_cpu(
nic->phy_dev->get_endian(
nic->phy_dev->priv_dev), hci->len)
+ HCI_HEADER_SIZE);
}
static void gdm_lte_event_rcv(struct net_device *dev, u16 type, void *msg, int len)
{
struct nic *nic = netdev_priv(dev);
nic->phy_dev->send_hci_func(nic->phy_dev->priv_dev, msg, len, NULL,
NULL);
}
int gdm_lte_event_init(void)
{
if (lte_event.ref_cnt == 0)
lte_event.sock = netlink_init(NETLINK_LTE, gdm_lte_event_rcv);
if (lte_event.sock) {
lte_event.ref_cnt++;
return 0;
}
pr_err("event init failed\n");
return -1;
}
void gdm_lte_event_exit(void)
{
if (lte_event.sock && --lte_event.ref_cnt == 0) {
netlink_exit(lte_event.sock);
lte_event.sock = NULL;
}
}
static u8 find_dev_index(u32 nic_type)
{
u8 index;
index = (u8)(nic_type & 0x0000000f);
if (index > MAX_NIC_TYPE)
index = 0;
return index;
}
static void gdm_lte_netif_rx(struct net_device *dev, char *buf, int len, int flagged_nic_type)
{
u32 nic_type;
struct nic *nic;
struct sk_buff *skb;
struct ethhdr eth;
struct vlan_ethhdr vlan_eth;
void *mac_header_data;
u32 mac_header_len;
char ip_version = 0;
nic_type = flagged_nic_type & NIC_TYPE_MASK;
nic = netdev_priv(dev);
if (flagged_nic_type & NIC_TYPE_F_DHCP) {
/* Change the destination mac address with the one requested the IP */
if (flagged_nic_type & NIC_TYPE_F_IPV4) {
struct dhcp_packet {
u8 op; /* BOOTREQUEST or BOOTREPLY */
u8 htype; /* hardware address type. 1 = 10mb ethernet */
u8 hlen; /* hardware address length */
u8 hops; /* used by relay agents only */
u32 xid; /* unique id */
u16 secs; /* elapsed since client began acquisition/renewal */
u16 flags; /* only one flag so far: */
#define BROADCAST_FLAG 0x8000 /* "I need broadcast replies" */
u32 ciaddr; /* client IP (if client is in BOUND, RENEW or REBINDING state) */
u32 yiaddr; /* 'your' (client) IP address */
/* IP address of next server to use in bootstrap, returned in DHCPOFFER, DHCPACK by server */
u32 siaddr_nip;
u32 gateway_nip; /* relay agent IP address */
u8 chaddr[16]; /* link-layer client hardware address (MAC) */
u8 sname[64]; /* server host name (ASCIZ) */
u8 file[128]; /* boot file name (ASCIZ) */
u32 cookie; /* fixed first four option bytes (99,130,83,99 dec) */
} __packed;
void *addr = buf + sizeof(struct iphdr) + sizeof(struct udphdr) + offsetof(struct dhcp_packet, chaddr);
memcpy(nic->dest_mac_addr, addr, ETH_ALEN);
}
}
if (nic->vlan_id > 0) {
mac_header_data = (void *)&vlan_eth;
mac_header_len = VLAN_ETH_HLEN;
} else {
mac_header_data = (void *)ð
mac_header_len = ETH_HLEN;
}
/* Format the data so that it can be put to skb */
memcpy(mac_header_data, nic->dest_mac_addr, ETH_ALEN);
memcpy(mac_header_data + ETH_ALEN, nic->src_mac_addr, ETH_ALEN);
vlan_eth.h_vlan_TCI = htons(nic->vlan_id);
vlan_eth.h_vlan_proto = htons(ETH_P_8021Q);
if (nic_type == NIC_TYPE_ARP) {
/* Should be response: Only happens because there was a request from the host */
eth.h_proto = htons(ETH_P_ARP);
vlan_eth.h_vlan_encapsulated_proto = htons(ETH_P_ARP);
} else {
ip_version = buf[0] >> 4;
if (ip_version == IP_VERSION_4) {
eth.h_proto = htons(ETH_P_IP);
vlan_eth.h_vlan_encapsulated_proto = htons(ETH_P_IP);
} else if (ip_version == IP_VERSION_6) {
eth.h_proto = htons(ETH_P_IPV6);
vlan_eth.h_vlan_encapsulated_proto = htons(ETH_P_IPV6);
