- 根目录:
- drivers
- staging
- octeon-usb
- octeon-hcd.c
C++程序
|
3569行
|
111.05 KB
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2008 Cavium Networks
*
* Some parts of the code were originally released under BSD license:
*
* Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights
* reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* * Neither the name of Cavium Networks nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* This Software, including technical data, may be subject to U.S. export
* control laws, including the U.S. Export Administration Act and its associated
* regulations, and may be subject to export or import regulations in other
* countries.
*
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
* AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
* WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
* THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION
* OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
* SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
* MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
* VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
* CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
* PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/usb.h>
#include <linux/time.h>
#include <linux/delay.h>
#include <asm/octeon/cvmx.h>
#include <asm/octeon/cvmx-iob-defs.h>
#include <linux/usb/hcd.h>
#include <linux/err.h>
#include <asm/octeon/octeon.h>
#include <asm/octeon/cvmx-helper.h>
#include <asm/octeon/cvmx-sysinfo.h>
#include <asm/octeon/cvmx-helper-board.h>
#include "octeon-hcd.h"
/**
* enum cvmx_usb_speed - the possible USB device speeds
*
* @CVMX_USB_SPEED_HIGH: Device is operation at 480Mbps
* @CVMX_USB_SPEED_FULL: Device is operation at 12Mbps
* @CVMX_USB_SPEED_LOW: Device is operation at 1.5Mbps
*/
enum cvmx_usb_speed {
CVMX_USB_SPEED_HIGH = 0,
CVMX_USB_SPEED_FULL = 1,
CVMX_USB_SPEED_LOW = 2,
};
/**
* enum cvmx_usb_transfer - the possible USB transfer types
*
* @CVMX_USB_TRANSFER_CONTROL: USB transfer type control for hub and status
* transfers
* @CVMX_USB_TRANSFER_ISOCHRONOUS: USB transfer type isochronous for low
* priority periodic transfers
* @CVMX_USB_TRANSFER_BULK: USB transfer type bulk for large low priority
* transfers
* @CVMX_USB_TRANSFER_INTERRUPT: USB transfer type interrupt for high priority
* periodic transfers
*/
enum cvmx_usb_transfer {
CVMX_USB_TRANSFER_CONTROL = 0,
CVMX_USB_TRANSFER_ISOCHRONOUS = 1,
CVMX_USB_TRANSFER_BULK = 2,
CVMX_USB_TRANSFER_INTERRUPT = 3,
};
/**
* enum cvmx_usb_direction - the transfer directions
*
* @CVMX_USB_DIRECTION_OUT: Data is transferring from Octeon to the device/host
* @CVMX_USB_DIRECTION_IN: Data is transferring from the device/host to Octeon
*/
enum cvmx_usb_direction {
CVMX_USB_DIRECTION_OUT,
CVMX_USB_DIRECTION_IN,
};
/**
* enum cvmx_usb_complete - possible callback function status codes
*
* @CVMX_USB_COMPLETE_SUCCESS: The transaction / operation finished without
* any errors
* @CVMX_USB_COMPLETE_SHORT: FIXME: This is currently not implemented
* @CVMX_USB_COMPLETE_CANCEL: The transaction was canceled while in flight
* by a user call to cvmx_usb_cancel
* @CVMX_USB_COMPLETE_ERROR: The transaction aborted with an unexpected
* error status
* @CVMX_USB_COMPLETE_STALL: The transaction received a USB STALL response
* from the device
* @CVMX_USB_COMPLETE_XACTERR: The transaction failed with an error from the
* device even after a number of retries
* @CVMX_USB_COMPLETE_DATATGLERR: The transaction failed with a data toggle
* error even after a number of retries
* @CVMX_USB_COMPLETE_BABBLEERR: The transaction failed with a babble error
* @CVMX_USB_COMPLETE_FRAMEERR: The transaction failed with a frame error
* even after a number of retries
*/
enum cvmx_usb_complete {
CVMX_USB_COMPLETE_SUCCESS,
CVMX_USB_COMPLETE_SHORT,
CVMX_USB_COMPLETE_CANCEL,
CVMX_USB_COMPLETE_ERROR,
CVMX_USB_COMPLETE_STALL,
CVMX_USB_COMPLETE_XACTERR,
CVMX_USB_COMPLETE_DATATGLERR,
CVMX_USB_COMPLETE_BABBLEERR,
CVMX_USB_COMPLETE_FRAMEERR,
};
/**
* struct cvmx_usb_port_status - the USB port status information
*
* @port_enabled: 1 = Usb port is enabled, 0 = disabled
* @port_over_current: 1 = Over current detected, 0 = Over current not
* detected. Octeon doesn't support over current detection.
* @port_powered: 1 = Port power is being supplied to the device, 0 =
* power is off. Octeon doesn't support turning port power
* off.
* @port_speed: Current port speed.
* @connected: 1 = A device is connected to the port, 0 = No device is
* connected.
* @connect_change: 1 = Device connected state changed since the last set
* status call.
*/
struct cvmx_usb_port_status {
uint32_t reserved : 25;
uint32_t port_enabled : 1;
uint32_t port_over_current : 1;
uint32_t port_powered : 1;
enum cvmx_usb_speed port_speed : 2;
uint32_t connected : 1;
uint32_t connect_change : 1;
};
/**
* union cvmx_usb_control_header - the structure of a Control packet header
*
* @s.request_type: Bit 7 tells the direction: 1=IN, 0=OUT
* @s.request The standard usb request to make
* @s.value Value parameter for the request in little endian format
* @s.index Index for the request in little endian format
* @s.length Length of the data associated with this request in
* little endian format
*/
union cvmx_usb_control_header {
uint64_t u64;
struct {
uint64_t request_type : 8;
uint64_t request : 8;
uint64_t value : 16;
uint64_t index : 16;
uint64_t length : 16;
} s;
};
/**
* struct cvmx_usb_iso_packet - descriptor for Isochronous packets
*
* @offset: This is the offset in bytes into the main buffer where this data
* is stored.
* @length: This is the length in bytes of the data.
* @status: This is the status of this individual packet transfer.
*/
struct cvmx_usb_iso_packet {
int offset;
int length;
enum cvmx_usb_complete status;
};
/**
* enum cvmx_usb_initialize_flags - flags used by the initialization function
*
* @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI: The USB port uses a 12MHz crystal
* as clock source at USB_XO and
* USB_XI.
* @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND: The USB port uses 12/24/48MHz 2.5V
* board clock source at USB_XO.
* USB_XI should be tied to GND.
* @CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK: Mask for clock speed field
* @CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ: Speed of reference clock or
* crystal
* @CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ: Speed of reference clock
* @CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ: Speed of reference clock
* @CVMX_USB_INITIALIZE_FLAGS_NO_DMA: Disable DMA and used polled IO for
* data transfer use for the USB
*/
enum cvmx_usb_initialize_flags {
CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI = 1 << 0,
CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND = 1 << 1,
CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK = 3 << 3,
CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ = 1 << 3,
CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ = 2 << 3,
CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ = 3 << 3,
/* Bits 3-4 used to encode the clock frequency */
CVMX_USB_INITIALIZE_FLAGS_NO_DMA = 1 << 5,
};
/**
* enum cvmx_usb_pipe_flags - internal flags for a pipe.
*
* @__CVMX_USB_PIPE_FLAGS_SCHEDULED: Used internally to determine if a pipe is
* actively using hardware. Do not use.
* @__CVMX_USB_PIPE_FLAGS_NEED_PING: Used internally to determine if a high
* speed pipe is in the ping state. Do not
* use.
*/
enum cvmx_usb_pipe_flags {
__CVMX_USB_PIPE_FLAGS_SCHEDULED = 1 << 17,
__CVMX_USB_PIPE_FLAGS_NEED_PING = 1 << 18,
};
/* Normal prefetch that use the pref instruction. */
#define CVMX_PREFETCH(address, offset) asm volatile ("pref %[type], %[off](%[rbase])" : : [rbase] "d" (address), [off] "I" (offset), [type] "n" (0))
/* Maximum number of times to retry failed transactions */
#define MAX_RETRIES 3
/* Maximum number of hardware channels supported by the USB block */
#define MAX_CHANNELS 8
/* The highest valid USB device address */
#define MAX_USB_ADDRESS 127
/* The highest valid USB endpoint number */
#define MAX_USB_ENDPOINT 15
/* The highest valid port number on a hub */
#define MAX_USB_HUB_PORT 15
/*
* The low level hardware can transfer a maximum of this number of bytes in each
* transfer. The field is 19 bits wide
*/
#define MAX_TRANSFER_BYTES ((1<<19)-1)
/*
* The low level hardware can transfer a maximum of this number of packets in
* each transfer. The field is 10 bits wide
*/
#define MAX_TRANSFER_PACKETS ((1<<10)-1)
/**
* Logical transactions may take numerous low level
* transactions, especially when splits are concerned. This
* enum represents all of the possible stages a transaction can
* be in. Note that split completes are always even. This is so
* the NAK handler can backup to the previous low level
* transaction with a simple clearing of bit 0.
*/
enum cvmx_usb_stage {
CVMX_USB_STAGE_NON_CONTROL,
CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE,
CVMX_USB_STAGE_SETUP,
CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE,
CVMX_USB_STAGE_DATA,
CVMX_USB_STAGE_DATA_SPLIT_COMPLETE,
CVMX_USB_STAGE_STATUS,
CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE,
};
/**
* struct cvmx_usb_transaction - describes each pending USB transaction
* regardless of type. These are linked together
* to form a list of pending requests for a pipe.
*
* @node: List node for transactions in the pipe.
* @type: Type of transaction, duplicated of the pipe.
* @flags: State flags for this transaction.
* @buffer: User's physical buffer address to read/write.
* @buffer_length: Size of the user's buffer in bytes.
* @control_header: For control transactions, physical address of the 8
* byte standard header.
* @iso_start_frame: For ISO transactions, the starting frame number.
* @iso_number_packets: For ISO transactions, the number of packets in the
* request.
* @iso_packets: For ISO transactions, the sub packets in the request.
* @actual_bytes: Actual bytes transfer for this transaction.
* @stage: For control transactions, the current stage.
* @urb: URB.
*/
struct cvmx_usb_transaction {
struct list_head node;
enum cvmx_usb_transfer type;
uint64_t buffer;
int buffer_length;
uint64_t control_header;
int iso_start_frame;
int iso_number_packets;
struct cvmx_usb_iso_packet *iso_packets;
int xfersize;
int pktcnt;
int retries;
int actual_bytes;
enum cvmx_usb_stage stage;
struct urb *urb;
};
/**
* struct cvmx_usb_pipe - a pipe represents a virtual connection between Octeon
* and some USB device. It contains a list of pending
* request to the device.
*
* @node: List node for pipe list
* @next: Pipe after this one in the list
* @transactions: List of pending transactions
* @interval: For periodic pipes, the interval between packets in
* frames
* @next_tx_frame: The next frame this pipe is allowed to transmit on
* @flags: State flags for this pipe
* @device_speed: Speed of device connected to this pipe
* @transfer_type: Type of transaction supported by this pipe
* @transfer_dir: IN or OUT. Ignored for Control
* @multi_count: Max packet in a row for the device
* @max_packet: The device's maximum packet size in bytes
* @device_addr: USB device address at other end of pipe
* @endpoint_num: USB endpoint number at other end of pipe
* @hub_device_addr: Hub address this device is connected to
* @hub_port: Hub port this device is connected to
* @pid_toggle: This toggles between 0/1 on every packet send to track
* the data pid needed
* @channel: Hardware DMA channel for this pipe
* @split_sc_frame: The low order bits of the frame number the split
* complete should be sent on
*/
struct cvmx_usb_pipe {
struct list_head node;
struct list_head transactions;
uint64_t interval;
uint64_t next_tx_frame;
enum cvmx_usb_pipe_flags flags;
enum cvmx_usb_speed device_speed;
enum cvmx_usb_transfer transfer_type;
enum cvmx_usb_direction transfer_dir;
int multi_count;
uint16_t max_packet;
uint8_t device_addr;
uint8_t endpoint_num;
uint8_t hub_device_addr;
uint8_t hub_port;
uint8_t pid_toggle;
uint8_t channel;
int8_t split_sc_frame;
};
struct cvmx_usb_tx_fifo {
struct {
int channel;
int size;
uint64_t address;
} entry[MAX_CHANNELS+1];
int head;
int tail;
};
/**
* struct cvmx_usb_state - the state of the USB block
*
* init_flags: Flags passed to initialize.
* index: Which USB block this is for.
* idle_hardware_channels: Bit set for every idle hardware channel.
* usbcx_hprt: Stored port status so we don't need to read a CSR to
* determine splits.
* pipe_for_channel: Map channels to pipes.
* pipe: Storage for pipes.
* indent: Used by debug output to indent functions.
* port_status: Last port status used for change notification.
* idle_pipes: List of open pipes that have no transactions.
* active_pipes: Active pipes indexed by transfer type.
* frame_number: Increments every SOF interrupt for time keeping.
* active_split: Points to the current active split, or NULL.
*/
struct cvmx_usb_state {
int init_flags;
int index;
int idle_hardware_channels;
union cvmx_usbcx_hprt usbcx_hprt;
struct cvmx_usb_pipe *pipe_for_channel[MAX_CHANNELS];
int indent;
struct cvmx_usb_port_status port_status;
struct list_head idle_pipes;
struct list_head active_pipes[4];
uint64_t frame_number;
struct cvmx_usb_transaction *active_split;
struct cvmx_usb_tx_fifo periodic;
struct cvmx_usb_tx_fifo nonperiodic;
};
struct octeon_hcd {
spinlock_t lock;
struct cvmx_usb_state usb;
struct tasklet_struct dequeue_tasklet;
struct list_head dequeue_list;
};
/* This macro spins on a field waiting for it to reach a value */
#define CVMX_WAIT_FOR_FIELD32(address, type, field, op, value, timeout_usec)\
({int result; \
do { \
uint64_t done = cvmx_get_cycle() + (uint64_t)timeout_usec * \
octeon_get_clock_rate() / 1000000; \
type c; \
while (1) { \
c.u32 = __cvmx_usb_read_csr32(usb, address); \
if (c.s.field op (value)) { \
result = 0; \
break; \
} else if (cvmx_get_cycle() > done) { \
result = -1; \
break; \
} else \
cvmx_wait(100); \
} \
} while (0); \
result; })
/*
* This macro logically sets a single field in a CSR. It does the sequence
* read, modify, and write
*/
#define USB_SET_FIELD32(address, type, field, value) \
do { \
type c; \
c.u32 = __cvmx_usb_read_csr32(usb, address); \
c.s.field = value; \
__cvmx_usb_write_csr32(usb, address, c.u32); \
} while (0)
/* Returns the IO address to push/pop stuff data from the FIFOs */
#define USB_FIFO_ADDRESS(channel, usb_index) (CVMX_USBCX_GOTGCTL(usb_index) + ((channel)+1)*0x1000)
/**
* Read a USB 32bit CSR. It performs the necessary address swizzle
* for 32bit CSRs and logs the value in a readable format if
* debugging is on.
