- 根目录:
- drivers
- staging
- silicom
- libbp_sd.h
/******************************************************************************/
/* */
/* bypass library, Copyright (c) 2004 Silicom, Ltd */
/* Corporation. */
/* */
/* This program is free software; you can redistribute it and/or modify */
/* it under the terms of the GNU General Public License as published by */
/* the Free Software Foundation, located in the file LICENSE. */
/* */
/* Ver 1.0.0 */
/* */
/* libbypass.h */
/* */
/******************************************************************************/
#define BP_CAP 0x01 /* BIT_0 */
#define BP_STATUS_CAP 0x02
#define BP_STATUS_CHANGE_CAP 0x04
#define SW_CTL_CAP 0x08
#define BP_DIS_CAP 0x10
#define BP_DIS_STATUS_CAP 0x20
#define STD_NIC_CAP 0x40
#define BP_PWOFF_ON_CAP 0x80
#define BP_PWOFF_OFF_CAP 0x0100
#define BP_PWOFF_CTL_CAP 0x0200
#define BP_PWUP_ON_CAP 0x0400
#define BP_PWUP_OFF_CAP 0x0800
#define BP_PWUP_CTL_CAP 0x1000
#define WD_CTL_CAP 0x2000
#define WD_STATUS_CAP 0x4000
#define WD_TIMEOUT_CAP 0x8000
#define TX_CTL_CAP 0x10000
#define TX_STATUS_CAP 0x20000
#define TAP_CAP 0x40000
#define TAP_STATUS_CAP 0x80000
#define TAP_STATUS_CHANGE_CAP 0x100000
#define TAP_DIS_CAP 0x200000
#define TAP_DIS_STATUS_CAP 0x400000
#define TAP_PWUP_ON_CAP 0x800000
#define TAP_PWUP_OFF_CAP 0x1000000
#define TAP_PWUP_CTL_CAP 0x2000000
#define NIC_CAP_NEG 0x4000000 /* BIT 26 */
#define WD_MIN_TIME_GET(desc) (desc & 0xf)
#define WDT_STEP_TIME 0x10
struct bp_info {
char prod_name[14];
unsigned char fw_ver;
};
/**
* is_bypass - check if device is a Bypass controlling device
* @if_index: network device index
*
* Output:
* 1 - if device is bypass controlling device,
* 0 - if device is bypass slave device
* -1 - device not support Bypass
**/
int is_bypass_sd(int if_index);
/**
* get_bypass_slave - get second port participate in the Bypass pair
* @if_index: network device index
*
* Output:
* network device index of the slave device
* -1 - on failure (device not support Bypass or it's a slave device)
**/
int get_bypass_slave_sd(int if_index);
/**
* get_bypass_caps - get second port participate in the Bypass pair
* @if_index: network device index
*
* Output:
* flags word on success;flag word is a 32-bit mask word with each bit defines different
* capability as described bellow.
* Value of 1 for supporting this feature. 0 for not supporting this feature.
* -1 - on failure (if the device is not capable of the operation or not a Bypass device)
* Bit feature description
*
* 0 BP_CAP The interface is Bypass capable in general
*
* 1 BP_STATUS_CAP The interface can report of the current Bypass mode
*
* 2 BP_STATUS_CHANGE_CAP The interface can report on a change to bypass mode from
* the last time the mode was defined
*
* 3 SW_CTL_CAP The interface is Software controlled capable for bypass/non bypass modes.
*
* 4 BP_DIS_CAP The interface is capable of disabling the Bypass mode at all times.
* This mode will retain its mode even during power loss and also after
* power recovery. This will overcome on any bypass operation due to
* watchdog timeout or set bypass command.
*
* 5 BP_DIS_STATUS_CAP The interface can report of the current DIS_BP_CAP
*
* 6 STD_NIC_CAP The interface is capable to be configured to operate as standard, non Bypass,
* NIC interface (have direct connection to interfaces at all power modes)
*
* 7 BP_PWOFF_NO_CAP The interface can be in Bypass mode at power off state
*
* 8 BP_PWOFF_OFF_CAP The interface can disconnect the Bypass mode at power off state without
* effecting all the other states of operation
*
* 9 BP_PWOFF_CTL_CAP The behavior of the Bypass mode at Power-off state can be controlled by
* software without effecting any other state
*
*10 BP_PWUP_ON_CAP The interface can be in Bypass mode when power is turned on
* (until the system take control of the bypass functionality)
*
*11 BP_PWUP_OFF_CAP The interface can disconnect from Bypass mode when power is turned on
* (until the system take control of the bypass functionality)
*
*12 BP_PWUP_CTL_CAP The behavior of the Bypass mode at Power-up can be controlled by software
*
*13 WD_CTL_CAP The interface has watchdog capabilities to turn to Bypass mode when not reset
* for defined period of time.
