- 根目录:
- drivers
- staging
- vt6656
- card.c
/*
* Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* File: card.c
* Purpose: Provide functions to setup NIC operation mode
* Functions:
* s_vSafeResetTx - Rest Tx
* CARDvSetRSPINF - Set RSPINF
* vUpdateIFS - Update slotTime,SIFS,DIFS, and EIFS
* CARDvUpdateBasicTopRate - Update BasicTopRate
* CARDbAddBasicRate - Add to BasicRateSet
* CARDbSetBasicRate - Set Basic Tx Rate
* CARDbIsOFDMinBasicRate - Check if any OFDM rate is in BasicRateSet
* CARDvSetLoopbackMode - Set Loopback mode
* CARDbSoftwareReset - Sortware reset NIC
* CARDqGetTSFOffset - Calculate TSFOffset
* CARDbGetCurrentTSF - Read Current NIC TSF counter
* CARDqGetNextTBTT - Calculate Next Beacon TSF counter
* CARDvSetFirstNextTBTT - Set NIC Beacon time
* CARDvUpdateNextTBTT - Sync. NIC Beacon time
* CARDbRadioPowerOff - Turn Off NIC Radio Power
* CARDbRadioPowerOn - Turn On NIC Radio Power
* CARDbSetWEPMode - Set NIC Wep mode
* CARDbSetTxPower - Set NIC tx power
*
* Revision History:
* 06-10-2003 Bryan YC Fan: Re-write codes to support VT3253 spec.
* 08-26-2003 Kyle Hsu: Modify the definition type of dwIoBase.
* 09-01-2003 Bryan YC Fan: Add vUpdateIFS().
*
*/
#include "device.h"
#include "tmacro.h"
#include "card.h"
#include "baseband.h"
#include "mac.h"
#include "desc.h"
#include "rf.h"
#include "power.h"
#include "key.h"
#include "rc4.h"
#include "country.h"
#include "datarate.h"
#include "rndis.h"
#include "control.h"
//static int msglevel =MSG_LEVEL_DEBUG;
static int msglevel =MSG_LEVEL_INFO;
//const u16 cwRXBCNTSFOff[MAX_RATE] =
//{17, 34, 96, 192, 34, 23, 17, 11, 8, 5, 4, 3};
static const u16 cwRXBCNTSFOff[MAX_RATE] =
{192, 96, 34, 17, 34, 23, 17, 11, 8, 5, 4, 3};
/*
* Description: Set NIC media channel
*
* Parameters:
* In:
* pDevice - The adapter to be set
* connection_channel - Channel to be set
* Out:
* none
*/
void CARDbSetMediaChannel(struct vnt_private *priv, u32 connection_channel)
{
if (priv->byBBType == BB_TYPE_11A) {
if ((connection_channel < (CB_MAX_CHANNEL_24G + 1)) ||
(connection_channel > CB_MAX_CHANNEL))
connection_channel = (CB_MAX_CHANNEL_24G + 1);
} else {
if ((connection_channel > CB_MAX_CHANNEL_24G) ||
(connection_channel == 0))
connection_channel = 1;
}
/* clear NAV */
MACvRegBitsOn(priv, MAC_REG_MACCR, MACCR_CLRNAV);
/* Set Channel[7] = 0 to tell H/W channel is changing now. */
MACvRegBitsOff(priv, MAC_REG_CHANNEL, 0xb0);
CONTROLnsRequestOut(priv, MESSAGE_TYPE_SELECT_CHANNLE,
connection_channel, 0, 0, NULL);
if (priv->byBBType == BB_TYPE_11A) {
priv->byCurPwr = 0xff;
RFbRawSetPower(priv,
priv->abyOFDMAPwrTbl[connection_channel-15], RATE_54M);
} else if (priv->byBBType == BB_TYPE_11G) {
priv->byCurPwr = 0xff;
RFbRawSetPower(priv,
priv->abyOFDMPwrTbl[connection_channel-1], RATE_54M);
} else {
priv->byCurPwr = 0xff;
RFbRawSetPower(priv,
priv->abyCCKPwrTbl[connection_channel-1], RATE_1M);
}
ControlvWriteByte(priv, MESSAGE_REQUEST_MACREG, MAC_REG_CHANNEL,