} else {
netdev_err(dev, "Unknown IP version %d\n", ip_version);
return;
}
}
/* Alloc skb and reserve align */
skb = dev_alloc_skb(len + mac_header_len + NET_IP_ALIGN);
if (!skb)
return;
skb_reserve(skb, NET_IP_ALIGN);
memcpy(skb_put(skb, mac_header_len), mac_header_data, mac_header_len);
memcpy(skb_put(skb, len), buf, len);
skb->protocol = ((struct ethhdr *)mac_header_data)->h_proto;
skb->dev = dev;
skb_reset_mac_header(skb);
skb_pull(skb, ETH_HLEN);
gdm_lte_rx(skb, nic, nic_type);
}
static void gdm_lte_multi_sdu_pkt(struct phy_dev *phy_dev, char *buf, int len)
{
struct net_device *dev;
struct multi_sdu *multi_sdu = (struct multi_sdu *)buf;
struct sdu *sdu = NULL;
u8 *data = (u8 *)multi_sdu->data;
u16 i = 0;
u16 num_packet;
u16 hci_len;
u16 cmd_evt;
u32 nic_type;
u8 index;
hci_len = gdm_dev16_to_cpu(phy_dev->get_endian(phy_dev->priv_dev), multi_sdu->len);
num_packet = gdm_dev16_to_cpu(phy_dev->get_endian(phy_dev->priv_dev), multi_sdu->num_packet);
for (i = 0; i < num_packet; i++) {
sdu = (struct sdu *)data;
cmd_evt = gdm_dev16_to_cpu(phy_dev->get_endian(phy_dev->priv_dev), sdu->cmd_evt);
hci_len = gdm_dev16_to_cpu(phy_dev->get_endian(phy_dev->priv_dev), sdu->len);
nic_type = gdm_dev32_to_cpu(phy_dev->get_endian(phy_dev->priv_dev), sdu->nic_type);
if (cmd_evt != LTE_RX_SDU) {
pr_err("rx sdu wrong hci %04x\n", cmd_evt);
return;
}
if (hci_len < 12) {
pr_err("rx sdu invalid len %d\n", hci_len);
return;
}
index = find_dev_index(nic_type);
if (index < MAX_NIC_TYPE) {
dev = phy_dev->dev[index];
gdm_lte_netif_rx(dev, (char *)sdu->data, (int)(hci_len-12), nic_type);
} else {
pr_err("rx sdu invalid nic_type :%x\n", nic_type);
}
data += ((hci_len+3) & 0xfffc) + HCI_HEADER_SIZE;
}
}
static void gdm_lte_pdn_table(struct net_device *dev, char *buf, int len)
{
struct nic *nic = netdev_priv(dev);
struct hci_pdn_table_ind *pdn_table = (struct hci_pdn_table_ind *)buf;
if (pdn_table->activate) {
nic->pdn_table.activate = pdn_table->activate;
nic->pdn_table.dft_eps_id = gdm_dev32_to_cpu(
nic->phy_dev->get_endian(
nic->phy_dev->priv_dev),
pdn_table->dft_eps_id);
nic->pdn_table.nic_type = gdm_dev32_to_cpu(
nic->phy_dev->get_endian(
nic->phy_dev->priv_dev),
pdn_table->nic_type);
netdev_info(dev, "pdn activated, nic_type=0x%x\n",
nic->pdn_table.nic_type);
} else {
memset(&nic->pdn_table, 0x00, sizeof(struct pdn_table));
netdev_info(dev, "pdn deactivated\n");
}
}
static int gdm_lte_receive_pkt(struct phy_dev *phy_dev, char *buf, int len)
{
struct hci_packet *hci = (struct hci_packet *)buf;
struct hci_pdn_table_ind *pdn_table = (struct hci_pdn_table_ind *)buf;
struct sdu *sdu;
struct net_device *dev;
int ret = 0;
u16 cmd_evt;
u32 nic_type;
u8 index;
if (!len)
return ret;
cmd_evt = gdm_dev16_to_cpu(phy_dev->get_endian(phy_dev->priv_dev), hci->cmd_evt);
dev = phy_dev->dev[0];
if (dev == NULL)
return 0;
switch (cmd_evt) {
case LTE_RX_SDU:
sdu = (struct sdu *)hci->data;
nic_type = gdm_dev32_to_cpu(phy_dev->get_endian(phy_dev->priv_dev), sdu->nic_type);
index = find_dev_index(nic_type);
dev = phy_dev->dev[index];
gdm_lte_netif_rx(dev, hci->data, len, nic_type);
break;
case LTE_RX_MULTI_SDU:
gdm_lte_multi_sdu_pkt(phy_dev, buf, len);
break;