*
* @usb: USB block this access is for
* @address: 64bit address to read
*
* Returns: Result of the read
*/
static inline uint32_t __cvmx_usb_read_csr32(struct cvmx_usb_state *usb,
uint64_t address)
{
uint32_t result = cvmx_read64_uint32(address ^ 4);
return result;
}
/**
* Write a USB 32bit CSR. It performs the necessary address
* swizzle for 32bit CSRs and logs the value in a readable format
* if debugging is on.
*
* @usb: USB block this access is for
* @address: 64bit address to write
* @value: Value to write
*/
static inline void __cvmx_usb_write_csr32(struct cvmx_usb_state *usb,
uint64_t address, uint32_t value)
{
cvmx_write64_uint32(address ^ 4, value);
cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
}
/**
* Read a USB 64bit CSR. It logs the value in a readable format if
* debugging is on.
*
* @usb: USB block this access is for
* @address: 64bit address to read
*
* Returns: Result of the read
*/
static inline uint64_t __cvmx_usb_read_csr64(struct cvmx_usb_state *usb,
uint64_t address)
{
uint64_t result = cvmx_read64_uint64(address);
return result;
}
/**
* Write a USB 64bit CSR. It logs the value in a readable format
* if debugging is on.
*
* @usb: USB block this access is for
* @address: 64bit address to write
* @value: Value to write
*/
static inline void __cvmx_usb_write_csr64(struct cvmx_usb_state *usb,
uint64_t address, uint64_t value)
{
cvmx_write64_uint64(address, value);
}
/**
* Return non zero if this pipe connects to a non HIGH speed
* device through a high speed hub.
*
* @usb: USB block this access is for
* @pipe: Pipe to check
*
* Returns: Non zero if we need to do split transactions
*/
static inline int __cvmx_usb_pipe_needs_split(struct cvmx_usb_state *usb,
struct cvmx_usb_pipe *pipe)
{
return pipe->device_speed != CVMX_USB_SPEED_HIGH &&
usb->usbcx_hprt.s.prtspd == CVMX_USB_SPEED_HIGH;
}
/**
* Trivial utility function to return the correct PID for a pipe
*
* @pipe: pipe to check
*
* Returns: PID for pipe
*/
static inline int __cvmx_usb_get_data_pid(struct cvmx_usb_pipe *pipe)
{
if (pipe->pid_toggle)
return 2; /* Data1 */
else
return 0; /* Data0 */
}
/**
* Initialize a USB port for use. This must be called before any
* other access to the Octeon USB port is made. The port starts
* off in the disabled state.
*
* @usb: Pointer to an empty struct cvmx_usb_state
* that will be populated by the initialize call.
* This structure is then passed to all other USB
* functions.
* @usb_port_number:
* Which Octeon USB port to initialize.
*
* Returns: 0 or a negative error code.
*/
static int cvmx_usb_initialize(struct cvmx_usb_state *usb,
int usb_port_number,
enum cvmx_usb_initialize_flags flags)
{
union cvmx_usbnx_clk_ctl usbn_clk_ctl;
union cvmx_usbnx_usbp_ctl_status usbn_usbp_ctl_status;
int i;
/* At first allow 0-1 for the usb port number */
if ((usb_port_number < 0) || (usb_port_number > 1))
return -EINVAL;
memset(usb, 0, sizeof(*usb));
usb->init_flags = flags;
/* Initialize the USB state structure */
usb->index = usb_port_number;
INIT_LIST_HEAD(&usb->idle_pipes);
for (i = 0; i < ARRAY_SIZE(usb->active_pipes); i++)
INIT_LIST_HEAD(&usb->active_pipes[i]);
/*
* Power On Reset and PHY Initialization
*
* 1. Wait for DCOK to assert (nothing to do)
*
* 2a. Write USBN0/1_CLK_CTL[POR] = 1 and
* USBN0/1_CLK_CTL[HRST,PRST,HCLK_RST] = 0
*/
usbn_clk_ctl.u64 = __cvmx_usb_read_csr64(usb, CVMX_USBNX_CLK_CTL(usb->index));
usbn_clk_ctl.s.por = 1;
usbn_clk_ctl.s.hrst = 0;
usbn_clk_ctl.s.prst = 0;
usbn_clk_ctl.s.hclk_rst = 0;
usbn_clk_ctl.s.enable = 0;
/*
* 2b. Select the USB reference clock/crystal parameters by writing
* appropriate values to USBN0/1_CLK_CTL[P_C_SEL, P_RTYPE, P_COM_ON]
*/
if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND) {
/*
* The USB port uses 12/24/48MHz 2.5V board clock
* source at USB_XO. USB_XI should be tied to GND.
* Most Octeon evaluation boards require this setting
*/
if (OCTEON_IS_MODEL(OCTEON_CN3XXX) ||
OCTEON_IS_MODEL(OCTEON_CN56XX) ||
OCTEON_IS_MODEL(OCTEON_CN50XX))
/* From CN56XX,CN50XX,CN31XX,CN30XX manuals */
usbn_clk_ctl.s.p_rtype = 2; /* p_rclk=1 & p_xenbn=0 */
else
/* From CN52XX manual */
usbn_clk_ctl.s.p_rtype = 1;
switch (flags & CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK) {
case CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ:
usbn_clk_ctl.s.p_c_sel = 0;
break;
case CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ:
usbn_clk_ctl.s.p_c_sel = 1;
break;
case CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ:
usbn_clk_ctl.s.p_c_sel = 2;
break;
}
} else {
/*
* The USB port uses a 12MHz crystal as clock source
* at USB_XO and USB_XI
*/
if (OCTEON_IS_MODEL(OCTEON_CN3XXX))
/* From CN31XX,CN30XX manual */
usbn_clk_ctl.s.p_rtype = 3; /* p_rclk=1 & p_xenbn=1 */
else
/* From CN56XX,CN52XX,CN50XX manuals. */
usbn_clk_ctl.s.p_rtype = 0;
usbn_clk_ctl.s.p_c_sel = 0;
}
/*
* 2c. Select the HCLK via writing USBN0/1_CLK_CTL[DIVIDE, DIVIDE2] and
* setting USBN0/1_CLK_CTL[ENABLE] = 1. Divide the core clock down
* such that USB is as close as possible to 125Mhz
*/
{
int divisor = (octeon_get_clock_rate()+125000000-1)/125000000;
/* Lower than 4 doesn't seem to work properly */
if (divisor < 4)
divisor = 4;
usbn_clk_ctl.s.divide = divisor;
usbn_clk_ctl.s.divide2 = 0;
}
__cvmx_usb_write_csr64(usb, CVMX_USBNX_CLK_CTL(usb->index),
usbn_clk_ctl.u64);
/* 2d. Write USBN0/1_CLK_CTL[HCLK_RST] = 1 */
usbn_clk_ctl.s.hclk_rst = 1;
__cvmx_usb_write_csr64(usb, CVMX_USBNX_CLK_CTL(usb->index),
usbn_clk_ctl.u64);
/* 2e. Wait 64 core-clock cycles for HCLK to stabilize */
cvmx_wait(64);
/*
* 3. Program the power-on reset field in the USBN clock-control
* register:
* USBN_CLK_CTL[POR] = 0
*/
usbn_clk_ctl.s.por = 0;
__cvmx_usb_write_csr64(usb, CVMX_USBNX_CLK_CTL(usb->index),
usbn_clk_ctl.u64);
/* 4. Wait 1 ms for PHY clock to start */
mdelay(1);
/*
* 5. Program the Reset input from automatic test equipment field in the
* USBP control and status register:
* USBN_USBP_CTL_STATUS[ATE_RESET] = 1
*/
usbn_usbp_ctl_status.u64 = __cvmx_usb_read_csr64(usb, CVMX_USBNX_USBP_CTL_STATUS(usb->index));
usbn_usbp_ctl_status.s.ate_reset = 1;
__cvmx_usb_write_csr64(usb, CVMX_USBNX_USBP_CTL_STATUS(usb->index),
usbn_usbp_ctl_status.u64);
/* 6. Wait 10 cycles */
cvmx_wait(10);
/*
* 7. Clear ATE_RESET field in the USBN clock-control register:
* USBN_USBP_CTL_STATUS[ATE_RESET] = 0
*/
usbn_usbp_ctl_status.s.ate_reset = 0;
__cvmx_usb_write_csr64(usb, CVMX_USBNX_USBP_CTL_STATUS(usb->index),
usbn_usbp_ctl_status.u64);
/*
* 8. Program the PHY reset field in the USBN clock-control register:
* USBN_CLK_CTL[PRST] = 1
*/
usbn_clk_ctl.s.prst = 1;
__cvmx_usb_write_csr64(usb, CVMX_USBNX_CLK_CTL(usb->index),
usbn_clk_ctl.u64);
/*
* 9. Program the USBP control and status register to select host or
* device mode. USBN_USBP_CTL_STATUS[HST_MODE] = 0 for host, = 1 for
* device
*/
usbn_usbp_ctl_status.s.hst_mode = 0;
__cvmx_usb_write_csr64(usb, CVMX_USBNX_USBP_CTL_STATUS(usb->index),
usbn_usbp_ctl_status.u64);
/* 10. Wait 1 us */
udelay(1);
/*
* 11. Program the hreset_n field in the USBN clock-control register:
* USBN_CLK_CTL[HRST] = 1
*/
usbn_clk_ctl.s.hrst = 1;
__cvmx_usb_write_csr64(usb, CVMX_USBNX_CLK_CTL(usb->index),
usbn_clk_ctl.u64);
/* 12. Proceed to USB core initialization */
usbn_clk_ctl.s.enable = 1;
__cvmx_usb_write_csr64(usb, CVMX_USBNX_CLK_CTL(usb->index),
usbn_clk_ctl.u64);
udelay(1);
/*
* USB Core Initialization
*
* 1. Read USBC_GHWCFG1, USBC_GHWCFG2, USBC_GHWCFG3, USBC_GHWCFG4 to
* determine USB core configuration parameters.
*
* Nothing needed
*
* 2. Program the following fields in the global AHB configuration
* register (USBC_GAHBCFG)
* DMA mode, USBC_GAHBCFG[DMAEn]: 1 = DMA mode, 0 = slave mode
* Burst length, USBC_GAHBCFG[HBSTLEN] = 0
* Nonperiodic TxFIFO empty level (slave mode only),
* USBC_GAHBCFG[NPTXFEMPLVL]
* Periodic TxFIFO empty level (slave mode only),
* USBC_GAHBCFG[PTXFEMPLVL]
* Global interrupt mask, USBC_GAHBCFG[GLBLINTRMSK] = 1
*/
{
union cvmx_usbcx_gahbcfg usbcx_gahbcfg;
/* Due to an errata, CN31XX doesn't support DMA */
if (OCTEON_IS_MODEL(OCTEON_CN31XX))
usb->init_flags |= CVMX_USB_INITIALIZE_FLAGS_NO_DMA;
usbcx_gahbcfg.u32 = 0;
usbcx_gahbcfg.s.dmaen = !(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA);
if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
/* Only use one channel with non DMA */
usb->idle_hardware_channels = 0x1;
else if (OCTEON_IS_MODEL(OCTEON_CN5XXX))
/* CN5XXX have an errata with channel 3 */
usb->idle_hardware_channels = 0xf7;
else
usb->idle_hardware_channels = 0xff;
usbcx_gahbcfg.s.hbstlen = 0;
usbcx_gahbcfg.s.nptxfemplvl = 1;
usbcx_gahbcfg.s.ptxfemplvl = 1;
usbcx_gahbcfg.s.glblintrmsk = 1;
__cvmx_usb_write_csr32(usb, CVMX_USBCX_GAHBCFG(usb->index),
usbcx_gahbcfg.u32);
}
/*
* 3. Program the following fields in USBC_GUSBCFG register.
* HS/FS timeout calibration, USBC_GUSBCFG[TOUTCAL] = 0
* ULPI DDR select, USBC_GUSBCFG[DDRSEL] = 0
* USB turnaround time, USBC_GUSBCFG[USBTRDTIM] = 0x5
* PHY low-power clock select, USBC_GUSBCFG[PHYLPWRCLKSEL] = 0
*/
{
union cvmx_usbcx_gusbcfg usbcx_gusbcfg;
usbcx_gusbcfg.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_GUSBCFG(usb->index));
usbcx_gusbcfg.s.toutcal = 0;
usbcx_gusbcfg.s.ddrsel = 0;
usbcx_gusbcfg.s.usbtrdtim = 0x5;
usbcx_gusbcfg.s.phylpwrclksel = 0;
__cvmx_usb_write_csr32(usb, CVMX_USBCX_GUSBCFG(usb->index),
usbcx_gusbcfg.u32);
}
/*
* 4. The software must unmask the following bits in the USBC_GINTMSK
* register.
* OTG interrupt mask, USBC_GINTMSK[OTGINTMSK] = 1
* Mode mismatch interrupt mask, USBC_GINTMSK[MODEMISMSK] = 1
*/
{
union cvmx_usbcx_gintmsk usbcx_gintmsk;
int channel;
usbcx_gintmsk.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_GINTMSK(usb->index));
usbcx_gintmsk.s.otgintmsk = 1;
usbcx_gintmsk.s.modemismsk = 1;
usbcx_gintmsk.s.hchintmsk = 1;
usbcx_gintmsk.s.sofmsk = 0;
/* We need RX FIFO interrupts if we don't have DMA */
if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
usbcx_gintmsk.s.rxflvlmsk = 1;
__cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTMSK(usb->index),
usbcx_gintmsk.u32);
/*
* Disable all channel interrupts. We'll enable them per channel
* later.
*/
for (channel = 0; channel < 8; channel++)
__cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTMSKX(channel, usb->index), 0);
}
{
/*
* Host Port Initialization
*
* 1. Program the host-port interrupt-mask field to unmask,
* USBC_GINTMSK[PRTINT] = 1
*/
USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), union cvmx_usbcx_gintmsk,
prtintmsk, 1);
USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), union cvmx_usbcx_gintmsk,
disconnintmsk, 1);
/*
* 2. Program the USBC_HCFG register to select full-speed host
* or high-speed host.
*/
{
union cvmx_usbcx_hcfg usbcx_hcfg;
usbcx_hcfg.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HCFG(usb->index));
usbcx_hcfg.s.fslssupp = 0;
usbcx_hcfg.s.fslspclksel = 0;
__cvmx_usb_write_csr32(usb, CVMX_USBCX_HCFG(usb->index), usbcx_hcfg.u32);
}
/*
* 3. Program the port power bit to drive VBUS on the USB,
* USBC_HPRT[PRTPWR] = 1
*/
USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), union cvmx_usbcx_hprt, prtpwr, 1);
/*
* Steps 4-15 from the manual are done later in the port enable
*/
}
return 0;
}
/**
* Shutdown a USB port after a call to cvmx_usb_initialize().
* The port should be disabled with all pipes closed when this
* function is called.
*
* @usb: USB device state populated by cvmx_usb_initialize().
*
* Returns: 0 or a negative error code.