(u8)(connection_channel|0x80));
}
/*
* Description: Get CCK mode basic rate
*
* Parameters:
* In:
* pDevice - The adapter to be set
* wRateIdx - Receiving data rate
* Out:
* none
*
* Return Value: response Control frame rate
*
*/
static u16 swGetCCKControlRate(struct vnt_private *pDevice, u16 wRateIdx)
{
u16 ui = wRateIdx;
while (ui > RATE_1M) {
if (pDevice->wBasicRate & (1 << ui))
return ui;
ui--;
}
return RATE_1M;
}
/*
* Description: Get OFDM mode basic rate
*
* Parameters:
* In:
* pDevice - The adapter to be set
* wRateIdx - Receiving data rate
* Out:
* none
*
* Return Value: response Control frame rate
*
*/
static u16 swGetOFDMControlRate(struct vnt_private *pDevice, u16 wRateIdx)
{
u16 ui = wRateIdx;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"BASIC RATE: %X\n",
pDevice->wBasicRate);
if (!CARDbIsOFDMinBasicRate(pDevice)) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
"swGetOFDMControlRate:(NO OFDM) %d\n", wRateIdx);
if (wRateIdx > RATE_24M)
wRateIdx = RATE_24M;
return wRateIdx;
}
while (ui > RATE_11M) {
if (pDevice->wBasicRate & (1 << ui)) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
"swGetOFDMControlRate: %d\n", ui);
return ui;
}
ui--;
}
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"swGetOFDMControlRate: 6M\n");
return RATE_24M;
}
/*
* Description: Calculate TxRate and RsvTime fields for RSPINF in OFDM mode.
*
* Parameters:
* In:
* wRate - Tx Rate
* byPktType - Tx Packet type
* Out:
* pbyTxRate - pointer to RSPINF TxRate field
* pbyRsvTime - pointer to RSPINF RsvTime field
*
* Return Value: none
*
*/
static void
CARDvCalculateOFDMRParameter (
u16 wRate,
u8 byBBType,
u8 * pbyTxRate,
u8 * pbyRsvTime
)
{
switch (wRate) {
case RATE_6M :
if (byBBType == BB_TYPE_11A) {//5GHZ
*pbyTxRate = 0x9B;
*pbyRsvTime = 24;
}
else {
*pbyTxRate = 0x8B;
*pbyRsvTime = 30;
}
break;
case RATE_9M :
if (byBBType == BB_TYPE_11A) {//5GHZ
*pbyTxRate = 0x9F;
*pbyRsvTime = 16;
}
else {
*pbyTxRate = 0x8F;
*pbyRsvTime = 22;
}
break;
case RATE_12M :
if (byBBType == BB_TYPE_11A) {//5GHZ
*pbyTxRate = 0x9A;
*pbyRsvTime = 12;
}
else {
*pbyTxRate = 0x8A;
*pbyRsvTime = 18;
}
break;
case RATE_18M :
if (byBBType == BB_TYPE_11A) {//5GHZ
*pbyTxRate = 0x9E;
*pbyRsvTime = 8;
}
else {
*pbyTxRate = 0x8E;
*pbyRsvTime = 14;
}
break;
case RATE_36M :
if (byBBType == BB_TYPE_11A) {//5GHZ
*pbyTxRate = 0x9D;
*pbyRsvTime = 4;
}
else {
*pbyTxRate = 0x8D;
*pbyRsvTime = 10;
}
break;
case RATE_48M :
if (byBBType == BB_TYPE_11A) {//5GHZ
*pbyTxRate = 0x98;
*pbyRsvTime = 4;
}
else {
*pbyTxRate = 0x88;
*pbyRsvTime = 10;
}
break;
case RATE_54M :
if (byBBType == BB_TYPE_11A) {//5GHZ
*pbyTxRate = 0x9C;
*pbyRsvTime = 4;
}
else {
*pbyTxRate = 0x8C;
*pbyRsvTime = 10;
}
break;
case RATE_24M :
default :
if (byBBType == BB_TYPE_11A) {//5GHZ
*pbyTxRate = 0x99;
*pbyRsvTime = 8;
}
else {
*pbyTxRate = 0x89;
*pbyRsvTime = 14;
}
break;
}
}
/*
* Description: Set RSPINF
*
* Parameters:
* In:
* pDevice - The adapter to be set
* Out:
* none
*
* Return Value: None.