*
*14 WD_STATUS_CAP The interface can report on the watchdog status (Active/inactive)
*
*15 WD_TIMEOUT_CAP The interface can report the time left till watchdog triggers to Bypass mode.
*
*16-31 RESERVED
*
* **/
int get_bypass_caps_sd(int if_index);
/**
* get_wd_set_caps - Obtain watchdog timer setting capabilities
* @if_index: network device index
*
* Output:
*
* Set of numbers defining the various parameters of the watchdog capable
* to be set to as described bellow.
* -1 - on failure (device not support Bypass or it's a slave device)
*
* Bit feature description
*
* 0-3 WD_MIN_TIME The interface WD minimal time period in 100mS units
*
* 4 WD_STEP_TIME The steps of the WD timer in
* 0 - for linear steps (WD_MIN_TIME * X)
* 1 - for multiply by 2 from previous step (WD_MIN_TIME * 2^X)
*
* 5-8 WD_STEP_COUNT Number of steps the WD timer supports in 2^X
* (X bit available for defining the value)
*
*
*
**/
int get_wd_set_caps_sd(int if_index);
/**
* set_bypass - set Bypass state
* @if_index: network device index of the controlling device
* @bypass_mode: bypass mode (1=on, 0=off)
* Output:
* 0 - on success
* -1 - on failure (device not support Bypass or it's a slave device)
**/
int set_bypass_sd(int if_index, int bypass_mode);
/**
* get_bypass - Get Bypass mode state
* @if_index: network device index of the controlling device
* Output:
* 0/1 - (off/on) on success
* -1 - on failure (device not support Bypass or it's a slave device)
**/
int get_bypass_sd(int if_index);
/**
* get_bypass_change - Get change of Bypass mode state from last status check
* @if_index: network device index of the controlling device
* Output:
* 0/1 - (off/on) on success
* -1 - on failure (device not support Bypass or it's a slave device)
**/
int get_bypass_change_sd(int if_index);
/**
* set_dis_bypass - Set Disable Bypass mode
* @if_index: network device index of the controlling device
* @dis_bypass: disable bypass(1=dis, 0=en)
* Output:
* 0 - on success
* -1 - on failure (device is not capable of the operation ordevice not support Bypass
* or it's a slave device)
**/
int set_dis_bypass_sd(int if_index, int dis_bypass);
/**
* get_dis_bypass - Get Disable Bypass mode state
* @if_index: network device index of the controlling device
* Output:
* 0/1 - on success (normal Bypass mode/ Disable bypass)
* -1 - on failure (device is not capable of the operation ordevice not support Bypass
* or it's a slave device)
**/
int get_dis_bypass_sd(int if_index);
/**
* set_bypass_pwoff - Set Bypass mode at power-off state
* @if_index: network device index of the controlling device
* @bypass_mode: bypass mode setting at power off state (1=BP en, 0=BP Dis)
* Output:
* 0 - on success
* -1 - on failure (device is not capable of the operation ordevice not support Bypass
* or it's a slave device)
**/
int set_bypass_pwoff_sd(int if_index, int bypass_mode);
/**
* get_bypass_pwoff - Get Bypass mode state at power-off state
* @if_index: network device index of the controlling device
* Output:
* 0/1 - on success (Disable bypass at power off state / normal Bypass mode)
* -1 - on failure (device is not capable of the operation ordevice not support Bypass
* or it's a slave device)
**/
int get_bypass_pwoff_sd(int if_index);
/**
* set_bypass_pwup - Set Bypass mode at power-up state
* @if_index: network device index of the controlling device
* @bypass_mode: bypass mode setting at power up state (1=BP en, 0=BP Dis)
* Output:
* 0 - on success
* -1 - on failure (device is not capable of the operation ordevice not support Bypass
* or it's a slave device)
**/
int set_bypass_pwup_sd(int if_index, int bypass_mode);
/**
* get_bypass_pwup - Get Bypass mode state at power-up state
* @if_index: network device index of the controlling device
* Output:
* 0/1 - on success (Disable bypass at power up state / normal Bypass mode)
* -1 - on failure (device is not capable of the operation ordevice not support Bypass
* or it's a slave device)
**/
int get_bypass_pwup_sd(int if_index);
/**
* set_bypass_wd - Set watchdog state
* @if_index: network device index of the controlling device
* @ms_timeout: requested timeout (in ms units), 0 for disabling the watchdog timer
* @ms_timeout_set(output): requested timeout (in ms units),
* that the adapter supports and will be used by the watchdog
* Output:
* 0 - on success
* -1 - on failure (device is not capable of the operation ordevice not support Bypass
* or it's a slave device)
**/
int set_bypass_wd_sd(int if_index, int ms_timeout, int *ms_timeout_set);
/**
* get_bypass_wd - Get watchdog state
* @if_index: network device index of the controlling device
* @ms_timeout (output): WDT timeout (in ms units),
* -1 for unknown wdt status
* 0 if WDT is disabled
* Output:
* 0 - on success
* -1 - on failure (device is not capable of the operation ordevice not support Bypass
* or it's a slave device)
**/
int get_bypass_wd_sd(int if_index, int *ms_timeout_set);
/**