*/
static int cvmx_usb_shutdown(struct cvmx_usb_state *usb)
{
union cvmx_usbnx_clk_ctl usbn_clk_ctl;
/* Make sure all pipes are closed */
if (!list_empty(&usb->idle_pipes) ||
!list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_ISOCHRONOUS]) ||
!list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_INTERRUPT]) ||
!list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_CONTROL]) ||
!list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_BULK]))
return -EBUSY;
/* Disable the clocks and put them in power on reset */
usbn_clk_ctl.u64 = __cvmx_usb_read_csr64(usb, CVMX_USBNX_CLK_CTL(usb->index));
usbn_clk_ctl.s.enable = 1;
usbn_clk_ctl.s.por = 1;
usbn_clk_ctl.s.hclk_rst = 1;
usbn_clk_ctl.s.prst = 0;
usbn_clk_ctl.s.hrst = 0;
__cvmx_usb_write_csr64(usb, CVMX_USBNX_CLK_CTL(usb->index),
usbn_clk_ctl.u64);
return 0;
}
/**
* Enable a USB port. After this call succeeds, the USB port is
* online and servicing requests.
*
* @usb: USB device state populated by cvmx_usb_initialize().
*
* Returns: 0 or a negative error code.
*/
static int cvmx_usb_enable(struct cvmx_usb_state *usb)
{
union cvmx_usbcx_ghwcfg3 usbcx_ghwcfg3;
usb->usbcx_hprt.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
/*
* If the port is already enabled the just return. We don't need to do
* anything
*/
if (usb->usbcx_hprt.s.prtena)
return 0;
/* If there is nothing plugged into the port then fail immediately */
if (!usb->usbcx_hprt.s.prtconnsts) {
return -ETIMEDOUT;
}
/* Program the port reset bit to start the reset process */
USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), union cvmx_usbcx_hprt, prtrst, 1);
/*
* Wait at least 50ms (high speed), or 10ms (full speed) for the reset
* process to complete.
*/
mdelay(50);
/* Program the port reset bit to 0, USBC_HPRT[PRTRST] = 0 */
USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), union cvmx_usbcx_hprt, prtrst, 0);
/* Wait for the USBC_HPRT[PRTENA]. */
if (CVMX_WAIT_FOR_FIELD32(CVMX_USBCX_HPRT(usb->index), union cvmx_usbcx_hprt,
prtena, ==, 1, 100000))
return -ETIMEDOUT;
/*
* Read the port speed field to get the enumerated speed,
* USBC_HPRT[PRTSPD].
*/
usb->usbcx_hprt.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
usbcx_ghwcfg3.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_GHWCFG3(usb->index));
/*
* 13. Program the USBC_GRXFSIZ register to select the size of the
* receive FIFO (25%).
*/
USB_SET_FIELD32(CVMX_USBCX_GRXFSIZ(usb->index), union cvmx_usbcx_grxfsiz,
rxfdep, usbcx_ghwcfg3.s.dfifodepth / 4);
/*
* 14. Program the USBC_GNPTXFSIZ register to select the size and the
* start address of the non- periodic transmit FIFO for nonperiodic
* transactions (50%).
*/
{
union cvmx_usbcx_gnptxfsiz siz;
siz.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index));
siz.s.nptxfdep = usbcx_ghwcfg3.s.dfifodepth / 2;
siz.s.nptxfstaddr = usbcx_ghwcfg3.s.dfifodepth / 4;
__cvmx_usb_write_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index), siz.u32);
}
/*
* 15. Program the USBC_HPTXFSIZ register to select the size and start
* address of the periodic transmit FIFO for periodic transactions
* (25%).
*/
{
union cvmx_usbcx_hptxfsiz siz;
siz.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index));
siz.s.ptxfsize = usbcx_ghwcfg3.s.dfifodepth / 4;
siz.s.ptxfstaddr = 3 * usbcx_ghwcfg3.s.dfifodepth / 4;
__cvmx_usb_write_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index), siz.u32);
}
/* Flush all FIFOs */
USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index), union cvmx_usbcx_grstctl, txfnum, 0x10);
USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index), union cvmx_usbcx_grstctl, txfflsh, 1);
CVMX_WAIT_FOR_FIELD32(CVMX_USBCX_GRSTCTL(usb->index), union cvmx_usbcx_grstctl,
txfflsh, ==, 0, 100);
USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index), union cvmx_usbcx_grstctl, rxfflsh, 1);
CVMX_WAIT_FOR_FIELD32(CVMX_USBCX_GRSTCTL(usb->index), union cvmx_usbcx_grstctl,
rxfflsh, ==, 0, 100);
return 0;
}
/**
* Disable a USB port. After this call the USB port will not
* generate data transfers and will not generate events.
* Transactions in process will fail and call their
* associated callbacks.
*
* @usb: USB device state populated by cvmx_usb_initialize().
*
* Returns: 0 or a negative error code.
*/
static int cvmx_usb_disable(struct cvmx_usb_state *usb)
{
/* Disable the port */
USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), union cvmx_usbcx_hprt, prtena, 1);
return 0;
}
/**
* Get the current state of the USB port. Use this call to
* determine if the usb port has anything connected, is enabled,
* or has some sort of error condition. The return value of this
* call has "changed" bits to signal of the value of some fields
* have changed between calls.
*
* @usb: USB device state populated by cvmx_usb_initialize().
*
* Returns: Port status information
*/
static struct cvmx_usb_port_status cvmx_usb_get_status(struct cvmx_usb_state *usb)
{
union cvmx_usbcx_hprt usbc_hprt;
struct cvmx_usb_port_status result;
memset(&result, 0, sizeof(result));
usbc_hprt.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
result.port_enabled = usbc_hprt.s.prtena;
result.port_over_current = usbc_hprt.s.prtovrcurract;
result.port_powered = usbc_hprt.s.prtpwr;
result.port_speed = usbc_hprt.s.prtspd;
result.connected = usbc_hprt.s.prtconnsts;
result.connect_change = (result.connected != usb->port_status.connected);
return result;
}
/**
* Open a virtual pipe between the host and a USB device. A pipe
* must be opened before data can be transferred between a device
* and Octeon.
*
* @usb: USB device state populated by cvmx_usb_initialize().
* @device_addr:
* USB device address to open the pipe to
* (0-127).
* @endpoint_num:
* USB endpoint number to open the pipe to
* (0-15).
* @device_speed:
* The speed of the device the pipe is going
* to. This must match the device's speed,
* which may be different than the port speed.
* @max_packet: The maximum packet length the device can
* transmit/receive (low speed=0-8, full
* speed=0-1023, high speed=0-1024). This value
* comes from the standard endpoint descriptor
* field wMaxPacketSize bits <10:0>.
* @transfer_type:
* The type of transfer this pipe is for.
* @transfer_dir:
* The direction the pipe is in. This is not
* used for control pipes.
* @interval: For ISOCHRONOUS and INTERRUPT transfers,
* this is how often the transfer is scheduled
* for. All other transfers should specify
* zero. The units are in frames (8000/sec at
* high speed, 1000/sec for full speed).
* @multi_count:
* For high speed devices, this is the maximum
* allowed number of packet per microframe.
* Specify zero for non high speed devices. This
* value comes from the standard endpoint descriptor
* field wMaxPacketSize bits <12:11>.
* @hub_device_addr:
* Hub device address this device is connected
* to. Devices connected directly to Octeon
* use zero. This is only used when the device
* is full/low speed behind a high speed hub.
* The address will be of the high speed hub,
* not and full speed hubs after it.
* @hub_port: Which port on the hub the device is
* connected. Use zero for devices connected
* directly to Octeon. Like hub_device_addr,
* this is only used for full/low speed
* devices behind a high speed hub.
*
* Returns: A non-NULL value is a pipe. NULL means an error.
*/
static struct cvmx_usb_pipe *cvmx_usb_open_pipe(struct cvmx_usb_state *usb,
int device_addr, int
endpoint_num,
enum cvmx_usb_speed
device_speed,
int max_packet,
enum cvmx_usb_transfer
transfer_type,
enum cvmx_usb_direction
transfer_dir,
int interval, int multi_count,
int hub_device_addr,
int hub_port)
{
struct cvmx_usb_pipe *pipe;
if (unlikely((device_addr < 0) || (device_addr > MAX_USB_ADDRESS)))
return NULL;
if (unlikely((endpoint_num < 0) || (endpoint_num > MAX_USB_ENDPOINT)))
return NULL;
if (unlikely(device_speed > CVMX_USB_SPEED_LOW))
return NULL;
if (unlikely((max_packet <= 0) || (max_packet > 1024)))
return NULL;
if (unlikely(transfer_type > CVMX_USB_TRANSFER_INTERRUPT))
return NULL;
if (unlikely((transfer_dir != CVMX_USB_DIRECTION_OUT) &&
(transfer_dir != CVMX_USB_DIRECTION_IN)))
return NULL;
if (unlikely(interval < 0))
return NULL;
if (unlikely((transfer_type == CVMX_USB_TRANSFER_CONTROL) && interval))
return NULL;
if (unlikely(multi_count < 0))
return NULL;
if (unlikely((device_speed != CVMX_USB_SPEED_HIGH) &&
(multi_count != 0)))
return NULL;
if (unlikely((hub_device_addr < 0) || (hub_device_addr > MAX_USB_ADDRESS)))
return NULL;
if (unlikely((hub_port < 0) || (hub_port > MAX_USB_HUB_PORT)))
return NULL;
pipe = kzalloc(sizeof(*pipe), GFP_ATOMIC);
if (!pipe)
return NULL;
if ((device_speed == CVMX_USB_SPEED_HIGH) &&
(transfer_dir == CVMX_USB_DIRECTION_OUT) &&
(transfer_type == CVMX_USB_TRANSFER_BULK))
pipe->flags |= __CVMX_USB_PIPE_FLAGS_NEED_PING;
pipe->device_addr = device_addr;
pipe->endpoint_num = endpoint_num;
pipe->device_speed = device_speed;
pipe->max_packet = max_packet;
pipe->transfer_type = transfer_type;
pipe->transfer_dir = transfer_dir;
INIT_LIST_HEAD(&pipe->transactions);
/*
* All pipes use interval to rate limit NAK processing. Force an
* interval if one wasn't supplied
*/
if (!interval)
interval = 1;
if (__cvmx_usb_pipe_needs_split(usb, pipe)) {
pipe->interval = interval*8;
/* Force start splits to be schedule on uFrame 0 */
pipe->next_tx_frame = ((usb->frame_number+7)&~7) + pipe->interval;
} else {
pipe->interval = interval;
pipe->next_tx_frame = usb->frame_number + pipe->interval;
}
pipe->multi_count = multi_count;
pipe->hub_device_addr = hub_device_addr;
pipe->hub_port = hub_port;
pipe->pid_toggle = 0;
pipe->split_sc_frame = -1;
list_add_tail(&pipe->node, &usb->idle_pipes);
/*
* We don't need to tell the hardware about this pipe yet since
* it doesn't have any submitted requests
*/
return pipe;
}
/**
* Poll the RX FIFOs and remove data as needed. This function is only used
* in non DMA mode. It is very important that this function be called quickly
* enough to prevent FIFO overflow.
*
* @usb: USB device state populated by cvmx_usb_initialize().
*/
static void __cvmx_usb_poll_rx_fifo(struct cvmx_usb_state *usb)
{
union cvmx_usbcx_grxstsph rx_status;
int channel;
int bytes;
uint64_t address;
uint32_t *ptr;
rx_status.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_GRXSTSPH(usb->index));
/* Only read data if IN data is there */
if (rx_status.s.pktsts != 2)
return;
/* Check if no data is available */
if (!rx_status.s.bcnt)
return;
channel = rx_status.s.chnum;
bytes = rx_status.s.bcnt;
if (!bytes)
return;
/* Get where the DMA engine would have written this data */
address = __cvmx_usb_read_csr64(usb, CVMX_USBNX_DMA0_INB_CHN0(usb->index) + channel*8);
ptr = cvmx_phys_to_ptr(address);
__cvmx_usb_write_csr64(usb, CVMX_USBNX_DMA0_INB_CHN0(usb->index) + channel*8, address + bytes);
/* Loop writing the FIFO data for this packet into memory */
while (bytes > 0) {
*ptr++ = __cvmx_usb_read_csr32(usb, USB_FIFO_ADDRESS(channel, usb->index));
bytes -= 4;
}
CVMX_SYNCW;
return;
}
/**
* Fill the TX hardware fifo with data out of the software
* fifos
*
* @usb: USB device state populated by cvmx_usb_initialize().
* @fifo: Software fifo to use
* @available: Amount of space in the hardware fifo
*
* Returns: Non zero if the hardware fifo was too small and needs
* to be serviced again.
*/
static int __cvmx_usb_fill_tx_hw(struct cvmx_usb_state *usb,
struct cvmx_usb_tx_fifo *fifo, int available)
{
/*
* We're done either when there isn't anymore space or the software FIFO
* is empty
*/
while (available && (fifo->head != fifo->tail)) {
int i = fifo->tail;
const uint32_t *ptr = cvmx_phys_to_ptr(fifo->entry[i].address);
uint64_t csr_address = USB_FIFO_ADDRESS(fifo->entry[i].channel, usb->index) ^ 4;
int words = available;
/* Limit the amount of data to waht the SW fifo has */
if (fifo->entry[i].size <= available) {
words = fifo->entry[i].size;
fifo->tail++;
if (fifo->tail > MAX_CHANNELS)
fifo->tail = 0;
}
/* Update the next locations and counts */
available -= words;
fifo->entry[i].address += words * 4;
fifo->entry[i].size -= words;
/*
* Write the HW fifo data. The read every three writes is due
* to an errata on CN3XXX chips
*/
while (words > 3) {
cvmx_write64_uint32(csr_address, *ptr++);
cvmx_write64_uint32(csr_address, *ptr++);
cvmx_write64_uint32(csr_address, *ptr++);
cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
words -= 3;
}
cvmx_write64_uint32(csr_address, *ptr++);
if (--words) {
cvmx_write64_uint32(csr_address, *ptr++);
if (--words)
cvmx_write64_uint32(csr_address, *ptr++);
}
cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
}
return fifo->head != fifo->tail;
}
/**
* Check the hardware FIFOs and fill them as needed
*
* @usb: USB device state populated by cvmx_usb_initialize().
*/
static void __cvmx_usb_poll_tx_fifo(struct cvmx_usb_state *usb)
{
if (usb->periodic.head != usb->periodic.tail) {
union cvmx_usbcx_hptxsts tx_status;
tx_status.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HPTXSTS(usb->index));
if (__cvmx_usb_fill_tx_hw(usb, &usb->periodic, tx_status.s.ptxfspcavail))
USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), union cvmx_usbcx_gintmsk, ptxfempmsk, 1);
else
USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), union cvmx_usbcx_gintmsk, ptxfempmsk, 0);
}
if (usb->nonperiodic.head != usb->nonperiodic.tail) {
union cvmx_usbcx_gnptxsts tx_status;
tx_status.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_GNPTXSTS(usb->index));
if (__cvmx_usb_fill_tx_hw(usb, &usb->nonperiodic, tx_status.s.nptxfspcavail))
USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), union cvmx_usbcx_gintmsk, nptxfempmsk, 1);
else
USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), union cvmx_usbcx_gintmsk, nptxfempmsk, 0);
}
return;
}
/**
* Fill the TX FIFO with an outgoing packet
*
* @usb: USB device state populated by cvmx_usb_initialize().