*
*/
void CARDvSetRSPINF(struct vnt_private *pDevice, u8 byBBType)
{
struct vnt_phy_field phy[4];
u8 abyTxRate[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0}; /* For OFDM */
u8 abyRsvTime[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
u8 abyData[34];
int i;
//RSPINF_b_1
BBvCalculateParameter(pDevice, 14,
swGetCCKControlRate(pDevice, RATE_1M), PK_TYPE_11B, &phy[0]);
///RSPINF_b_2
BBvCalculateParameter(pDevice, 14,
swGetCCKControlRate(pDevice, RATE_2M), PK_TYPE_11B, &phy[1]);
//RSPINF_b_5
BBvCalculateParameter(pDevice, 14,
swGetCCKControlRate(pDevice, RATE_5M), PK_TYPE_11B, &phy[2]);
//RSPINF_b_11
BBvCalculateParameter(pDevice, 14,
swGetCCKControlRate(pDevice, RATE_11M), PK_TYPE_11B, &phy[3]);
//RSPINF_a_6
CARDvCalculateOFDMRParameter (RATE_6M,
byBBType,
&abyTxRate[0],
&abyRsvTime[0]);
//RSPINF_a_9
CARDvCalculateOFDMRParameter (RATE_9M,
byBBType,
&abyTxRate[1],
&abyRsvTime[1]);
//RSPINF_a_12
CARDvCalculateOFDMRParameter (RATE_12M,
byBBType,
&abyTxRate[2],
&abyRsvTime[2]);
//RSPINF_a_18
CARDvCalculateOFDMRParameter (RATE_18M,
byBBType,
&abyTxRate[3],
&abyRsvTime[3]);
//RSPINF_a_24
CARDvCalculateOFDMRParameter (RATE_24M,
byBBType,
&abyTxRate[4],
&abyRsvTime[4]);
//RSPINF_a_36
CARDvCalculateOFDMRParameter (swGetOFDMControlRate(pDevice, RATE_36M),
byBBType,
&abyTxRate[5],
&abyRsvTime[5]);
//RSPINF_a_48
CARDvCalculateOFDMRParameter (swGetOFDMControlRate(pDevice, RATE_48M),
byBBType,
&abyTxRate[6],
&abyRsvTime[6]);
//RSPINF_a_54
CARDvCalculateOFDMRParameter (swGetOFDMControlRate(pDevice, RATE_54M),
byBBType,
&abyTxRate[7],
&abyRsvTime[7]);
//RSPINF_a_72
CARDvCalculateOFDMRParameter (swGetOFDMControlRate(pDevice, RATE_54M),
byBBType,
&abyTxRate[8],
&abyRsvTime[8]);
put_unaligned(phy[0].len, (u16 *)&abyData[0]);
abyData[2] = phy[0].signal;
abyData[3] = phy[0].service;
put_unaligned(phy[1].len, (u16 *)&abyData[4]);
abyData[6] = phy[1].signal;
abyData[7] = phy[1].service;
put_unaligned(phy[2].len, (u16 *)&abyData[8]);
abyData[10] = phy[2].signal;
abyData[11] = phy[2].service;
put_unaligned(phy[3].len, (u16 *)&abyData[12]);
abyData[14] = phy[3].signal;
abyData[15] = phy[3].service;
for (i = 0; i < 9; i++) {
abyData[16+i*2] = abyTxRate[i];
abyData[16+i*2+1] = abyRsvTime[i];
}
CONTROLnsRequestOut(pDevice,
MESSAGE_TYPE_WRITE,
MAC_REG_RSPINF_B_1,
MESSAGE_REQUEST_MACREG,
34,
&abyData[0]);
}
/*
* Description: Update IFS
*
* Parameters:
* In:
* pDevice - The adapter to be set
* Out:
* none
*
* Return Value: None.