* get_wd_expire_time - Get watchdog expire
* @if_index: network device index of the controlling device
* @ms_time_left (output): time left till watchdog time expire,
* -1 if WDT has expired
* 0 if WDT is disabled
* Output:
* 0 - on success
* -1 - on failure (device is not capable of the operation ordevice not support Bypass
* or it's a slave device or unknown wdt status)
**/
int get_wd_expire_time_sd(int if_index, int *ms_time_left);
/**
* reset_bypass_wd_timer - Reset watchdog timer
* @if_index: network device index of the controlling device
*
* Output:
* 1 - on success
* 0 - watchdog is not configured
* -1 - on failure (device is not capable of the operation ordevice not support Bypass
* or it's a slave device or unknown wdt status)
**/
int reset_bypass_wd_timer_sd(int if_index);
/**
* set_std_nic - Standard NIC mode of operation
* @if_index: network device index of the controlling device
* @nic_mode: 0/1 (Default Bypass mode / Standard NIC mode)
*
* Output:
* 0 - on success
* -1 - on failure (device is not capable of the operation ordevice not support Bypass
* or it's a slave device)
**/
int set_std_nic_sd(int if_index, int nic_mode);
/**
* get_std_nic - Get Standard NIC mode setting
* @if_index: network device index of the controlling device
*
* Output:
* 0/1 (Default Bypass mode / Standard NIC mode) on success
* -1 - on failure (device is not capable of the operation ordevice not support Bypass
* or it's a slave device)
**/
int get_std_nic_sd(int if_index);
/**
* set_tx - set transmitter enable/disable
* @if_index: network device index of the controlling device
* @tx_state: 0/1 (Transmit Disable / Transmit Enable)
*
* Output:
* 0 - on success
* -1 - on failure (device is not capable of the operation )
**/
int set_tx_sd(int if_index, int tx_state);
/**
* get_tx - get transmitter state (disable / enable)
* @if_index: network device index of the controlling device
*
* Output:
* 0/1 (ransmit Disable / Transmit Enable) on success
* -1 - on failure (device is not capable of the operation ordevice not support Bypass)
**/
int get_tx_sd(int if_index);
/**
* set_tpl - set TPL enable/disable
* @if_index: network device index of the controlling device
* @tx_state: 0/1 (TPL Disable / TPL Enable)
*
* Output:
* 0 - on success
* -1 - on failure (device is not capable of the operation )
**/
int set_tpl_sd(int if_index, int tpl_state);
/**
* get_tpl - get TPL state (disable / enable)
* @if_index: network device index of the controlling device
*
* Output:
* 0/1 (TPL Disable / TPL Enable) on success
* -1 - on failure (device is not capable of the operation)
**/
int get_tpl_sd(int if_index);
int get_bp_hw_reset_sd(int if_index);
int set_bp_hw_reset_sd(int if_index, int status);
/**
* set_tap - set TAP state
* @if_index: network device index of the controlling device
* @tap_mode: 1 tap mode , 0 normal nic mode
* Output:
* 0 - on success
* -1 - on failure (device not support TAP or it's a slave device)
**/
int set_tap_sd(int if_index, int tap_mode);
/**
* get_tap - Get TAP mode state
* @if_index: network device index of the controlling device
* Output:
* 0/1 - (off/on) on success
* -1 - on failure (device not support TAP or it's a slave device)
**/
int get_tap_sd(int if_index);
/**
* get_tap_change - Get change of TAP mode state from last status check
* @if_index: network device index of the controlling device
* Output:
* 0/1 - (off/on) on success
* -1 - on failure (device not support TAP or it's a slave device)
**/
int get_tap_change_sd(int if_index);
/**
* set_dis_tap - Set Disable TAP mode
* @if_index: network device index of the controlling device
* @dis_tap: disable tap(1=dis, 0=en)
* Output:
* 0 - on success
* -1 - on failure (device is not capable of the operation ordevice not support TAP
* or it's a slave device)
**/
int set_dis_tap_sd(int if_index, int dis_tap);
/**
* get_dis_tap - Get Disable TAP mode state
* @if_index: network device index of the controlling device
* Output:
* 0/1 - on success (normal TAP mode/ Disable TAP)
* -1 - on failure (device is not capable of the operation ordevice not support TAP
* or it's a slave device)
**/
int get_dis_tap_sd(int if_index);
/**
* set_tap_pwup - Set TAP mode at power-up state
* @if_index: network device index of the controlling device
* @bypass_mode: tap mode setting at power up state (1=TAP en, 0=TAP Dis)
* Output:
* 0 - on success
* -1 - on failure (device is not capable of the operation ordevice not support TAP
* or it's a slave device)
**/
int set_tap_pwup_sd(int if_index, int tap_mode);
/**
* get_tap_pwup - Get TAP mode state at power-up state
* @if_index: network device index of the controlling device
* Output:
* 0/1 - on success (Disable TAP at power up state / normal TAP mode)
* -1 - on failure (device is not capable of the operation ordevice not support TAP
* or it's a slave device)
**/
int get_tap_pwup_sd(int if_index);
/**
* set_wd_exp_mode - Set adapter state when WDT expired.