* @channel: Channel number to get packet from
*/
static void __cvmx_usb_fill_tx_fifo(struct cvmx_usb_state *usb, int channel)
{
union cvmx_usbcx_hccharx hcchar;
union cvmx_usbcx_hcspltx usbc_hcsplt;
union cvmx_usbcx_hctsizx usbc_hctsiz;
struct cvmx_usb_tx_fifo *fifo;
/* We only need to fill data on outbound channels */
hcchar.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HCCHARX(channel, usb->index));
if (hcchar.s.epdir != CVMX_USB_DIRECTION_OUT)
return;
/* OUT Splits only have data on the start and not the complete */
usbc_hcsplt.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HCSPLTX(channel, usb->index));
if (usbc_hcsplt.s.spltena && usbc_hcsplt.s.compsplt)
return;
/*
* Find out how many bytes we need to fill and convert it into 32bit
* words.
*/
usbc_hctsiz.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index));
if (!usbc_hctsiz.s.xfersize)
return;
if ((hcchar.s.eptype == CVMX_USB_TRANSFER_INTERRUPT) ||
(hcchar.s.eptype == CVMX_USB_TRANSFER_ISOCHRONOUS))
fifo = &usb->periodic;
else
fifo = &usb->nonperiodic;
fifo->entry[fifo->head].channel = channel;
fifo->entry[fifo->head].address = __cvmx_usb_read_csr64(usb, CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) + channel*8);
fifo->entry[fifo->head].size = (usbc_hctsiz.s.xfersize+3)>>2;
fifo->head++;
if (fifo->head > MAX_CHANNELS)
fifo->head = 0;
__cvmx_usb_poll_tx_fifo(usb);
return;
}
/**
* Perform channel specific setup for Control transactions. All
* the generic stuff will already have been done in
* __cvmx_usb_start_channel()
*
* @usb: USB device state populated by cvmx_usb_initialize().
* @channel: Channel to setup
* @pipe: Pipe for control transaction
*/
static void __cvmx_usb_start_channel_control(struct cvmx_usb_state *usb,
int channel,
struct cvmx_usb_pipe *pipe)
{
struct cvmx_usb_transaction *transaction =
list_first_entry(&pipe->transactions, typeof(*transaction),
node);
union cvmx_usb_control_header *header =
cvmx_phys_to_ptr(transaction->control_header);
int bytes_to_transfer = transaction->buffer_length - transaction->actual_bytes;
int packets_to_transfer;
union cvmx_usbcx_hctsizx usbc_hctsiz;
usbc_hctsiz.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index));
switch (transaction->stage) {
case CVMX_USB_STAGE_NON_CONTROL:
case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
cvmx_dprintf("%s: ERROR - Non control stage\n", __FUNCTION__);
break;
case CVMX_USB_STAGE_SETUP:
usbc_hctsiz.s.pid = 3; /* Setup */
bytes_to_transfer = sizeof(*header);
/* All Control operations start with a setup going OUT */
USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), union cvmx_usbcx_hccharx, epdir, CVMX_USB_DIRECTION_OUT);
/*
* Setup send the control header instead of the buffer data. The
* buffer data will be used in the next stage
*/
__cvmx_usb_write_csr64(usb, CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) + channel*8, transaction->control_header);
break;
case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
usbc_hctsiz.s.pid = 3; /* Setup */
bytes_to_transfer = 0;
/* All Control operations start with a setup going OUT */
USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), union cvmx_usbcx_hccharx, epdir, CVMX_USB_DIRECTION_OUT);
USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index), union cvmx_usbcx_hcspltx, compsplt, 1);
break;
case CVMX_USB_STAGE_DATA:
usbc_hctsiz.s.pid = __cvmx_usb_get_data_pid(pipe);
if (__cvmx_usb_pipe_needs_split(usb, pipe)) {
if (header->s.request_type & 0x80)
bytes_to_transfer = 0;
else if (bytes_to_transfer > pipe->max_packet)
bytes_to_transfer = pipe->max_packet;
}
USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
union cvmx_usbcx_hccharx, epdir,
((header->s.request_type & 0x80) ?
CVMX_USB_DIRECTION_IN :
CVMX_USB_DIRECTION_OUT));
break;
case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
usbc_hctsiz.s.pid = __cvmx_usb_get_data_pid(pipe);
if (!(header->s.request_type & 0x80))
bytes_to_transfer = 0;
USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
union cvmx_usbcx_hccharx, epdir,
((header->s.request_type & 0x80) ?
CVMX_USB_DIRECTION_IN :
CVMX_USB_DIRECTION_OUT));
USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index), union cvmx_usbcx_hcspltx, compsplt, 1);
break;
case CVMX_USB_STAGE_STATUS:
usbc_hctsiz.s.pid = __cvmx_usb_get_data_pid(pipe);
bytes_to_transfer = 0;
USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), union cvmx_usbcx_hccharx, epdir,
((header->s.request_type & 0x80) ?
CVMX_USB_DIRECTION_OUT :
CVMX_USB_DIRECTION_IN));
break;
case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
usbc_hctsiz.s.pid = __cvmx_usb_get_data_pid(pipe);
bytes_to_transfer = 0;
USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), union cvmx_usbcx_hccharx, epdir,
((header->s.request_type & 0x80) ?
CVMX_USB_DIRECTION_OUT :
CVMX_USB_DIRECTION_IN));
USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index), union cvmx_usbcx_hcspltx, compsplt, 1);
break;
}
/*
* Make sure the transfer never exceeds the byte limit of the hardware.
* Further bytes will be sent as continued transactions
*/
if (bytes_to_transfer > MAX_TRANSFER_BYTES) {
/* Round MAX_TRANSFER_BYTES to a multiple of out packet size */
bytes_to_transfer = MAX_TRANSFER_BYTES / pipe->max_packet;
bytes_to_transfer *= pipe->max_packet;
}
/*
* Calculate the number of packets to transfer. If the length is zero
* we still need to transfer one packet
*/
packets_to_transfer = (bytes_to_transfer + pipe->max_packet - 1) / pipe->max_packet;
if (packets_to_transfer == 0)
packets_to_transfer = 1;
else if ((packets_to_transfer > 1) && (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) {
/*
* Limit to one packet when not using DMA. Channels must be
* restarted between every packet for IN transactions, so there
* is no reason to do multiple packets in a row
*/
packets_to_transfer = 1;
bytes_to_transfer = packets_to_transfer * pipe->max_packet;
} else if (packets_to_transfer > MAX_TRANSFER_PACKETS) {
/*
* Limit the number of packet and data transferred to what the
* hardware can handle
*/
packets_to_transfer = MAX_TRANSFER_PACKETS;
bytes_to_transfer = packets_to_transfer * pipe->max_packet;
}
usbc_hctsiz.s.xfersize = bytes_to_transfer;
usbc_hctsiz.s.pktcnt = packets_to_transfer;
__cvmx_usb_write_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index), usbc_hctsiz.u32);
return;
}
/**
* Start a channel to perform the pipe's head transaction
*
* @usb: USB device state populated by cvmx_usb_initialize().
* @channel: Channel to setup
* @pipe: Pipe to start
*/
static void __cvmx_usb_start_channel(struct cvmx_usb_state *usb,
int channel,
struct cvmx_usb_pipe *pipe)
{
struct cvmx_usb_transaction *transaction =
list_first_entry(&pipe->transactions, typeof(*transaction),
node);
/* Make sure all writes to the DMA region get flushed */
CVMX_SYNCW;
/* Attach the channel to the pipe */
usb->pipe_for_channel[channel] = pipe;
pipe->channel = channel;
pipe->flags |= __CVMX_USB_PIPE_FLAGS_SCHEDULED;
/* Mark this channel as in use */
usb->idle_hardware_channels &= ~(1<<channel);
/* Enable the channel interrupt bits */
{
union cvmx_usbcx_hcintx usbc_hcint;
union cvmx_usbcx_hcintmskx usbc_hcintmsk;
union cvmx_usbcx_haintmsk usbc_haintmsk;
/* Clear all channel status bits */
usbc_hcint.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HCINTX(channel, usb->index));
__cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTX(channel, usb->index), usbc_hcint.u32);
usbc_hcintmsk.u32 = 0;
usbc_hcintmsk.s.chhltdmsk = 1;
if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
/*
* Channels need these extra interrupts when we aren't
* in DMA mode.
*/
usbc_hcintmsk.s.datatglerrmsk = 1;
usbc_hcintmsk.s.frmovrunmsk = 1;
usbc_hcintmsk.s.bblerrmsk = 1;
usbc_hcintmsk.s.xacterrmsk = 1;
if (__cvmx_usb_pipe_needs_split(usb, pipe)) {
/*
* Splits don't generate xfercompl, so we need
* ACK and NYET.
*/
usbc_hcintmsk.s.nyetmsk = 1;
usbc_hcintmsk.s.ackmsk = 1;
}
usbc_hcintmsk.s.nakmsk = 1;
usbc_hcintmsk.s.stallmsk = 1;
usbc_hcintmsk.s.xfercomplmsk = 1;
}
__cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTMSKX(channel, usb->index), usbc_hcintmsk.u32);
/* Enable the channel interrupt to propagate */
usbc_haintmsk.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HAINTMSK(usb->index));
usbc_haintmsk.s.haintmsk |= 1<<channel;
__cvmx_usb_write_csr32(usb, CVMX_USBCX_HAINTMSK(usb->index), usbc_haintmsk.u32);
}
/* Setup the locations the DMA engines use */
{
uint64_t dma_address = transaction->buffer + transaction->actual_bytes;
if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
dma_address = transaction->buffer + transaction->iso_packets[0].offset + transaction->actual_bytes;
__cvmx_usb_write_csr64(usb, CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) + channel*8, dma_address);
__cvmx_usb_write_csr64(usb, CVMX_USBNX_DMA0_INB_CHN0(usb->index) + channel*8, dma_address);
}
/* Setup both the size of the transfer and the SPLIT characteristics */
{
union cvmx_usbcx_hcspltx usbc_hcsplt = {.u32 = 0};
union cvmx_usbcx_hctsizx usbc_hctsiz = {.u32 = 0};
int packets_to_transfer;
int bytes_to_transfer = transaction->buffer_length - transaction->actual_bytes;
/*
* ISOCHRONOUS transactions store each individual transfer size
* in the packet structure, not the global buffer_length
*/
if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
bytes_to_transfer = transaction->iso_packets[0].length - transaction->actual_bytes;
/*
* We need to do split transactions when we are talking to non
* high speed devices that are behind a high speed hub
*/
if (__cvmx_usb_pipe_needs_split(usb, pipe)) {
/*
* On the start split phase (stage is even) record the
* frame number we will need to send the split complete.
* We only store the lower two bits since the time ahead
* can only be two frames
*/
if ((transaction->stage&1) == 0) {
if (transaction->type == CVMX_USB_TRANSFER_BULK)
pipe->split_sc_frame = (usb->frame_number + 1) & 0x7f;
else
pipe->split_sc_frame = (usb->frame_number + 2) & 0x7f;
} else
pipe->split_sc_frame = -1;
usbc_hcsplt.s.spltena = 1;
usbc_hcsplt.s.hubaddr = pipe->hub_device_addr;
usbc_hcsplt.s.prtaddr = pipe->hub_port;
usbc_hcsplt.s.compsplt = (transaction->stage == CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE);
/*
* SPLIT transactions can only ever transmit one data
* packet so limit the transfer size to the max packet
* size
*/
if (bytes_to_transfer > pipe->max_packet)
bytes_to_transfer = pipe->max_packet;
/*
* ISOCHRONOUS OUT splits are unique in that they limit
* data transfers to 188 byte chunks representing the
* begin/middle/end of the data or all
*/
if (!usbc_hcsplt.s.compsplt &&
(pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) &&
(pipe->transfer_type == CVMX_USB_TRANSFER_ISOCHRONOUS)) {
/*
* Clear the split complete frame number as
* there isn't going to be a split complete
*/
pipe->split_sc_frame = -1;
/*
* See if we've started this transfer and sent
* data
*/
if (transaction->actual_bytes == 0) {
/*
* Nothing sent yet, this is either a
* begin or the entire payload
*/
if (bytes_to_transfer <= 188)
/* Entire payload in one go */
usbc_hcsplt.s.xactpos = 3;
else
/* First part of payload */
usbc_hcsplt.s.xactpos = 2;
} else {
/*
* Continuing the previous data, we must
* either be in the middle or at the end
*/
if (bytes_to_transfer <= 188)
/* End of payload */
usbc_hcsplt.s.xactpos = 1;
else
/* Middle of payload */
usbc_hcsplt.s.xactpos = 0;
}
/*
* Again, the transfer size is limited to 188
* bytes
*/
if (bytes_to_transfer > 188)
bytes_to_transfer = 188;
}
}
/*
* Make sure the transfer never exceeds the byte limit of the
* hardware. Further bytes will be sent as continued
* transactions
*/
if (bytes_to_transfer > MAX_TRANSFER_BYTES) {
/*
* Round MAX_TRANSFER_BYTES to a multiple of out packet
* size
*/
bytes_to_transfer = MAX_TRANSFER_BYTES / pipe->max_packet;
bytes_to_transfer *= pipe->max_packet;
}
/*
* Calculate the number of packets to transfer. If the length is
* zero we still need to transfer one packet
*/
packets_to_transfer = (bytes_to_transfer + pipe->max_packet - 1) / pipe->max_packet;
if (packets_to_transfer == 0)
packets_to_transfer = 1;
else if ((packets_to_transfer > 1) && (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) {
/*
* Limit to one packet when not using DMA. Channels must
* be restarted between every packet for IN
* transactions, so there is no reason to do multiple
* packets in a row
*/
packets_to_transfer = 1;
bytes_to_transfer = packets_to_transfer * pipe->max_packet;
} else if (packets_to_transfer > MAX_TRANSFER_PACKETS) {
/*
* Limit the number of packet and data transferred to
* what the hardware can handle
*/
packets_to_transfer = MAX_TRANSFER_PACKETS;
bytes_to_transfer = packets_to_transfer * pipe->max_packet;
}
usbc_hctsiz.s.xfersize = bytes_to_transfer;
usbc_hctsiz.s.pktcnt = packets_to_transfer;
/* Update the DATA0/DATA1 toggle */
usbc_hctsiz.s.pid = __cvmx_usb_get_data_pid(pipe);
/*
* High speed pipes may need a hardware ping before they start
*/
if (pipe->flags & __CVMX_USB_PIPE_FLAGS_NEED_PING)
usbc_hctsiz.s.dopng = 1;
__cvmx_usb_write_csr32(usb, CVMX_USBCX_HCSPLTX(channel, usb->index), usbc_hcsplt.u32);
__cvmx_usb_write_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index), usbc_hctsiz.u32);
}
/* Setup the Host Channel Characteristics Register */
{
union cvmx_usbcx_hccharx usbc_hcchar = {.u32 = 0};
/*
* Set the startframe odd/even properly. This is only used for
* periodic
*/
usbc_hcchar.s.oddfrm = usb->frame_number&1;
/*
* Set the number of back to back packets allowed by this
* endpoint. Split transactions interpret "ec" as the number of
* immediate retries of failure. These retries happen too
* quickly, so we disable these entirely for splits
*/
if (__cvmx_usb_pipe_needs_split(usb, pipe))
usbc_hcchar.s.ec = 1;
else if (pipe->multi_count < 1)
usbc_hcchar.s.ec = 1;
else if (pipe->multi_count > 3)
usbc_hcchar.s.ec = 3;
else
usbc_hcchar.s.ec = pipe->multi_count;
/* Set the rest of the endpoint specific settings */
usbc_hcchar.s.devaddr = pipe->device_addr;
usbc_hcchar.s.eptype = transaction->type;
usbc_hcchar.s.lspddev = (pipe->device_speed == CVMX_USB_SPEED_LOW);
usbc_hcchar.s.epdir = pipe->transfer_dir;
usbc_hcchar.s.epnum = pipe->endpoint_num;
usbc_hcchar.s.mps = pipe->max_packet;
__cvmx_usb_write_csr32(usb, CVMX_USBCX_HCCHARX(channel, usb->index), usbc_hcchar.u32);
}
/* Do transaction type specific fixups as needed */
switch (transaction->type) {
case CVMX_USB_TRANSFER_CONTROL:
__cvmx_usb_start_channel_control(usb, channel, pipe);
break;
case CVMX_USB_TRANSFER_BULK:
case CVMX_USB_TRANSFER_INTERRUPT:
break;
case CVMX_USB_TRANSFER_ISOCHRONOUS:
if (!__cvmx_usb_pipe_needs_split(usb, pipe)) {
/*
* ISO transactions require different PIDs depending on
* direction and how many packets are needed
*/
if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) {
if (pipe->multi_count < 2) /* Need DATA0 */
USB_SET_FIELD32(CVMX_USBCX_HCTSIZX(channel, usb->index), union cvmx_usbcx_hctsizx, pid, 0);
else /* Need MDATA */
USB_SET_FIELD32(CVMX_USBCX_HCTSIZX(channel, usb->index), union cvmx_usbcx_hctsizx, pid, 3);
}
}
break;
}
{
union cvmx_usbcx_hctsizx usbc_hctsiz = {.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index))};
transaction->xfersize = usbc_hctsiz.s.xfersize;
transaction->pktcnt = usbc_hctsiz.s.pktcnt;
}
/* Remeber when we start a split transaction */
if (__cvmx_usb_pipe_needs_split(usb, pipe))
usb->active_split = transaction;
USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), union cvmx_usbcx_hccharx, chena, 1);
if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
__cvmx_usb_fill_tx_fifo(usb, channel);
return;
}
/**
* Find a pipe that is ready to be scheduled to hardware.