*
*/
void vUpdateIFS(struct vnt_private *pDevice)
{
u8 byMaxMin = 0;
u8 byData[4];
if (pDevice->byPacketType==PK_TYPE_11A) {//0000 0000 0000 0000,11a
pDevice->uSlot = C_SLOT_SHORT;
pDevice->uSIFS = C_SIFS_A;
pDevice->uDIFS = C_SIFS_A + 2*C_SLOT_SHORT;
pDevice->uCwMin = C_CWMIN_A;
byMaxMin = 4;
}
else if (pDevice->byPacketType==PK_TYPE_11B) {//0000 0001 0000 0000,11b
pDevice->uSlot = C_SLOT_LONG;
pDevice->uSIFS = C_SIFS_BG;
pDevice->uDIFS = C_SIFS_BG + 2*C_SLOT_LONG;
pDevice->uCwMin = C_CWMIN_B;
byMaxMin = 5;
}
else {// PK_TYPE_11GA & PK_TYPE_11GB
u8 byRate = 0;
bool bOFDMRate = false;
unsigned int ii = 0;
PWLAN_IE_SUPP_RATES pItemRates = NULL;
pDevice->uSIFS = C_SIFS_BG;
if (pDevice->bShortSlotTime) {
pDevice->uSlot = C_SLOT_SHORT;
} else {
pDevice->uSlot = C_SLOT_LONG;
}
pDevice->uDIFS = C_SIFS_BG + 2*pDevice->uSlot;
pItemRates = (PWLAN_IE_SUPP_RATES)pDevice->vnt_mgmt.abyCurrSuppRates;
for (ii = 0; ii < pItemRates->len; ii++) {
byRate = (u8)(pItemRates->abyRates[ii]&0x7F);
if (RATEwGetRateIdx(byRate) > RATE_11M) {
bOFDMRate = true;
break;
}
}
if (bOFDMRate == false) {
pItemRates = (PWLAN_IE_SUPP_RATES)pDevice->vnt_mgmt
.abyCurrExtSuppRates;
for (ii = 0; ii < pItemRates->len; ii++) {
byRate = (u8)(pItemRates->abyRates[ii]&0x7F);
if (RATEwGetRateIdx(byRate) > RATE_11M) {
bOFDMRate = true;
break;
}
}
}
if (bOFDMRate == true) {
pDevice->uCwMin = C_CWMIN_A;
byMaxMin = 4;
} else {
pDevice->uCwMin = C_CWMIN_B;
byMaxMin = 5;
}
}
pDevice->uCwMax = C_CWMAX;
pDevice->uEIFS = C_EIFS;
byData[0] = (u8)pDevice->uSIFS;
byData[1] = (u8)pDevice->uDIFS;
byData[2] = (u8)pDevice->uEIFS;
byData[3] = (u8)pDevice->uSlot;
CONTROLnsRequestOut(pDevice,
MESSAGE_TYPE_WRITE,
MAC_REG_SIFS,
MESSAGE_REQUEST_MACREG,
4,
&byData[0]);
byMaxMin |= 0xA0;//1010 1111,C_CWMAX = 1023
CONTROLnsRequestOut(pDevice,
MESSAGE_TYPE_WRITE,
MAC_REG_CWMAXMIN0,
MESSAGE_REQUEST_MACREG,
1,
&byMaxMin);
}
void CARDvUpdateBasicTopRate(struct vnt_private *pDevice)
{
u8 byTopOFDM = RATE_24M, byTopCCK = RATE_1M;
u8 ii;
//Determines the highest basic rate.
for (ii = RATE_54M; ii >= RATE_6M; ii --) {
if ( (pDevice->wBasicRate) & ((u16)(1<<ii)) ) {
byTopOFDM = ii;
break;
}
}
pDevice->byTopOFDMBasicRate = byTopOFDM;
for (ii = RATE_11M;; ii --) {
if ( (pDevice->wBasicRate) & ((u16)(1<<ii)) ) {
byTopCCK = ii;
break;
}
if (ii == RATE_1M)
break;
}
pDevice->byTopCCKBasicRate = byTopCCK;
}
/*
* Description: Set NIC Tx Basic Rate
*
* Parameters:
* In:
* pDevice - The adapter to be set
* wBasicRate - Basic Rate to be set
* Out:
* none
*
* Return Value: true if succeeded; false if failed.