* @if_index: network device index of the controlling device
* @bypass_mode: adapter mode (1=tap mode, 0=bypass mode)
* Output:
* 0 - on success
* -1 - on failure (device not support Bypass or it's a slave device)
**/
int set_wd_exp_mode_sd(int if_index, int bypass_mode);
/**
* get_wd_exp_mode - Get adapter state when WDT expired.
* @if_index: network device index of the controlling device
* Output:
* 0/1 - (bypass/tap) on success
* -1 - on failure (device not support Bypass or it's a slave device)
**/
int get_wd_exp_mode_sd(int if_index);
/**
* set_wd_autoreset - reset WDT periodically.
* @if_index: network device index of the controlling device
* @bypass_mode: adapter mode (1=tap mode, 0=bypass mode)
* Output:
* 1 - on success
* -1 - on failure (device is not capable of the operation ordevice not support Bypass
* or it's a slave device or unknown wdt status)
**/
int set_wd_autoreset_sd(int if_index, int time);
/**
* set_wd_autoreset - reset WDT periodically.
* @if_index: network device index of the controlling device
* @bypass_mode: adapter mode (1=tap mode, 0=bypass mode)
* Output:
* 1 - on success
* -1 - on failure (device is not capable of the operation ordevice not support Bypass
* or it's a slave device or unknown wdt status)
**/
int get_wd_autoreset_sd(int if_index);
/**
* set_disc - set DISC state
* @if_index: network device index of the controlling device
* @tap_mode: 1 DISC mode , 0 normal nic mode
* Output:
* 0 - on success
* -1 - on failure (device not support disconnect or it's a slave device)
**/
int set_bp_disc_sd(int if_index, int disc_mode);
/**
* get_disc - Get disc mode state
* @if_index: network device index of the controlling device
* Output:
* 0/1 - (off/on) on success
* -1 - on failure (device not support disconnect or it's a slave device)
**/
int get_bp_disc_sd(int if_index);
/**
* get_disc_change - Get change of DISC mode state from last status check
* @if_index: network device index of the controlling device
* Output:
* 0/1 - (off/on) on success
* -1 - on failure (device not support disconnect or it's a slave device)
**/
int get_bp_disc_change_sd(int if_index);
/**
* set_dis_disc - Set Disable DISC mode
* @if_index: network device index of the controlling device
* @dis_disc: disable disconnect(1=dis, 0=en)
* Output:
* 0 - on success
* -1 - on failure (device is not capable of the operation ordevice not support DISC
* or it's a slave device)
**/
int set_bp_dis_disc_sd(int if_index, int dis_disc);
/**
* get_dis_disc - Get Disable DISC mode state
* @if_index: network device index of the controlling device
* Output:
* 0/1 - on success (normal DISC mode/ Disable DISC)
* -1 - on failure (device is not capable of the operation ordevice not support TAP
* or it's a slave device)
**/
int get_bp_dis_disc_sd(int if_index);
/**
* set_disc_pwup - Set DISC mode at power-up state
* @if_index: network device index of the controlling device
* @disc_mode: DISC mode setting at power up state (1= en, 0= Dis)
* Output:
* 0 - on success
* -1 - on failure (device is not capable of the operation ordevice not support DISC
* or it's a slave device)
**/
int set_bp_disc_pwup_sd(int if_index, int disc_mode);
/**
* get_disc_pwup - Get DISC mode state at power-up state
* @if_index: network device index of the controlling device
* Output:
* 0/1 - on success (Disable DISC at power up state / normal DISC mode)
* -1 - on failure (device is not capable of the operation ordevice not support DISC
* or it's a slave device)
**/
int get_bp_disc_pwup_sd(int if_index);
int get_bypass_info_sd(int if_index, struct bp_info *bp_info);
int bp_if_scan_sd(void);
/*int get_dev_num_sd(void);*/