* @usb: USB device state populated by cvmx_usb_initialize().
* @list: Pipe list to search
* @current_frame:
* Frame counter to use as a time reference.
*
* Returns: Pipe or NULL if none are ready
*/
static struct cvmx_usb_pipe *__cvmx_usb_find_ready_pipe(struct cvmx_usb_state *usb, struct list_head *list, uint64_t current_frame)
{
struct cvmx_usb_pipe *pipe;
list_for_each_entry(pipe, list, node) {
struct cvmx_usb_transaction *t =
list_first_entry(&pipe->transactions, typeof(*t), node);
if (!(pipe->flags & __CVMX_USB_PIPE_FLAGS_SCHEDULED) && t &&
(pipe->next_tx_frame <= current_frame) &&
((pipe->split_sc_frame == -1) || ((((int)current_frame - (int)pipe->split_sc_frame) & 0x7f) < 0x40)) &&
(!usb->active_split || (usb->active_split == t))) {
CVMX_PREFETCH(pipe, 128);
CVMX_PREFETCH(t, 0);
return pipe;
}
}
return NULL;
}
/**
* Called whenever a pipe might need to be scheduled to the
* hardware.
*
* @usb: USB device state populated by cvmx_usb_initialize().
* @is_sof: True if this schedule was called on a SOF interrupt.
*/
static void __cvmx_usb_schedule(struct cvmx_usb_state *usb, int is_sof)
{
int channel;
struct cvmx_usb_pipe *pipe;
int need_sof;
enum cvmx_usb_transfer ttype;
if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
/*
* Without DMA we need to be careful to not schedule something
* at the end of a frame and cause an overrun.
*/
union cvmx_usbcx_hfnum hfnum = {.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index))};
union cvmx_usbcx_hfir hfir = {.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HFIR(usb->index))};
if (hfnum.s.frrem < hfir.s.frint/4)
goto done;
}
while (usb->idle_hardware_channels) {
/* Find an idle channel */
channel = __fls(usb->idle_hardware_channels);
if (unlikely(channel > 7))
break;
/* Find a pipe needing service */
pipe = NULL;
if (is_sof) {
/*
* Only process periodic pipes on SOF interrupts. This
* way we are sure that the periodic data is sent in the
* beginning of the frame
*/
pipe = __cvmx_usb_find_ready_pipe(usb, usb->active_pipes + CVMX_USB_TRANSFER_ISOCHRONOUS, usb->frame_number);
if (likely(!pipe))
pipe = __cvmx_usb_find_ready_pipe(usb, usb->active_pipes + CVMX_USB_TRANSFER_INTERRUPT, usb->frame_number);
}
if (likely(!pipe)) {
pipe = __cvmx_usb_find_ready_pipe(usb, usb->active_pipes + CVMX_USB_TRANSFER_CONTROL, usb->frame_number);
if (likely(!pipe))
pipe = __cvmx_usb_find_ready_pipe(usb, usb->active_pipes + CVMX_USB_TRANSFER_BULK, usb->frame_number);
}
if (!pipe)
break;
__cvmx_usb_start_channel(usb, channel, pipe);
}
done:
/*
* Only enable SOF interrupts when we have transactions pending in the
* future that might need to be scheduled
*/
need_sof = 0;
for (ttype = CVMX_USB_TRANSFER_CONTROL; ttype <= CVMX_USB_TRANSFER_INTERRUPT; ttype++) {
list_for_each_entry(pipe, &usb->active_pipes[ttype], node) {
if (pipe->next_tx_frame > usb->frame_number) {
need_sof = 1;
break;
}
}
}
USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), union cvmx_usbcx_gintmsk, sofmsk, need_sof);
return;
}
static inline struct octeon_hcd *cvmx_usb_to_octeon(struct cvmx_usb_state *p)
{
return container_of(p, struct octeon_hcd, usb);
}
static inline struct usb_hcd *octeon_to_hcd(struct octeon_hcd *p)
{
return container_of((void *)p, struct usb_hcd, hcd_priv);
}
static void octeon_usb_urb_complete_callback(struct cvmx_usb_state *usb,
enum cvmx_usb_complete status,
struct cvmx_usb_pipe *pipe,
struct cvmx_usb_transaction
*transaction,
int bytes_transferred,
struct urb *urb)
{
struct octeon_hcd *priv = cvmx_usb_to_octeon(usb);
struct usb_hcd *hcd = octeon_to_hcd(priv);
struct device *dev = hcd->self.controller;
urb->actual_length = bytes_transferred;
urb->hcpriv = NULL;
if (!list_empty(&urb->urb_list))
/*
* It is on the dequeue_list, but we are going to call
* usb_hcd_giveback_urb(), so we must clear it from
* the list. We got to it before the
* octeon_usb_urb_dequeue_work() tasklet did.
*/
list_del_init(&urb->urb_list);
/* For Isochronous transactions we need to update the URB packet status
list from data in our private copy */
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
int i;
/*
* The pointer to the private list is stored in the setup_packet
* field.
*/
struct cvmx_usb_iso_packet *iso_packet =
(struct cvmx_usb_iso_packet *) urb->setup_packet;
/* Recalculate the transfer size by adding up each packet */
urb->actual_length = 0;
for (i = 0; i < urb->number_of_packets; i++) {
if (iso_packet[i].status == CVMX_USB_COMPLETE_SUCCESS) {
urb->iso_frame_desc[i].status = 0;
urb->iso_frame_desc[i].actual_length = iso_packet[i].length;
urb->actual_length += urb->iso_frame_desc[i].actual_length;
} else {
dev_dbg(dev, "ISOCHRONOUS packet=%d of %d status=%d pipe=%p transaction=%p size=%d\n",
i, urb->number_of_packets,
iso_packet[i].status, pipe,
transaction, iso_packet[i].length);
urb->iso_frame_desc[i].status = -EREMOTEIO;
}
}
/* Free the private list now that we don't need it anymore */
kfree(iso_packet);
urb->setup_packet = NULL;
}
switch (status) {
case CVMX_USB_COMPLETE_SUCCESS:
urb->status = 0;
break;
case CVMX_USB_COMPLETE_CANCEL:
if (urb->status == 0)
urb->status = -ENOENT;
break;
case CVMX_USB_COMPLETE_STALL:
dev_dbg(dev, "status=stall pipe=%p transaction=%p size=%d\n",
pipe, transaction, bytes_transferred);
urb->status = -EPIPE;
break;
case CVMX_USB_COMPLETE_BABBLEERR:
dev_dbg(dev, "status=babble pipe=%p transaction=%p size=%d\n",
pipe, transaction, bytes_transferred);
urb->status = -EPIPE;
break;
case CVMX_USB_COMPLETE_SHORT:
dev_dbg(dev, "status=short pipe=%p transaction=%p size=%d\n",
pipe, transaction, bytes_transferred);
urb->status = -EREMOTEIO;
break;
case CVMX_USB_COMPLETE_ERROR:
case CVMX_USB_COMPLETE_XACTERR:
case CVMX_USB_COMPLETE_DATATGLERR:
case CVMX_USB_COMPLETE_FRAMEERR:
dev_dbg(dev, "status=%d pipe=%p transaction=%p size=%d\n",
status, pipe, transaction, bytes_transferred);
urb->status = -EPROTO;
break;
}
spin_unlock(&priv->lock);
usb_hcd_giveback_urb(octeon_to_hcd(priv), urb, urb->status);
spin_lock(&priv->lock);
}
/**
* Signal the completion of a transaction and free it. The
* transaction will be removed from the pipe transaction list.
*
* @usb: USB device state populated by cvmx_usb_initialize().
* @pipe: Pipe the transaction is on
* @transaction:
* Transaction that completed
* @complete_code:
* Completion code
*/
static void __cvmx_usb_perform_complete(struct cvmx_usb_state *usb,
struct cvmx_usb_pipe *pipe,
struct cvmx_usb_transaction *transaction,
enum cvmx_usb_complete complete_code)
{
/* If this was a split then clear our split in progress marker */
if (usb->active_split == transaction)
usb->active_split = NULL;
/*
* Isochronous transactions need extra processing as they might not be
* done after a single data transfer
*/
if (unlikely(transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)) {
/* Update the number of bytes transferred in this ISO packet */
transaction->iso_packets[0].length = transaction->actual_bytes;
transaction->iso_packets[0].status = complete_code;
/*
* If there are more ISOs pending and we succeeded, schedule the
* next one
*/
if ((transaction->iso_number_packets > 1) && (complete_code == CVMX_USB_COMPLETE_SUCCESS)) {
/* No bytes transferred for this packet as of yet */
transaction->actual_bytes = 0;
/* One less ISO waiting to transfer */
transaction->iso_number_packets--;
/* Increment to the next location in our packet array */
transaction->iso_packets++;
transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
goto done;
}
}
/* Remove the transaction from the pipe list */
list_del(&transaction->node);
if (list_empty(&pipe->transactions))
list_move_tail(&pipe->node, &usb->idle_pipes);
octeon_usb_urb_complete_callback(usb, complete_code, pipe,
transaction,
transaction->actual_bytes,
transaction->urb);
kfree(transaction);
done:
return;
}
/**
* Submit a usb transaction to a pipe. Called for all types
* of transactions.
*
* @usb:
* @pipe: Which pipe to submit to.
* @type: Transaction type
* @buffer: User buffer for the transaction
* @buffer_length:
* User buffer's length in bytes
* @control_header:
* For control transactions, the 8 byte standard header
* @iso_start_frame:
* For ISO transactions, the start frame
* @iso_number_packets:
* For ISO, the number of packet in the transaction.
* @iso_packets:
* A description of each ISO packet
* @urb: URB for the callback
*
* Returns: Transaction or NULL on failure.
*/
static struct cvmx_usb_transaction *__cvmx_usb_submit_transaction(struct cvmx_usb_state *usb,
struct cvmx_usb_pipe *pipe,
enum cvmx_usb_transfer type,
uint64_t buffer,
int buffer_length,
uint64_t control_header,
int iso_start_frame,
int iso_number_packets,
struct cvmx_usb_iso_packet *iso_packets,
struct urb *urb)
{
struct cvmx_usb_transaction *transaction;
if (unlikely(pipe->transfer_type != type))
return NULL;
transaction = kzalloc(sizeof(*transaction), GFP_ATOMIC);
if (unlikely(!transaction))
return NULL;
transaction->type = type;
transaction->buffer = buffer;
transaction->buffer_length = buffer_length;
transaction->control_header = control_header;
/* FIXME: This is not used, implement it. */
transaction->iso_start_frame = iso_start_frame;
transaction->iso_number_packets = iso_number_packets;
transaction->iso_packets = iso_packets;
transaction->urb = urb;
if (transaction->type == CVMX_USB_TRANSFER_CONTROL)
transaction->stage = CVMX_USB_STAGE_SETUP;
else
transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
if (!list_empty(&pipe->transactions)) {
list_add_tail(&transaction->node, &pipe->transactions);
} else {
list_add_tail(&transaction->node, &pipe->transactions);
list_move_tail(&pipe->node,
&usb->active_pipes[pipe->transfer_type]);
/*
* We may need to schedule the pipe if this was the head of the
* pipe.
*/
__cvmx_usb_schedule(usb, 0);
}
return transaction;
}
/**
* Call to submit a USB Bulk transfer to a pipe.
*
* @usb: USB device state populated by cvmx_usb_initialize().
* @pipe: Handle to the pipe for the transfer.
* @urb: URB.
*
* Returns: A submitted transaction or NULL on failure.
*/
static struct cvmx_usb_transaction *cvmx_usb_submit_bulk(struct cvmx_usb_state *usb,
struct cvmx_usb_pipe *pipe,
struct urb *urb)
{
return __cvmx_usb_submit_transaction(usb, pipe, CVMX_USB_TRANSFER_BULK,
urb->transfer_dma,
urb->transfer_buffer_length,
0, /* control_header */
0, /* iso_start_frame */
0, /* iso_number_packets */
NULL, /* iso_packets */
urb);
}
/**
* Call to submit a USB Interrupt transfer to a pipe.
*
* @usb: USB device state populated by cvmx_usb_initialize().