*
*/
void CARDbAddBasicRate(struct vnt_private *pDevice, u16 wRateIdx)
{
u16 wRate = (1 << wRateIdx);
pDevice->wBasicRate |= wRate;
//Determines the highest basic rate.
CARDvUpdateBasicTopRate(pDevice);
}
int CARDbIsOFDMinBasicRate(struct vnt_private *pDevice)
{
int ii;
for (ii = RATE_54M; ii >= RATE_6M; ii --) {
if ((pDevice->wBasicRate) & ((u16)(1<<ii)))
return true;
}
return false;
}
u8 CARDbyGetPktType(struct vnt_private *pDevice)
{
if (pDevice->byBBType == BB_TYPE_11A || pDevice->byBBType == BB_TYPE_11B) {
return (u8)pDevice->byBBType;
}
else if (CARDbIsOFDMinBasicRate(pDevice)) {
return PK_TYPE_11GA;
}
else {
return PK_TYPE_11GB;
}
}
/*
* Description: Calculate TSF offset of two TSF input
* Get TSF Offset from RxBCN's TSF and local TSF
*
* Parameters:
* In:
* pDevice - The adapter to be sync.
* qwTSF1 - Rx BCN's TSF
* qwTSF2 - Local TSF
* Out:
* none
*
* Return Value: TSF Offset value
*
*/
u64 CARDqGetTSFOffset(u8 byRxRate, u64 qwTSF1, u64 qwTSF2)
{
u64 qwTSFOffset = 0;
u16 wRxBcnTSFOffst = 0;
wRxBcnTSFOffst = cwRXBCNTSFOff[byRxRate % MAX_RATE];
qwTSF2 += (u64)wRxBcnTSFOffst;
qwTSFOffset = qwTSF1 - qwTSF2;
return qwTSFOffset;
}
/*
* Description: Sync. TSF counter to BSS
* Get TSF offset and write to HW
*
* Parameters:
* In:
* pDevice - The adapter to be sync.
* qwBSSTimestamp - Rx BCN's TSF
* qwLocalTSF - Local TSF
* Out:
* none
*
* Return Value: none
*
*/
void CARDvAdjustTSF(struct vnt_private *pDevice, u8 byRxRate,
u64 qwBSSTimestamp, u64 qwLocalTSF)
{
u64 qwTSFOffset = 0;
u8 pbyData[8];
qwTSFOffset = CARDqGetTSFOffset(byRxRate, qwBSSTimestamp, qwLocalTSF);
// adjust TSF
// HW's TSF add TSF Offset reg
pbyData[0] = (u8)qwTSFOffset;
pbyData[1] = (u8)(qwTSFOffset >> 8);
pbyData[2] = (u8)(qwTSFOffset >> 16);
pbyData[3] = (u8)(qwTSFOffset >> 24);
pbyData[4] = (u8)(qwTSFOffset >> 32);
pbyData[5] = (u8)(qwTSFOffset >> 40);
pbyData[6] = (u8)(qwTSFOffset >> 48);
pbyData[7] = (u8)(qwTSFOffset >> 56);
CONTROLnsRequestOut(pDevice,
MESSAGE_TYPE_SET_TSFTBTT,
MESSAGE_REQUEST_TSF,
0,
8,
pbyData
);
}
/*
* Description: Read NIC TSF counter
* Get local TSF counter
*
* Parameters:
* In:
* pDevice - The adapter to be read
* Out:
* qwCurrTSF - Current TSF counter
*
* Return Value: true if success; otherwise false
*
*/
bool CARDbGetCurrentTSF(struct vnt_private *pDevice, u64 *pqwCurrTSF)
{
*pqwCurrTSF = pDevice->qwCurrTSF;
return true;
}
/*
* Description: Clear NIC TSF counter
* Clear local TSF counter
*
* Parameters:
* In:
* pDevice - The adapter to be read
*
* Return Value: true if success; otherwise false
*
*/
bool CARDbClearCurrentTSF(struct vnt_private *pDevice)
{
MACvRegBitsOn(pDevice, MAC_REG_TFTCTL, TFTCTL_TSFCNTRST);