case LTE_LINK_ON_OFF_INDICATION:
netdev_info(dev, "link %s\n",
((struct hci_connect_ind *)buf)->connect
? "on" : "off");
break;
case LTE_PDN_TABLE_IND:
pdn_table = (struct hci_pdn_table_ind *)buf;
nic_type = gdm_dev32_to_cpu(phy_dev->get_endian(phy_dev->priv_dev), pdn_table->nic_type);
index = find_dev_index(nic_type);
dev = phy_dev->dev[index];
gdm_lte_pdn_table(dev, buf, len);
/* Fall through */
default:
ret = gdm_lte_event_send(dev, buf, len);
break;
}
return ret;
}
static int rx_complete(void *arg, void *data, int len, int context)
{
struct phy_dev *phy_dev = (struct phy_dev *)arg;
return gdm_lte_receive_pkt(phy_dev, (char *)data, len);
}
void start_rx_proc(struct phy_dev *phy_dev)
{
int i;
for (i = 0; i < MAX_RX_SUBMIT_COUNT; i++)
phy_dev->rcv_func(phy_dev->priv_dev, rx_complete, phy_dev, USB_COMPLETE);
}
static struct net_device_ops gdm_netdev_ops = {
.ndo_open = gdm_lte_open,
.ndo_stop = gdm_lte_close,
.ndo_set_config = gdm_lte_set_config,
.ndo_start_xmit = gdm_lte_tx,
.ndo_get_stats = gdm_lte_stats,
};
static u8 gdm_lte_macaddr[ETH_ALEN] = {0x00, 0x0a, 0x3b, 0x00, 0x00, 0x00};
static void form_mac_address(u8 *dev_addr, u8 *nic_src, u8 *nic_dest, u8 *mac_address, u8 index)
{
/* Form the dev_addr */
if (!mac_address)
memcpy(dev_addr, gdm_lte_macaddr, ETH_ALEN);
else
memcpy(dev_addr, mac_address, ETH_ALEN);
/* The last byte of the mac address should be less than or equal to 0xFC */
dev_addr[ETH_ALEN-1] += index;
/* Create random nic src and copy the first 3 bytes to be the same as dev_addr */
random_ether_addr(nic_src);
memcpy(nic_src, dev_addr, 3);
/* Copy the nic_dest from dev_addr*/
memcpy(nic_dest, dev_addr, ETH_ALEN);
}
static void validate_mac_address(u8 *mac_address)
{
/* if zero address or multicast bit set, restore the default value */
if (is_zero_ether_addr(mac_address) || (mac_address[0] & 0x01)) {
pr_err("MAC invalid, restoring default\n");
memcpy(mac_address, gdm_lte_macaddr, 6);
}
}
int register_lte_device(struct phy_dev *phy_dev, struct device *dev, u8 *mac_address)
{
struct nic *nic;
struct net_device *net;
char pdn_dev_name[16];
int ret = 0;
u8 index;
validate_mac_address(mac_address);
for (index = 0; index < MAX_NIC_TYPE; index++) {
/* Create device name lteXpdnX */
sprintf(pdn_dev_name, "lte%%dpdn%d", index);
/* Allocate netdev */
net = alloc_netdev(sizeof(struct nic), pdn_dev_name, ether_setup);
if (net == NULL) {
pr_err("alloc_netdev failed\n");
ret = -ENOMEM;
goto err;
}
net->netdev_ops = &gdm_netdev_ops;
net->flags &= ~IFF_MULTICAST;
net->mtu = DEFAULT_MTU_SIZE;
nic = netdev_priv(net);
memset(nic, 0, sizeof(struct nic));
nic->netdev = net;
nic->phy_dev = phy_dev;
nic->nic_id = index;
form_mac_address(
net->dev_addr,
nic->src_mac_addr,
nic->dest_mac_addr,
mac_address,
index);
SET_NETDEV_DEV(net, dev);
SET_NETDEV_DEVTYPE(net, &wwan_type);
ret = register_netdev(net);
if (ret)
goto err;
netif_carrier_on(net);
phy_dev->dev[index] = net;
}
return 0;
err:
unregister_lte_device(phy_dev);
return ret;
}
void unregister_lte_device(struct phy_dev *phy_dev)
{
struct net_device *net;
int index;
for (index = 0; index < MAX_NIC_TYPE; index++) {
net = phy_dev->dev[index];
if (net == NULL)
continue;
unregister_netdev(net);
free_netdev(net);
}
}