* @pipe: Handle to the pipe for the transfer.
* @urb: URB returned when the callback is called.
*
* Returns: A submitted transaction or NULL on failure.
*/
static struct cvmx_usb_transaction *cvmx_usb_submit_interrupt(struct cvmx_usb_state *usb,
struct cvmx_usb_pipe *pipe,
struct urb *urb)
{
return __cvmx_usb_submit_transaction(usb, pipe,
CVMX_USB_TRANSFER_INTERRUPT,
urb->transfer_dma,
urb->transfer_buffer_length,
0, /* control_header */
0, /* iso_start_frame */
0, /* iso_number_packets */
NULL, /* iso_packets */
urb);
}
/**
* Call to submit a USB Control transfer to a pipe.
*
* @usb: USB device state populated by cvmx_usb_initialize().
* @pipe: Handle to the pipe for the transfer.
* @urb: URB.
*
* Returns: A submitted transaction or NULL on failure.
*/
static struct cvmx_usb_transaction *cvmx_usb_submit_control(struct cvmx_usb_state *usb,
struct cvmx_usb_pipe *pipe,
struct urb *urb)
{
int buffer_length = urb->transfer_buffer_length;
uint64_t control_header = urb->setup_dma;
union cvmx_usb_control_header *header =
cvmx_phys_to_ptr(control_header);
if ((header->s.request_type & 0x80) == 0)
buffer_length = le16_to_cpu(header->s.length);
return __cvmx_usb_submit_transaction(usb, pipe,
CVMX_USB_TRANSFER_CONTROL,
urb->transfer_dma, buffer_length,
control_header,
0, /* iso_start_frame */
0, /* iso_number_packets */
NULL, /* iso_packets */
urb);
}
/**
* Call to submit a USB Isochronous transfer to a pipe.
*
* @usb: USB device state populated by cvmx_usb_initialize().
* @pipe: Handle to the pipe for the transfer.
* @urb: URB returned when the callback is called.
*
* Returns: A submitted transaction or NULL on failure.
*/
static struct cvmx_usb_transaction *cvmx_usb_submit_isochronous(struct cvmx_usb_state *usb,
struct cvmx_usb_pipe *pipe,
struct urb *urb)
{
struct cvmx_usb_iso_packet *packets;
packets = (struct cvmx_usb_iso_packet *) urb->setup_packet;
return __cvmx_usb_submit_transaction(usb, pipe,
CVMX_USB_TRANSFER_ISOCHRONOUS,
urb->transfer_dma,
urb->transfer_buffer_length,
0, /* control_header */
urb->start_frame,
urb->number_of_packets,
packets, urb);
}
/**
* Cancel one outstanding request in a pipe. Canceling a request
* can fail if the transaction has already completed before cancel
* is called. Even after a successful cancel call, it may take
* a frame or two for the cvmx_usb_poll() function to call the
* associated callback.
*
* @usb: USB device state populated by cvmx_usb_initialize().
* @pipe: Pipe to cancel requests in.
* @transaction: Transaction to cancel, returned by the submit function.
*
* Returns: 0 or a negative error code.
*/
static int cvmx_usb_cancel(struct cvmx_usb_state *usb,
struct cvmx_usb_pipe *pipe,
struct cvmx_usb_transaction *transaction)
{
/*
* If the transaction is the HEAD of the queue and scheduled. We need to
* treat it special
*/
if (list_first_entry(&pipe->transactions, typeof(*transaction), node) ==
transaction && (pipe->flags & __CVMX_USB_PIPE_FLAGS_SCHEDULED)) {
union cvmx_usbcx_hccharx usbc_hcchar;
usb->pipe_for_channel[pipe->channel] = NULL;
pipe->flags &= ~__CVMX_USB_PIPE_FLAGS_SCHEDULED;
CVMX_SYNCW;
usbc_hcchar.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HCCHARX(pipe->channel, usb->index));
/*
* If the channel isn't enabled then the transaction already
* completed.
*/
if (usbc_hcchar.s.chena) {
usbc_hcchar.s.chdis = 1;
__cvmx_usb_write_csr32(usb, CVMX_USBCX_HCCHARX(pipe->channel, usb->index), usbc_hcchar.u32);
}
}
__cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_CANCEL);
return 0;
}
/**
* Cancel all outstanding requests in a pipe. Logically all this
* does is call cvmx_usb_cancel() in a loop.
*
* @usb: USB device state populated by cvmx_usb_initialize().
* @pipe: Pipe to cancel requests in.
*
* Returns: 0 or a negative error code.
*/
static int cvmx_usb_cancel_all(struct cvmx_usb_state *usb,
struct cvmx_usb_pipe *pipe)
{
struct cvmx_usb_transaction *transaction, *next;
/* Simply loop through and attempt to cancel each transaction */
list_for_each_entry_safe(transaction, next, &pipe->transactions, node) {
int result = cvmx_usb_cancel(usb, pipe, transaction);
if (unlikely(result != 0))
return result;
}
return 0;
}
/**
* Close a pipe created with cvmx_usb_open_pipe().
*
* @usb: USB device state populated by cvmx_usb_initialize().
* @pipe: Pipe to close.
*
* Returns: 0 or a negative error code. EBUSY is returned if the pipe has
* outstanding transfers.
*/
static int cvmx_usb_close_pipe(struct cvmx_usb_state *usb,
struct cvmx_usb_pipe *pipe)
{
/* Fail if the pipe has pending transactions */
if (!list_empty(&pipe->transactions))
return -EBUSY;
list_del(&pipe->node);
kfree(pipe);
return 0;
}
/**
* Get the current USB protocol level frame number. The frame
* number is always in the range of 0-0x7ff.
*
* @usb: USB device state populated by cvmx_usb_initialize().
*
* Returns: USB frame number
*/
static int cvmx_usb_get_frame_number(struct cvmx_usb_state *usb)
{
int frame_number;
union cvmx_usbcx_hfnum usbc_hfnum;
usbc_hfnum.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
frame_number = usbc_hfnum.s.frnum;
return frame_number;
}
/**
* Poll a channel for status
*
* @usb: USB device
* @channel: Channel to poll
*
* Returns: Zero on success
*/
static int __cvmx_usb_poll_channel(struct cvmx_usb_state *usb, int channel)
{
union cvmx_usbcx_hcintx usbc_hcint;
union cvmx_usbcx_hctsizx usbc_hctsiz;
union cvmx_usbcx_hccharx usbc_hcchar;
struct cvmx_usb_pipe *pipe;
struct cvmx_usb_transaction *transaction;
int bytes_this_transfer;
int bytes_in_last_packet;
int packets_processed;
int buffer_space_left;
/* Read the interrupt status bits for the channel */
usbc_hcint.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HCINTX(channel, usb->index));
if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
usbc_hcchar.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HCCHARX(channel, usb->index));
if (usbc_hcchar.s.chena && usbc_hcchar.s.chdis) {
/*
* There seems to be a bug in CN31XX which can cause
* interrupt IN transfers to get stuck until we do a
* write of HCCHARX without changing things
*/
__cvmx_usb_write_csr32(usb, CVMX_USBCX_HCCHARX(channel, usb->index), usbc_hcchar.u32);
return 0;
}
/*
* In non DMA mode the channels don't halt themselves. We need
* to manually disable channels that are left running
*/
if (!usbc_hcint.s.chhltd) {
if (usbc_hcchar.s.chena) {
union cvmx_usbcx_hcintmskx hcintmsk;
/* Disable all interrupts except CHHLTD */
hcintmsk.u32 = 0;
hcintmsk.s.chhltdmsk = 1;
__cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTMSKX(channel, usb->index), hcintmsk.u32);
usbc_hcchar.s.chdis = 1;
__cvmx_usb_write_csr32(usb, CVMX_USBCX_HCCHARX(channel, usb->index), usbc_hcchar.u32);
return 0;
} else if (usbc_hcint.s.xfercompl) {
/*
* Successful IN/OUT with transfer complete.
* Channel halt isn't needed.
*/
} else {
cvmx_dprintf("USB%d: Channel %d interrupt without halt\n", usb->index, channel);
return 0;
}
}
} else {
/*
* There is are no interrupts that we need to process when the
* channel is still running
*/
if (!usbc_hcint.s.chhltd)
return 0;
}
/* Disable the channel interrupts now that it is done */
__cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTMSKX(channel, usb->index), 0);
usb->idle_hardware_channels |= (1<<channel);
/* Make sure this channel is tied to a valid pipe */
pipe = usb->pipe_for_channel[channel];
CVMX_PREFETCH(pipe, 0);
CVMX_PREFETCH(pipe, 128);
if (!pipe)
return 0;
transaction = list_first_entry(&pipe->transactions, typeof(*transaction),
node);
CVMX_PREFETCH(transaction, 0);
/*
* Disconnect this pipe from the HW channel. Later the schedule
* function will figure out which pipe needs to go
*/
usb->pipe_for_channel[channel] = NULL;
pipe->flags &= ~__CVMX_USB_PIPE_FLAGS_SCHEDULED;
/*
* Read the channel config info so we can figure out how much data
* transfered
*/
usbc_hcchar.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HCCHARX(channel, usb->index));
usbc_hctsiz.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index));
/*
* Calculating the number of bytes successfully transferred is dependent
* on the transfer direction
*/
packets_processed = transaction->pktcnt - usbc_hctsiz.s.pktcnt;
if (usbc_hcchar.s.epdir) {
/*
* IN transactions are easy. For every byte received the
* hardware decrements xfersize. All we need to do is subtract
* the current value of xfersize from its starting value and we
* know how many bytes were written to the buffer
*/
bytes_this_transfer = transaction->xfersize - usbc_hctsiz.s.xfersize;
} else {
/*
* OUT transaction don't decrement xfersize. Instead pktcnt is
* decremented on every successful packet send. The hardware
* does this when it receives an ACK, or NYET. If it doesn't
* receive one of these responses pktcnt doesn't change
*/
bytes_this_transfer = packets_processed * usbc_hcchar.s.mps;
/*
* The last packet may not be a full transfer if we didn't have
* enough data
*/
if (bytes_this_transfer > transaction->xfersize)
bytes_this_transfer = transaction->xfersize;
}
/* Figure out how many bytes were in the last packet of the transfer */
if (packets_processed)
bytes_in_last_packet = bytes_this_transfer - (packets_processed-1) * usbc_hcchar.s.mps;
else
bytes_in_last_packet = bytes_this_transfer;
/*
* As a special case, setup transactions output the setup header, not
* the user's data. For this reason we don't count setup data as bytes
* transferred
*/
if ((transaction->stage == CVMX_USB_STAGE_SETUP) ||
(transaction->stage == CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE))
bytes_this_transfer = 0;
/*
* Add the bytes transferred to the running total. It is important that
* bytes_this_transfer doesn't count any data that needs to be
* retransmitted
*/
transaction->actual_bytes += bytes_this_transfer;
if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
buffer_space_left = transaction->iso_packets[0].length - transaction->actual_bytes;
else
buffer_space_left = transaction->buffer_length - transaction->actual_bytes;
/*
* We need to remember the PID toggle state for the next transaction.
* The hardware already updated it for the next transaction
*/
pipe->pid_toggle = !(usbc_hctsiz.s.pid == 0);
/*
* For high speed bulk out, assume the next transaction will need to do
* a ping before proceeding. If this isn't true the ACK processing below
* will clear this flag
*/
if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) &&
(pipe->transfer_type == CVMX_USB_TRANSFER_BULK) &&
(pipe->transfer_dir == CVMX_USB_DIRECTION_OUT))
pipe->flags |= __CVMX_USB_PIPE_FLAGS_NEED_PING;
if (usbc_hcint.s.stall) {
/*
* STALL as a response means this transaction cannot be
* completed because the device can't process transactions. Tell
* the user. Any data that was transferred will be counted on
* the actual bytes transferred
*/
pipe->pid_toggle = 0;
__cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_STALL);
} else if (usbc_hcint.s.xacterr) {
/*
* We know at least one packet worked if we get a ACK or NAK.
* Reset the retry counter
*/
if (usbc_hcint.s.nak || usbc_hcint.s.ack)
transaction->retries = 0;
transaction->retries++;
if (transaction->retries > MAX_RETRIES) {
/*
* XactErr as a response means the device signaled
* something wrong with the transfer. For example, PID
* toggle errors cause these
*/
__cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_XACTERR);
} else {
/*
* If this was a split then clear our split in progress
* marker
*/
if (usb->active_split == transaction)
usb->active_split = NULL;
/*
* Rewind to the beginning of the transaction by anding
* off the split complete bit
*/
transaction->stage &= ~1;
pipe->split_sc_frame = -1;
pipe->next_tx_frame += pipe->interval;
if (pipe->next_tx_frame < usb->frame_number)
pipe->next_tx_frame = usb->frame_number + pipe->interval -
(usb->frame_number - pipe->next_tx_frame) % pipe->interval;
}
} else if (usbc_hcint.s.bblerr) {
/* Babble Error (BblErr) */
__cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_BABBLEERR);
} else if (usbc_hcint.s.datatglerr) {
/* We'll retry the exact same transaction again */
transaction->retries++;
} else if (usbc_hcint.s.nyet) {
/*
* NYET as a response is only allowed in three cases: as a
* response to a ping, as a response to a split transaction, and
* as a response to a bulk out. The ping case is handled by
* hardware, so we only have splits and bulk out
*/
if (!__cvmx_usb_pipe_needs_split(usb, pipe)) {
transaction->retries = 0;
/*
* If there is more data to go then we need to try
* again. Otherwise this transaction is complete
*/
if ((buffer_space_left == 0) || (bytes_in_last_packet < pipe->max_packet))
__cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_SUCCESS);
} else {
/*
* Split transactions retry the split complete 4 times
* then rewind to the start split and do the entire
* transactions again
*/
transaction->retries++;
if ((transaction->retries & 0x3) == 0) {
/*
* Rewind to the beginning of the transaction by
* anding off the split complete bit
*/
transaction->stage &= ~1;
pipe->split_sc_frame = -1;
}
}
} else if (usbc_hcint.s.ack) {
transaction->retries = 0;
/*
* The ACK bit can only be checked after the other error bits.