pDevice->qwCurrTSF = 0;
return true;
}
/*
* Description: Read NIC TSF counter
* Get NEXTTBTT from adjusted TSF and Beacon Interval
*
* Parameters:
* In:
* qwTSF - Current TSF counter
* wbeaconInterval - Beacon Interval
* Out:
* qwCurrTSF - Current TSF counter
*
* Return Value: TSF value of next Beacon
*
*/
u64 CARDqGetNextTBTT(u64 qwTSF, u16 wBeaconInterval)
{
u32 uBeaconInterval;
uBeaconInterval = wBeaconInterval * 1024;
/* Next TBTT =
* ((local_current_TSF / beacon_interval) + 1) * beacon_interval
*/
if (uBeaconInterval) {
do_div(qwTSF, uBeaconInterval);
qwTSF += 1;
qwTSF *= uBeaconInterval;
}
return qwTSF;
}
/*
* Description: Set NIC TSF counter for first Beacon time
* Get NEXTTBTT from adjusted TSF and Beacon Interval
*
* Parameters:
* In:
* dwIoBase - IO Base
* wBeaconInterval - Beacon Interval
* Out:
* none
*
* Return Value: none
*
*/
void CARDvSetFirstNextTBTT(struct vnt_private *pDevice, u16 wBeaconInterval)
{
u64 qwNextTBTT = 0;
u8 pbyData[8];
CARDbClearCurrentTSF(pDevice);
//CARDbGetCurrentTSF(pDevice, &qwNextTBTT); //Get Local TSF counter
qwNextTBTT = CARDqGetNextTBTT(qwNextTBTT, wBeaconInterval);
// Set NextTBTT
pbyData[0] = (u8)qwNextTBTT;
pbyData[1] = (u8)(qwNextTBTT >> 8);
pbyData[2] = (u8)(qwNextTBTT >> 16);
pbyData[3] = (u8)(qwNextTBTT >> 24);
pbyData[4] = (u8)(qwNextTBTT >> 32);
pbyData[5] = (u8)(qwNextTBTT >> 40);
pbyData[6] = (u8)(qwNextTBTT >> 48);
pbyData[7] = (u8)(qwNextTBTT >> 56);
CONTROLnsRequestOut(pDevice,
MESSAGE_TYPE_SET_TSFTBTT,
MESSAGE_REQUEST_TBTT,
0,
8,
pbyData
);
return;
}
/*
* Description: Sync NIC TSF counter for Beacon time
* Get NEXTTBTT and write to HW
*
* Parameters:
* In:
* pDevice - The adapter to be set
* qwTSF - Current TSF counter
* wBeaconInterval - Beacon Interval
* Out:
* none
*
* Return Value: none
*
*/
void CARDvUpdateNextTBTT(struct vnt_private *pDevice, u64 qwTSF,
u16 wBeaconInterval)
{
u8 pbyData[8];
qwTSF = CARDqGetNextTBTT(qwTSF, wBeaconInterval);
// Set NextTBTT
pbyData[0] = (u8)qwTSF;
pbyData[1] = (u8)(qwTSF >> 8);
pbyData[2] = (u8)(qwTSF >> 16);
pbyData[3] = (u8)(qwTSF >> 24);
pbyData[4] = (u8)(qwTSF >> 32);
pbyData[5] = (u8)(qwTSF >> 40);
pbyData[6] = (u8)(qwTSF >> 48);
pbyData[7] = (u8)(qwTSF >> 56);
CONTROLnsRequestOut(pDevice,
MESSAGE_TYPE_SET_TSFTBTT,
MESSAGE_REQUEST_TBTT,
0,
8,
pbyData
);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
"Card:Update Next TBTT[%8lx]\n", (unsigned long)qwTSF);
return;
}
/*
* Description: Turn off Radio power
*
* Parameters:
* In:
* pDevice - The adapter to be turned off
* Out:
* none
*
* Return Value: true if success; otherwise false
*
*/
int CARDbRadioPowerOff(struct vnt_private *pDevice)