* This is because a multi packet transfer may succeed in a
* number of packets and then get a different response on the
* last packet. In this case both ACK and the last response bit
* will be set. If none of the other response bits is set, then
* the last packet must have been an ACK
*
* Since we got an ACK, we know we don't need to do a ping on
* this pipe
*/
pipe->flags &= ~__CVMX_USB_PIPE_FLAGS_NEED_PING;
switch (transaction->type) {
case CVMX_USB_TRANSFER_CONTROL:
switch (transaction->stage) {
case CVMX_USB_STAGE_NON_CONTROL:
case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
/* This should be impossible */
__cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_ERROR);
break;
case CVMX_USB_STAGE_SETUP:
pipe->pid_toggle = 1;
if (__cvmx_usb_pipe_needs_split(usb, pipe))
transaction->stage = CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE;
else {
union cvmx_usb_control_header *header =
cvmx_phys_to_ptr(transaction->control_header);
if (header->s.length)
transaction->stage = CVMX_USB_STAGE_DATA;
else
transaction->stage = CVMX_USB_STAGE_STATUS;
}
break;
case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
{
union cvmx_usb_control_header *header =
cvmx_phys_to_ptr(transaction->control_header);
if (header->s.length)
transaction->stage = CVMX_USB_STAGE_DATA;
else
transaction->stage = CVMX_USB_STAGE_STATUS;
}
break;
case CVMX_USB_STAGE_DATA:
if (__cvmx_usb_pipe_needs_split(usb, pipe)) {
transaction->stage = CVMX_USB_STAGE_DATA_SPLIT_COMPLETE;
/*
* For setup OUT data that are splits,
* the hardware doesn't appear to count
* transferred data. Here we manually
* update the data transferred
*/
if (!usbc_hcchar.s.epdir) {
if (buffer_space_left < pipe->max_packet)
transaction->actual_bytes += buffer_space_left;
else
transaction->actual_bytes += pipe->max_packet;
}
} else if ((buffer_space_left == 0) || (bytes_in_last_packet < pipe->max_packet)) {
pipe->pid_toggle = 1;
transaction->stage = CVMX_USB_STAGE_STATUS;
}
break;
case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
if ((buffer_space_left == 0) || (bytes_in_last_packet < pipe->max_packet)) {
pipe->pid_toggle = 1;
transaction->stage = CVMX_USB_STAGE_STATUS;
} else {
transaction->stage = CVMX_USB_STAGE_DATA;
}
break;
case CVMX_USB_STAGE_STATUS:
if (__cvmx_usb_pipe_needs_split(usb, pipe))
transaction->stage = CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE;
else
__cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_SUCCESS);
break;
case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
__cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_SUCCESS);
break;
}
break;
case CVMX_USB_TRANSFER_BULK:
case CVMX_USB_TRANSFER_INTERRUPT:
/*
* The only time a bulk transfer isn't complete when it
* finishes with an ACK is during a split transaction.
* For splits we need to continue the transfer if more
* data is needed
*/
if (__cvmx_usb_pipe_needs_split(usb, pipe)) {
if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL)
transaction->stage = CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
else {
if (buffer_space_left && (bytes_in_last_packet == pipe->max_packet))
transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
else {
if (transaction->type == CVMX_USB_TRANSFER_INTERRUPT)
pipe->next_tx_frame += pipe->interval;
__cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_SUCCESS);
}
}
} else {
if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) &&
(pipe->transfer_type == CVMX_USB_TRANSFER_BULK) &&
(pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) &&
(usbc_hcint.s.nak))
pipe->flags |= __CVMX_USB_PIPE_FLAGS_NEED_PING;
if (!buffer_space_left || (bytes_in_last_packet < pipe->max_packet)) {
if (transaction->type == CVMX_USB_TRANSFER_INTERRUPT)
pipe->next_tx_frame += pipe->interval;
__cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_SUCCESS);
}
}
break;
case CVMX_USB_TRANSFER_ISOCHRONOUS:
if (__cvmx_usb_pipe_needs_split(usb, pipe)) {
/*
* ISOCHRONOUS OUT splits don't require a
* complete split stage. Instead they use a
* sequence of begin OUT splits to transfer the
* data 188 bytes at a time. Once the transfer
* is complete, the pipe sleeps until the next
* schedule interval
*/
if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) {
/*
* If no space left or this wasn't a max
* size packet then this transfer is
* complete. Otherwise start it again to
* send the next 188 bytes
*/
if (!buffer_space_left || (bytes_this_transfer < 188)) {
pipe->next_tx_frame += pipe->interval;
__cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_SUCCESS);
}
} else {
if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE) {
/*
* We are in the incoming data
* phase. Keep getting data
* until we run out of space or
* get a small packet
*/
if ((buffer_space_left == 0) || (bytes_in_last_packet < pipe->max_packet)) {
pipe->next_tx_frame += pipe->interval;
__cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_SUCCESS);
}
} else
transaction->stage = CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
}
} else {
pipe->next_tx_frame += pipe->interval;
__cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_SUCCESS);
}
break;
}
} else if (usbc_hcint.s.nak) {
/*
* If this was a split then clear our split in progress marker.
*/
if (usb->active_split == transaction)
usb->active_split = NULL;
/*
* NAK as a response means the device couldn't accept the
* transaction, but it should be retried in the future. Rewind
* to the beginning of the transaction by anding off the split
* complete bit. Retry in the next interval
*/
transaction->retries = 0;
transaction->stage &= ~1;
pipe->next_tx_frame += pipe->interval;
if (pipe->next_tx_frame < usb->frame_number)
pipe->next_tx_frame = usb->frame_number + pipe->interval -
(usb->frame_number - pipe->next_tx_frame) % pipe->interval;
} else {
struct cvmx_usb_port_status port;
port = cvmx_usb_get_status(usb);
if (port.port_enabled) {
/* We'll retry the exact same transaction again */
transaction->retries++;
} else {
/*
* We get channel halted interrupts with no result bits
* sets when the cable is unplugged
*/
__cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_ERROR);
}
}
return 0;
}
static void octeon_usb_port_callback(struct cvmx_usb_state *usb)
{
struct octeon_hcd *priv = cvmx_usb_to_octeon(usb);
spin_unlock(&priv->lock);
usb_hcd_poll_rh_status(octeon_to_hcd(priv));
spin_lock(&priv->lock);
}
/**
* Poll the USB block for status and call all needed callback
* handlers. This function is meant to be called in the interrupt
* handler for the USB controller. It can also be called
* periodically in a loop for non-interrupt based operation.
*
* @usb: USB device state populated by cvmx_usb_initialize().
*
* Returns: 0 or a negative error code.
*/
static int cvmx_usb_poll(struct cvmx_usb_state *usb)
{
union cvmx_usbcx_hfnum usbc_hfnum;
union cvmx_usbcx_gintsts usbc_gintsts;
CVMX_PREFETCH(usb, 0);
CVMX_PREFETCH(usb, 1*128);
CVMX_PREFETCH(usb, 2*128);
CVMX_PREFETCH(usb, 3*128);
CVMX_PREFETCH(usb, 4*128);
/* Update the frame counter */
usbc_hfnum.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
if ((usb->frame_number&0x3fff) > usbc_hfnum.s.frnum)
usb->frame_number += 0x4000;
usb->frame_number &= ~0x3fffull;
usb->frame_number |= usbc_hfnum.s.frnum;
/* Read the pending interrupts */
usbc_gintsts.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_GINTSTS(usb->index));
/* Clear the interrupts now that we know about them */
__cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index), usbc_gintsts.u32);
if (usbc_gintsts.s.rxflvl) {
/*
* RxFIFO Non-Empty (RxFLvl)
* Indicates that there is at least one packet pending to be
* read from the RxFIFO.
*
* In DMA mode this is handled by hardware
*/
if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
__cvmx_usb_poll_rx_fifo(usb);
}
if (usbc_gintsts.s.ptxfemp || usbc_gintsts.s.nptxfemp) {
/* Fill the Tx FIFOs when not in DMA mode */
if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
__cvmx_usb_poll_tx_fifo(usb);
}
if (usbc_gintsts.s.disconnint || usbc_gintsts.s.prtint) {
union cvmx_usbcx_hprt usbc_hprt;
/*
* Disconnect Detected Interrupt (DisconnInt)
* Asserted when a device disconnect is detected.
*
* Host Port Interrupt (PrtInt)
* The core sets this bit to indicate a change in port status of
* one of the O2P USB core ports in Host mode. The application
* must read the Host Port Control and Status (HPRT) register to
* determine the exact event that caused this interrupt. The
* application must clear the appropriate status bit in the Host
* Port Control and Status register to clear this bit.
*
* Call the user's port callback
*/
octeon_usb_port_callback(usb);
/* Clear the port change bits */
usbc_hprt.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
usbc_hprt.s.prtena = 0;
__cvmx_usb_write_csr32(usb, CVMX_USBCX_HPRT(usb->index), usbc_hprt.u32);
}
if (usbc_gintsts.s.hchint) {
/*
* Host Channels Interrupt (HChInt)
* The core sets this bit to indicate that an interrupt is
* pending on one of the channels of the core (in Host mode).
* The application must read the Host All Channels Interrupt
* (HAINT) register to determine the exact number of the channel
* on which the interrupt occurred, and then read the
* corresponding Host Channel-n Interrupt (HCINTn) register to
* determine the exact cause of the interrupt. The application
* must clear the appropriate status bit in the HCINTn register
* to clear this bit.
*/
union cvmx_usbcx_haint usbc_haint;
usbc_haint.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HAINT(usb->index));
while (usbc_haint.u32) {
int channel;
channel = __fls(usbc_haint.u32);
__cvmx_usb_poll_channel(usb, channel);
usbc_haint.u32 ^= 1<<channel;
}
}
__cvmx_usb_schedule(usb, usbc_gintsts.s.sof);
return 0;
}
/* convert between an HCD pointer and the corresponding struct octeon_hcd */
static inline struct octeon_hcd *hcd_to_octeon(struct usb_hcd *hcd)
{
return (struct octeon_hcd *)(hcd->hcd_priv);
}
static irqreturn_t octeon_usb_irq(struct usb_hcd *hcd)
{
struct octeon_hcd *priv = hcd_to_octeon(hcd);
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
cvmx_usb_poll(&priv->usb);
spin_unlock_irqrestore(&priv->lock, flags);
return IRQ_HANDLED;
}
static int octeon_usb_start(struct usb_hcd *hcd)
{
hcd->state = HC_STATE_RUNNING;
return 0;
}
static void octeon_usb_stop(struct usb_hcd *hcd)
{
hcd->state = HC_STATE_HALT;
}
static int octeon_usb_get_frame_number(struct usb_hcd *hcd)
{
struct octeon_hcd *priv = hcd_to_octeon(hcd);
return cvmx_usb_get_frame_number(&priv->usb);
}
static int octeon_usb_urb_enqueue(struct usb_hcd *hcd,
struct urb *urb,
gfp_t mem_flags)
{
struct octeon_hcd *priv = hcd_to_octeon(hcd);
struct device *dev = hcd->self.controller;
struct cvmx_usb_transaction *transaction = NULL;
struct cvmx_usb_pipe *pipe;
unsigned long flags;
struct cvmx_usb_iso_packet *iso_packet;
struct usb_host_endpoint *ep = urb->ep;
urb->status = 0;
INIT_LIST_HEAD(&urb->urb_list); /* not enqueued on dequeue_list */
spin_lock_irqsave(&priv->lock, flags);
if (!ep->hcpriv) {
enum cvmx_usb_transfer transfer_type;
enum cvmx_usb_speed speed;
int split_device = 0;
int split_port = 0;
switch (usb_pipetype(urb->pipe)) {
case PIPE_ISOCHRONOUS:
transfer_type = CVMX_USB_TRANSFER_ISOCHRONOUS;
break;
case PIPE_INTERRUPT:
transfer_type = CVMX_USB_TRANSFER_INTERRUPT;
break;
case PIPE_CONTROL:
transfer_type = CVMX_USB_TRANSFER_CONTROL;
break;
default:
transfer_type = CVMX_USB_TRANSFER_BULK;
break;
}
switch (urb->dev->speed) {
case USB_SPEED_LOW:
speed = CVMX_USB_SPEED_LOW;
break;
case USB_SPEED_FULL:
speed = CVMX_USB_SPEED_FULL;
break;
default:
speed = CVMX_USB_SPEED_HIGH;
break;
}
/*
* For slow devices on high speed ports we need to find the hub
* that does the speed translation so we know where to send the
* split transactions.
*/
if (speed != CVMX_USB_SPEED_HIGH) {
/*
* Start at this device and work our way up the usb
* tree.
*/
struct usb_device *dev = urb->dev;
while (dev->parent) {
/*
* If our parent is high speed then he'll
* receive the splits.
*/
if (dev->parent->speed == USB_SPEED_HIGH) {
split_device = dev->parent->devnum;
split_port = dev->portnum;
break;
}
/*
* Move up the tree one level. If we make it all
* the way up the tree, then the port must not
* be in high speed mode and we don't need a
* split.
*/
dev = dev->parent;
}
}
pipe = cvmx_usb_open_pipe(&priv->usb, usb_pipedevice(urb->pipe),
usb_pipeendpoint(urb->pipe), speed,
le16_to_cpu(ep->desc.wMaxPacketSize) & 0x7ff,
transfer_type,
usb_pipein(urb->pipe) ?
CVMX_USB_DIRECTION_IN :
CVMX_USB_DIRECTION_OUT,
urb->interval,
(le16_to_cpu(ep->desc.wMaxPacketSize) >> 11) & 0x3,
split_device, split_port);
if (!pipe) {
spin_unlock_irqrestore(&priv->lock, flags);
dev_dbg(dev, "Failed to create pipe\n");
return -ENOMEM;
}
ep->hcpriv = pipe;
} else {
pipe = ep->hcpriv;
}
switch (usb_pipetype(urb->pipe)) {
case PIPE_ISOCHRONOUS:
dev_dbg(dev, "Submit isochronous to %d.%d\n",
usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe));
/*
* Allocate a structure to use for our private list of
* isochronous packets.
*/
iso_packet = kmalloc(urb->number_of_packets *
sizeof(struct cvmx_usb_iso_packet),
GFP_ATOMIC);
if (iso_packet) {
int i;
/* Fill the list with the data from the URB */
for (i = 0; i < urb->number_of_packets; i++) {
iso_packet[i].offset = urb->iso_frame_desc[i].offset;
iso_packet[i].length = urb->iso_frame_desc[i].length;
iso_packet[i].status = CVMX_USB_COMPLETE_ERROR;
}
/*
* Store a pointer to the list in the URB setup_packet
* field. We know this currently isn't being used and
* this saves us a bunch of logic.
*/
urb->setup_packet = (char *)iso_packet;
transaction = cvmx_usb_submit_isochronous(&priv->usb,
pipe, urb);
/*
* If submit failed we need to free our private packet
* list.