{
int bResult = true;
//if (pDevice->bRadioOff == true)
// return true;
pDevice->bRadioOff = true;
switch (pDevice->byRFType) {
case RF_AL2230:
case RF_AL2230S:
case RF_AIROHA7230:
case RF_VT3226: //RobertYu:20051111
case RF_VT3226D0:
case RF_VT3342A0: //RobertYu:20060609
MACvRegBitsOff(pDevice, MAC_REG_SOFTPWRCTL, (SOFTPWRCTL_SWPE2 | SOFTPWRCTL_SWPE3));
break;
}
MACvRegBitsOff(pDevice, MAC_REG_HOSTCR, HOSTCR_RXON);
BBvSetDeepSleep(pDevice);
return bResult;
}
/*
* Description: Turn on Radio power
*
* Parameters:
* In:
* pDevice - The adapter to be turned on
* Out:
* none
*
* Return Value: true if success; otherwise false
*
*/
int CARDbRadioPowerOn(struct vnt_private *pDevice)
{
int bResult = true;
if ((pDevice->bHWRadioOff == true) || (pDevice->bRadioControlOff == true)) {
return false;
}
//if (pDevice->bRadioOff == false)
// return true;
pDevice->bRadioOff = false;
BBvExitDeepSleep(pDevice);
MACvRegBitsOn(pDevice, MAC_REG_HOSTCR, HOSTCR_RXON);
switch (pDevice->byRFType) {
case RF_AL2230:
case RF_AL2230S:
case RF_AIROHA7230:
case RF_VT3226: //RobertYu:20051111
case RF_VT3226D0:
case RF_VT3342A0: //RobertYu:20060609
MACvRegBitsOn(pDevice, MAC_REG_SOFTPWRCTL, (SOFTPWRCTL_SWPE2 | SOFTPWRCTL_SWPE3));
break;
}
return bResult;
}
void CARDvSetBSSMode(struct vnt_private *pDevice)
{
// Set BB and packet type at the same time.//{{RobertYu:20050222, AL7230 have two TX PA output, only connet to b/g now
// so in 11a mode need to set the MAC Reg0x4C to 11b/g mode to turn on PA
if( (pDevice->byRFType == RF_AIROHA7230 ) && (pDevice->byBBType == BB_TYPE_11A) )
{
MACvSetBBType(pDevice, BB_TYPE_11G);
}
else
{
MACvSetBBType(pDevice, pDevice->byBBType);
}
pDevice->byPacketType = CARDbyGetPktType(pDevice);
if (pDevice->byBBType == BB_TYPE_11A) {
ControlvWriteByte(pDevice, MESSAGE_REQUEST_BBREG, 0x88, 0x03);
} else if (pDevice->byBBType == BB_TYPE_11B) {
ControlvWriteByte(pDevice, MESSAGE_REQUEST_BBREG, 0x88, 0x02);
} else if (pDevice->byBBType == BB_TYPE_11G) {
ControlvWriteByte(pDevice, MESSAGE_REQUEST_BBREG, 0x88, 0x08);
}
vUpdateIFS(pDevice);
CARDvSetRSPINF(pDevice, (u8)pDevice->byBBType);
if ( pDevice->byBBType == BB_TYPE_11A ) {
//request by Jack 2005-04-26
if (pDevice->byRFType == RF_AIROHA7230) {
pDevice->abyBBVGA[0] = 0x20;
ControlvWriteByte(pDevice, MESSAGE_REQUEST_BBREG, 0xE7, pDevice->abyBBVGA[0]);
}
pDevice->abyBBVGA[2] = 0x10;
pDevice->abyBBVGA[3] = 0x10;
} else {
//request by Jack 2005-04-26
if (pDevice->byRFType == RF_AIROHA7230) {
pDevice->abyBBVGA[0] = 0x1C;
ControlvWriteByte(pDevice, MESSAGE_REQUEST_BBREG, 0xE7, pDevice->abyBBVGA[0]);
}
pDevice->abyBBVGA[2] = 0x0;
pDevice->abyBBVGA[3] = 0x0;
}
}