*/
if (!transaction) {
urb->setup_packet = NULL;
kfree(iso_packet);
}
}
break;
case PIPE_INTERRUPT:
dev_dbg(dev, "Submit interrupt to %d.%d\n",
usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe));
transaction = cvmx_usb_submit_interrupt(&priv->usb, pipe, urb);
break;
case PIPE_CONTROL:
dev_dbg(dev, "Submit control to %d.%d\n",
usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe));
transaction = cvmx_usb_submit_control(&priv->usb, pipe, urb);
break;
case PIPE_BULK:
dev_dbg(dev, "Submit bulk to %d.%d\n",
usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe));
transaction = cvmx_usb_submit_bulk(&priv->usb, pipe, urb);
break;
}
if (!transaction) {
spin_unlock_irqrestore(&priv->lock, flags);
dev_dbg(dev, "Failed to submit\n");
return -ENOMEM;
}
urb->hcpriv = transaction;
spin_unlock_irqrestore(&priv->lock, flags);
return 0;
}
static void octeon_usb_urb_dequeue_work(unsigned long arg)
{
struct urb *urb;
struct urb *next;
unsigned long flags;
struct octeon_hcd *priv = (struct octeon_hcd *)arg;
spin_lock_irqsave(&priv->lock, flags);
list_for_each_entry_safe(urb, next, &priv->dequeue_list, urb_list) {
list_del_init(&urb->urb_list);
cvmx_usb_cancel(&priv->usb, urb->ep->hcpriv, urb->hcpriv);
}
spin_unlock_irqrestore(&priv->lock, flags);
}
static int octeon_usb_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
{
struct octeon_hcd *priv = hcd_to_octeon(hcd);
unsigned long flags;
if (!urb->dev)
return -EINVAL;
spin_lock_irqsave(&priv->lock, flags);
urb->status = status;
list_add_tail(&urb->urb_list, &priv->dequeue_list);
spin_unlock_irqrestore(&priv->lock, flags);
tasklet_schedule(&priv->dequeue_tasklet);
return 0;
}
static void octeon_usb_endpoint_disable(struct usb_hcd *hcd, struct usb_host_endpoint *ep)
{
struct device *dev = hcd->self.controller;
if (ep->hcpriv) {
struct octeon_hcd *priv = hcd_to_octeon(hcd);
struct cvmx_usb_pipe *pipe = ep->hcpriv;
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
cvmx_usb_cancel_all(&priv->usb, pipe);
if (cvmx_usb_close_pipe(&priv->usb, pipe))
dev_dbg(dev, "Closing pipe %p failed\n", pipe);
spin_unlock_irqrestore(&priv->lock, flags);
ep->hcpriv = NULL;
}
}
static int octeon_usb_hub_status_data(struct usb_hcd *hcd, char *buf)
{
struct octeon_hcd *priv = hcd_to_octeon(hcd);
struct cvmx_usb_port_status port_status;
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
port_status = cvmx_usb_get_status(&priv->usb);
spin_unlock_irqrestore(&priv->lock, flags);
buf[0] = 0;
buf[0] = port_status.connect_change << 1;
return (buf[0] != 0);
}
static int octeon_usb_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue, u16 wIndex, char *buf, u16 wLength)
{
struct octeon_hcd *priv = hcd_to_octeon(hcd);
struct device *dev = hcd->self.controller;
struct cvmx_usb_port_status usb_port_status;
int port_status;
struct usb_hub_descriptor *desc;
unsigned long flags;
switch (typeReq) {
case ClearHubFeature:
dev_dbg(dev, "ClearHubFeature\n");
switch (wValue) {
case C_HUB_LOCAL_POWER:
case C_HUB_OVER_CURRENT:
/* Nothing required here */
break;
default:
return -EINVAL;
}
break;
case ClearPortFeature:
dev_dbg(dev, "ClearPortFeature\n");
if (wIndex != 1) {
dev_dbg(dev, " INVALID\n");
return -EINVAL;
}
switch (wValue) {
case USB_PORT_FEAT_ENABLE:
dev_dbg(dev, " ENABLE\n");
spin_lock_irqsave(&priv->lock, flags);
cvmx_usb_disable(&priv->usb);
spin_unlock_irqrestore(&priv->lock, flags);
break;
case USB_PORT_FEAT_SUSPEND:
dev_dbg(dev, " SUSPEND\n");
/* Not supported on Octeon */
break;
case USB_PORT_FEAT_POWER:
dev_dbg(dev, " POWER\n");
/* Not supported on Octeon */
break;
case USB_PORT_FEAT_INDICATOR:
dev_dbg(dev, " INDICATOR\n");
/* Port inidicator not supported */
break;
case USB_PORT_FEAT_C_CONNECTION:
dev_dbg(dev, " C_CONNECTION\n");
/* Clears drivers internal connect status change flag */
spin_lock_irqsave(&priv->lock, flags);
priv->usb.port_status = cvmx_usb_get_status(&priv->usb);
spin_unlock_irqrestore(&priv->lock, flags);
break;
case USB_PORT_FEAT_C_RESET:
dev_dbg(dev, " C_RESET\n");
/*
* Clears the driver's internal Port Reset Change flag.
*/
spin_lock_irqsave(&priv->lock, flags);
priv->usb.port_status = cvmx_usb_get_status(&priv->usb);
spin_unlock_irqrestore(&priv->lock, flags);
break;
case USB_PORT_FEAT_C_ENABLE:
dev_dbg(dev, " C_ENABLE\n");
/*
* Clears the driver's internal Port Enable/Disable
* Change flag.
*/
spin_lock_irqsave(&priv->lock, flags);
priv->usb.port_status = cvmx_usb_get_status(&priv->usb);
spin_unlock_irqrestore(&priv->lock, flags);
break;
case USB_PORT_FEAT_C_SUSPEND:
dev_dbg(dev, " C_SUSPEND\n");
/*
* Clears the driver's internal Port Suspend Change
* flag, which is set when resume signaling on the host
* port is complete.
*/
break;
case USB_PORT_FEAT_C_OVER_CURRENT:
dev_dbg(dev, " C_OVER_CURRENT\n");
/* Clears the driver's overcurrent Change flag */
spin_lock_irqsave(&priv->lock, flags);
priv->usb.port_status = cvmx_usb_get_status(&priv->usb);
spin_unlock_irqrestore(&priv->lock, flags);
break;
default:
dev_dbg(dev, " UNKNOWN\n");
return -EINVAL;
}
break;
case GetHubDescriptor:
dev_dbg(dev, "GetHubDescriptor\n");
desc = (struct usb_hub_descriptor *)buf;
desc->bDescLength = 9;
desc->bDescriptorType = 0x29;
desc->bNbrPorts = 1;
desc->wHubCharacteristics = 0x08;
desc->bPwrOn2PwrGood = 1;
desc->bHubContrCurrent = 0;
desc->u.hs.DeviceRemovable[0] = 0;
desc->u.hs.DeviceRemovable[1] = 0xff;
break;
case GetHubStatus:
dev_dbg(dev, "GetHubStatus\n");
*(__le32 *) buf = 0;
break;
case GetPortStatus:
dev_dbg(dev, "GetPortStatus\n");
if (wIndex != 1) {
dev_dbg(dev, " INVALID\n");
return -EINVAL;
}
spin_lock_irqsave(&priv->lock, flags);
usb_port_status = cvmx_usb_get_status(&priv->usb);
spin_unlock_irqrestore(&priv->lock, flags);
port_status = 0;
if (usb_port_status.connect_change) {
port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
dev_dbg(dev, " C_CONNECTION\n");
}
if (usb_port_status.port_enabled) {
port_status |= (1 << USB_PORT_FEAT_C_ENABLE);
dev_dbg(dev, " C_ENABLE\n");
}
if (usb_port_status.connected) {
port_status |= (1 << USB_PORT_FEAT_CONNECTION);
dev_dbg(dev, " CONNECTION\n");
}
if (usb_port_status.port_enabled) {
port_status |= (1 << USB_PORT_FEAT_ENABLE);
dev_dbg(dev, " ENABLE\n");
}
if (usb_port_status.port_over_current) {
port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT);
dev_dbg(dev, " OVER_CURRENT\n");
}
if (usb_port_status.port_powered) {
port_status |= (1 << USB_PORT_FEAT_POWER);
dev_dbg(dev, " POWER\n");
}
if (usb_port_status.port_speed == CVMX_USB_SPEED_HIGH) {
port_status |= USB_PORT_STAT_HIGH_SPEED;
dev_dbg(dev, " HIGHSPEED\n");
} else if (usb_port_status.port_speed == CVMX_USB_SPEED_LOW) {
port_status |= (1 << USB_PORT_FEAT_LOWSPEED);
dev_dbg(dev, " LOWSPEED\n");
}
*((__le32 *) buf) = cpu_to_le32(port_status);
break;
case SetHubFeature:
dev_dbg(dev, "SetHubFeature\n");
/* No HUB features supported */
break;
case SetPortFeature:
dev_dbg(dev, "SetPortFeature\n");
if (wIndex != 1) {
dev_dbg(dev, " INVALID\n");
return -EINVAL;
}
switch (wValue) {
case USB_PORT_FEAT_SUSPEND:
dev_dbg(dev, " SUSPEND\n");
return -EINVAL;
case USB_PORT_FEAT_POWER:
dev_dbg(dev, " POWER\n");
return -EINVAL;
case USB_PORT_FEAT_RESET:
dev_dbg(dev, " RESET\n");
spin_lock_irqsave(&priv->lock, flags);
cvmx_usb_disable(&priv->usb);
if (cvmx_usb_enable(&priv->usb))
dev_dbg(dev, "Failed to enable the port\n");
spin_unlock_irqrestore(&priv->lock, flags);
return 0;
case USB_PORT_FEAT_INDICATOR:
dev_dbg(dev, " INDICATOR\n");
/* Not supported */
break;
default:
dev_dbg(dev, " UNKNOWN\n");
return -EINVAL;
}
break;
default:
dev_dbg(dev, "Unknown root hub request\n");
return -EINVAL;
}
return 0;
}
static const struct hc_driver octeon_hc_driver = {
.description = "Octeon USB",
.product_desc = "Octeon Host Controller",
.hcd_priv_size = sizeof(struct octeon_hcd),
.irq = octeon_usb_irq,
.flags = HCD_MEMORY | HCD_USB2,
.start = octeon_usb_start,
.stop = octeon_usb_stop,
.urb_enqueue = octeon_usb_urb_enqueue,
.urb_dequeue = octeon_usb_urb_dequeue,
.endpoint_disable = octeon_usb_endpoint_disable,
.get_frame_number = octeon_usb_get_frame_number,
.hub_status_data = octeon_usb_hub_status_data,
.hub_control = octeon_usb_hub_control,
};
static int octeon_usb_probe(struct platform_device *pdev)
{
int status;
int initialize_flags;
int usb_num;
struct resource *res_mem;
struct device_node *usbn_node;
int irq = platform_get_irq(pdev, 0);
struct device *dev = &pdev->dev;
struct octeon_hcd *priv;
struct usb_hcd *hcd;
unsigned long flags;
u32 clock_rate = 48000000;
bool is_crystal_clock = false;
const char *clock_type;
int i;
if (dev->of_node == NULL) {
dev_err(dev, "Error: empty of_node\n");
return -ENXIO;
}
usbn_node = dev->of_node->parent;
i = of_property_read_u32(usbn_node,
"refclk-frequency", &clock_rate);
if (i) {
dev_err(dev, "No USBN \"refclk-frequency\"\n");
return -ENXIO;
}
switch (clock_rate) {
case 12000000:
initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ;
break;
case 24000000:
initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ;
break;
case 48000000:
initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ;
break;
default:
dev_err(dev, "Illebal USBN \"refclk-frequency\" %u\n", clock_rate);
return -ENXIO;
}
i = of_property_read_string(usbn_node,
"refclk-type", &clock_type);
if (!i && strcmp("crystal", clock_type) == 0)
is_crystal_clock = true;
if (is_crystal_clock)
initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI;
else
initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND;
res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res_mem == NULL) {
dev_err(dev, "found no memory resource\n");
return -ENXIO;
}
usb_num = (res_mem->start >> 44) & 1;
if (irq < 0) {
/* Defective device tree, but we know how to fix it. */
irq_hw_number_t hwirq = usb_num ? (1 << 6) + 17 : 56;
irq = irq_create_mapping(NULL, hwirq);
}
/*
* Set the DMA mask to 64bits so we get buffers already translated for
* DMA.
*/
dev->coherent_dma_mask = ~0;
dev->dma_mask = &dev->coherent_dma_mask;
/*
* Only cn52XX and cn56XX have DWC_OTG USB hardware and the
* IOB priority registers. Under heavy network load USB
* hardware can be starved by the IOB causing a crash. Give
* it a priority boost if it has been waiting more than 400
* cycles to avoid this situation.
*
* Testing indicates that a cnt_val of 8192 is not sufficient,
* but no failures are seen with 4096. We choose a value of
* 400 to give a safety factor of 10.
*/
if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX)) {
union cvmx_iob_n2c_l2c_pri_cnt pri_cnt;
pri_cnt.u64 = 0;
pri_cnt.s.cnt_enb = 1;
pri_cnt.s.cnt_val = 400;
cvmx_write_csr(CVMX_IOB_N2C_L2C_PRI_CNT, pri_cnt.u64);
}
hcd = usb_create_hcd(&octeon_hc_driver, dev, dev_name(dev));
if (!hcd) {
dev_dbg(dev, "Failed to allocate memory for HCD\n");
return -1;
}
hcd->uses_new_polling = 1;
priv = (struct octeon_hcd *)hcd->hcd_priv;
spin_lock_init(&priv->lock);
tasklet_init(&priv->dequeue_tasklet, octeon_usb_urb_dequeue_work, (unsigned long)priv);
INIT_LIST_HEAD(&priv->dequeue_list);
status = cvmx_usb_initialize(&priv->usb, usb_num, initialize_flags);
if (status) {
dev_dbg(dev, "USB initialization failed with %d\n", status);
kfree(hcd);
return -1;
}
/* This delay is needed for CN3010, but I don't know why... */
mdelay(10);
spin_lock_irqsave(&priv->lock, flags);
cvmx_usb_poll(&priv->usb);
spin_unlock_irqrestore(&priv->lock, flags);
status = usb_add_hcd(hcd, irq, 0);
if (status) {
dev_dbg(dev, "USB add HCD failed with %d\n", status);
kfree(hcd);
return -1;
}
device_wakeup_enable(hcd->self.controller);
dev_info(dev, "Registered HCD for port %d on irq %d\n", usb_num, irq);
return 0;
}
static int octeon_usb_remove(struct platform_device *pdev)
{
int status;
struct device *dev = &pdev->dev;
struct usb_hcd *hcd = dev_get_drvdata(dev);
struct octeon_hcd *priv = hcd_to_octeon(hcd);
unsigned long flags;
usb_remove_hcd(hcd);
tasklet_kill(&priv->dequeue_tasklet);
spin_lock_irqsave(&priv->lock, flags);
status = cvmx_usb_shutdown(&priv->usb);
spin_unlock_irqrestore(&priv->lock, flags);
if (status)
dev_dbg(dev, "USB shutdown failed with %d\n", status);
kfree(hcd);
return 0;
}
static struct of_device_id octeon_usb_match[] = {
{
.compatible = "cavium,octeon-5750-usbc",
},
{},
};
static struct platform_driver octeon_usb_driver = {
.driver = {
.name = "OcteonUSB",
.owner = THIS_MODULE,
.of_match_table = octeon_usb_match,
},
.probe = octeon_usb_probe,
.remove = octeon_usb_remove,
};
static int __init octeon_usb_driver_init(void)
{
if (usb_disabled())
return 0;
return platform_driver_register(&octeon_usb_driver);
}
module_init(octeon_usb_driver_init);
static void __exit octeon_usb_driver_exit(void)
{
if (usb_disabled())
return;
platform_driver_unregister(&octeon_usb_driver);
}
module_exit(octeon_usb_driver_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Cavium, Inc. <support@cavium.com>");
MODULE_DESCRIPTION("Cavium Inc. OCTEON USB Host driver.");